Nanomaterials Supported Enzymes: Environmental Applications for Depollution of Aquatic Environments


Nanomaterials Supported Enzymes: Environmental Applications for Depollution of Aquatic Environments

Fareeha Maqbool, Saima Muzammil, Muhammad Waseem, Tanvir Shahzad, Sabir Hussain, Muhammad Imran, Muhammad Afzal, Muhammad Hussnain Siddique

Increased pollution of worldwide water sources as well as difficulties in detecting and treating a wide range of contaminants impose significant health risks. Enzymes with their high activity and selectivity for chemical substrates are one of the promising options among the several technologies for the purification and depollution of aquatic environment. The operational performance of the enzymes is optimized through the immobilization process. Because of the unique physio-chemical properties of nanoparticles, they have become novel and attractive matrices for enzyme immobilization. Variety of composites consist of nanomaterials and enzymes have been discovered in order to improve enzyme stability, activity and functionality making nanosupported enzymes easier to use in depollution of aquatic environment. This chapter reveal different immobilization methods, nanosupports for immobilization and their uses in the depollution of aquatic environments.

Enzyme, Immobilization, Nanoparticles, Biosensors, Covalent Attachment

Published online , 25 pages

Citation: Fareeha Maqbool, Saima Muzammil, Muhammad Waseem, Tanvir Shahzad, Sabir Hussain, Muhammad Imran, Muhammad Afzal, Muhammad Hussnain Siddique, Nanomaterials Supported Enzymes: Environmental Applications for Depollution of Aquatic Environments, Materials Research Foundations, Vol. 126, pp 117-141, 2022


Part of the book on Nanomaterial-Supported Enzymes

[1] Progress on Drinking Water, Sanitation and Hygiene: 2017 update and SDG baselines – UNICEF DATA, (2017). (accessed August 22, 2021).
[2] M.A. Montgomery, M. Elimelech, Water and sanitation in developing countries: Including health in the equation – Millions suffer from preventable illnesses and die every year, Environ. Sci. Technol. 41 (2007) 17-24.
[3] E. Mintz, J. Bartram, P. Lochery, M. Wegelin, Not Just a Drop in the Bucket: Expanding Access to Point-of-Use Water Treatment Systems, Am. J. Public Health. 91 (2001) 1565.
[4] A. Steven Campbell, A. Steven, Graduate Theses, Dissertations, and Problem Reports 2013 A systematic study of enzyme-nanomaterial interactions for A systematic study of enzyme-nanomaterial interactions for application in active surface decontamination application in active surface deco, (2013). (accessed August 22, 2021).
[5] C.-K. Lee, A.-N. Au-Duong, Enzyme immobilization on nanoparticles: Recent Application, Emerg. Areas Bioeng. First Ed. (2018).
[6] N. Arabacı, T. Karaytuğ, A. Demirbas, I. Ocsoy, A. Katı, Nanomaterials for Enzyme Immobilization, Green Synth. Nanomater. Bioenergy Appl. (2020) 165-190.
[7] S. VAIDYA, P. Srivastava, P. RATHORE, A. Pandey, Amylases: a Prospective Enzyme in the Field of Biotechnology, J. Appl. Biosci. 41 (2015) 1-18. (accessed August 4, 2021).
[8] A. Illanes, A. Cauerhff, L. Wilson, G.R. Castro, Recent trends in biocatalysis engineering, Bioresour. Technol. 115 (2012) 48-57.
[9] B. Kalpana, S.P.-J. of basic microbiology, undefined 2014, Halotolerant, acid‐alkali stable, chelator resistant and raw starch digesting α‐amylase from a marine bacterium Bacillus subtilis S8-18, Wiley Online Libr. 54 (2014) 802-811.
[10] L. Liu, H. Yang, H. Shin, R. Chen, J. Li, … G.D.-, undefined 2013, How to achieve high-level expression of microbial enzymes: strategies and perspectives, Taylor Fr. 4 (2013) 212-223.
[11] R. Singh, M. Kumar, A. Mittal, P.K. Mehta, Microbial enzymes: industrial progress in 21st century, 3 Biotech. 6 (2016).
[12] S. Li, X. Yang, S. Yang, M. Zhu, X. Wang, Technology prospecting on enzymes: Application, marketing and engineering, Comput. Struct. Biotechnol. J. 2 (2012) e201209017.
[13] J.M. Choi, S.S. Han, H.S. Kim, Industrial applications of enzyme biocatalysis: Current status and future aspects, Biotechnol. Adv. 33 (2015) 1443-1454.
[14] P. V. Iyer, L. Ananthanarayan, Enzyme stability and stabilization-Aqueous and non-aqueous environment, Process Biochem. 43 (2008) 1019-1032.
[15] R. Pieroni Vaz, L. Rios De Souza, M.E. Ximenes, F. Filho, Title: AN OVERVIEW OF HOLOCELLULOSE-DEGRADING ENZYME IMMOBILIZATION FOR USE IN BIOETHANOL PRODUCTION, “Journal Mol. Catal. B, Enzym. (2016).
[16] N. SS, R. VK, Magnetic-metal organic framework (magnetic-MOF): A novel platform for enzyme immobilization and nanozyme applications, Int. J. Biol. Macromol. 120 (2018) 2293-2302.
[17] J. Cui, S. Ren, B. Sun, S.J.-C.C. Reviews, U. 2018, Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges, Elsevier. (2018). (accessed August 5, 2021).
[18] J. Cui, S. Jia, Organic-inorganic hybrid nanoflowers: A novel host platform for immobilizing biomolecules, Coord. Chem. Rev. 352 (2017) 249-263.
[19] W. Feng, P. Ji, Enzymes immobilized on carbon nanotubes, Biotechnol. Adv. 29 (2011) 889-895.
[20] B. Krajewska, Application of chitin- and chitosan-based materials for enzyme immobilizations: A review, Enzyme Microb. Technol. 35 (2004) 126-139.
[21] S.A. Ansari, Q. Husain, Potential applications of enzymes immobilized on/in nano materials: A review, Biotechnol. Adv. 30 (2012) 512-523.
[22] S. Cao, P. Xu, Y. Ma, X. Yao, Y. Yao, M. Zong, X. Li, W. Lou, Recent advances in immobilized enzymes on nanocarriers, Cuihua Xuebao/Chinese J. Catal. 37 (2016) 1814-1823.
[23] M. Bilal, T. Rasheed, Y. Zhao, H.M.N. Iqbal, J. Cui, “Smart” chemistry and its application in peroxidase immobilization using different support materials, Int. J. Biol. Macromol. 119 (2018) 278-290.
[24] N. Arabacı, T. Karaytuğ, A. Demirbas, I. Ocsoy, A. Katı, Nanomaterials for Enzyme Immobilization, Green Synth. Nanomater. Bioenergy Appl. (2020) 165-190.
[25] L. Cao, L. van Langen, R.S.-C. opinion in Biotechnology, undefined 2003, Immobilised enzymes: carrier-bound or carrier-free?, Elsevier. (n.d.). (accessed August 9, 2021).
[26] Y. Zhang, J. Ge, Z. Liu, Enhanced Activity of Immobilized or Chemically Modified Enzymes, ACS Catal. 5 (2015) 4503-4513.
[27] B.M. Brena, F. Batista-Viera, Immobilization of Enzymes, (2006) 15-30.
[28] J.C. Quilles Junior, A.L. Ferrarezi, J.P. Borges, R.R. Brito, E. Gomes, R. da Silva, J.M. Guisán, M. Boscolo, Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism, Bioprocess Biosyst. Eng. 39 (2016) 1933-1943.
[29] A. Bastida, P. Sabuquillo, P. Armisen, R. Ferná Ndez-Lafuente, J. Huguet, J.M. Guisá, A Single Step Purification, Immobilization, and Hyperactivation of Lipases via Interfacial Adsorption on Strongly Hydrophobic Supports, Biotechnol Bioeng. 58 (1998) 486-493.<486::AID-BIT4>3.0.CO;2-9
[30] S. Pang, Y. Wu, X. Zhang, B. Li, J. Ouyang, M. Ding, Immobilization of laccase via adsorption onto bimodal mesoporous Zr-MOF, Process Biochem. 51 (2016) 229-239.
[31] J. Fan, J. Lie, L. Wang, C. Yu, B. Tu, D. Zhao, Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies, Chem. Commun. 3 (2003) 2140-2141.
[32] R. Ahmad, M. Sardar, Enzyme Immobilization: An Overview on Nanoparticles as Immobilization Matrix, (2015).
[33] G. Z, R. M, R. M, S. M, S. B, Entrapment of beta-galactosidase in polyvinylalcohol hydrogel, Biotechnol. Lett. 30 (2008) 763-767.
[34] A. Deshpande, S.F. D’souza, G.B. Nadkarni, Coimmobilization of D-amino acid oxidase and catalase by entrapment ofTrigonopsis variabilis in radiation polymerised Polyacrylamide beads, J. Biosci. 1987 111. 11 (1987) 137-144.
[35] S.D.-C. Science, U. 1999, Immobilized enzymes in bioprocess, JSTOR. (1999). (accessed August 10, 2021).
[36] D.M. Liu, J. Chen, Y.P. Shi, Advances on methods and easy separated support materials for enzymes immobilization, TrAC – Trends Anal. Chem. 102 (2018) 332-342.
[37] M.C.P. Gonçalves, T.G. Kieckbusch, R.F. Perna, J.T. Fujimoto, S.A.V. Morales, J.P. Romanelli, Trends on enzyme immobilization researches based on bibliometric analysis, Process Biochem. 76 (2019) 95-110.
[38] V. Singh, M. Sardar, M.G.-I. of E. and Cells, undefined 2013, Immobilization of enzymes by bioaffinity layering, Springer. (n.d.). (accessed August 10, 2021).
[39] H. M, K. X, Immobilization of enzymes on porous silicas–benefits and challenges, Chem. Soc. Rev. 42 (2013) 6277-6289.
[40] F. Quiocho, … F.R. the N.A. of S. of, undefined 1964, Intermolecular cross linking of a protein in the crystalline state: carboxypeptidase-A, Ncbi.Nlm.Nih.Gov. (1964). (accessed August 14, 2021).
[41] A.F.S.A. Habeeb, Preparation of enzymically active, water-insoluble derivatives of trypsin, Elsevier. (1967) 264-268.
[42] S. Shah, A. Sharma, M.G.-A. Biochemistry, U. 2006, Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder, Elsevier. (2006). (accessed August 14, 2021).
[43] F. Šulek, D. Fernández, Ž. Knez, … M.H.-P., U. 2011, Immobilization of horseradish peroxidase as crosslinked enzyme aggregates (CLEAs), Elsevier. (2011). (accessed August 14, 2021).
[44] J. Chen, J. Zhang, B. Han, Z. Li, J. Li, X.F.S.B. Biointerfaces, U. 2006, Synthesis of cross-linked enzyme aggregates (CLEAs) in CO2-expanded micellar solutions, Elsevier. (2006). (accessed August 14, 2021).
[45] N. Chauhan, A. Kumar, C.S. Pundir, Construction of an Uricase Nanoparticles Modified Au Electrode for Amperometric Determination of Uric Acid, Appl. Biochem. Biotechnol. 174 (2014) 1683-1694.
[46] L. Cao, F. Van Rantwijk, R.A. Sheldon, Cross-linked enzyme aggregates: A simple and effective method for the immobilization of penicillin acylase, Org. Lett. 2 (2000) 1361-1364.
[47] S. Chawla, R. Rawal, Sonia, Ramrati, C.S. Pundir, Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol, J. Nanoparticle Res. 15 (2013).
[48] M. del P. Guauque Torres, M.L. Foresti, M.L. Ferreira, Cross-linked enzyme aggregates (CLEAs) of selected lipases: A procedure for the proper calculation of their recovered activity, AMB Express. 3 (2013) 1-11.
[49] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates, J. Am. Chem. Soc. 114 (1992) 10834-10843.
[50] E.M. -, Immobilisation of enzymes on mesoporous silicate materials, Pubs.Rsc.Org. (2013).
[51] Z. Zhou, M.H.-C.S. Reviews, U. 2013, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Pubs.Rsc.Org. (2013). (accessed August 19, 2021).
[52] H.L. Betancor, L, Bioinspired enzyme encapsulation for biocatalysis, Elsevier. (2008). (accessed August 19, 2021).
[53] E. Cipolatti, A. Valerio, R. Henriques, … D.M.-, Nanomaterials for biocatalyst immobilization-state of the art and future trends, Pubs.Rsc.Org. (2016). (accessed August 19, 2021).
[54] W. Wei, J. Du, J. Li, M. Yan, Q. Zhu, X. Jin, … X.Z.-A., undefined 2013, Construction of robust enzyme nanocapsules for effective organophosphate decontamination, detoxification, and protection, Wiley Online Libr. 25 (2013) 2212-2218.
[55] X. Wu, M. Hou, J.G.-C.S.& Technology, U. 2015, Metal-organic frameworks and inorganic nanoflowers: a type of emerging inorganic crystal nanocarrier for enzyme immobilization, Pubs.Rsc.Org. (2015). (accessed August 19, 2021).
[56] F. Lyu, Y. Zhang, R. Zare, J. Ge, Z.L.-N. letters, undefined 2014, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, ACS Publ. 14 (2014) 5761-5765.
[57] J. Ge, J. Lei, R.Z.-N. nanotechnology, undefined 2012, Protein-inorganic hybrid nanoflowers, Nature.Com. (2012).
[58] I. Ocsoy, E. Dogru, S.U.-E. and microbial Technology, U. 2015, A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity, Elsevier. (2015). (accessed August 18, 2021).
[59] T.. A. Pradeep, Noble metal nanoparticles for water purification: a critical review, Elsevier. (2009). (accessed August 19, 2021).
[60] J. Liu, Y. Lu, A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles, J. Am. Chem. Soc. 125 (2003) 6642-6643.
[61] L. Stadlmair, T. Letzel, J. Drewes, J.G.- Chemosphere, U. 2018, Enzymes in removal of pharmaceuticals from wastewater: A critical review of challenges, applications and screening methods for their selection, Elsevier. (2018). (accessed August 18, 2021).
[62] B. Sharma, A. Dangi, P.S.-J. of environmental Management, U. 2018, Contemporary enzyme based technologies for bioremediation: a review, Elsevier. (2018). (accessed August 18, 2021).
[63] M. Wang, Y. Chen, V.A. Kickhoefer, L.H. Rome, P. Allard, S. Mahendra, A Vault-Encapsulated Enzyme Approach for Efficient Degradation and Detoxification of Bisphenol A and Its Analogues, ACS Sustain. Chem. Eng. 7 (2019) 5808-5817.
[64] M. Bilal, M. Adeel, T. Rasheed, Y.Z.-E. International, U. 2019, Emerging contaminants of high concern and their enzyme-assisted biodegradation-a review, Elsevier. (2019). (accessed August 18, 2021).
[65] C.A. Gasser, L. Yu, J. Svojitka, T. Wintgens, E.M. Ammann, P. Shahgaldian, P.F.X. Corvini, G. Hommes, Advanced enzymatic elimination of phenolic contaminants in wastewater: A nano approach at field scale, Appl. Microbiol. Biotechnol. 98 (2014) 3305-3316.
[66] W. Wei, J. Du, J. Li, M. Yan, Q. Zhu, X. Jin, … X.Z.-A., undefined 2013, Construction of robust enzyme nanocapsules for effective organophosphate decontamination, detoxification, and protection, Wiley Online Libr. 25 (2013) 2212-2218.
[67] X. Fang, C. Zhang, X. Qian, D.Y.-R. Advances, U. 2018, Self-assembled 2, 4-dichlorophenol hydroxylase-inorganic hybrid nanoflowers with enhanced activity and stability, Pubs.Rsc.Org. (2018). (accessed August 18, 2021).
[68] Y. Azuma, D.L.V. Bader, D. Hilvert, Substrate Sorting by a Supercharged Nanoreactor, J. Am. Chem. Soc. 140 (2018) 860-863.
[69] D.C. Buehler, M.D. Marsden, S. Shen, D.B. Toso, X. Wu, J.A. Loo, H. Zhou, V.A. Kickhoefer, P.A. Wender, J.A. Zack, L.H. Rome, D.C. Buehler, M.D. Marsden, Bioengineered vaults: Self-assembling protein shell-lipophilic core nanoparticles for drug delivery, ACS Publ. 8 (2014) 7723-7732.
[70] P. Dvorak, S. Bidmanova, J.D.-… science & technology, undefined 2014, Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1, 2, 3-trichloropropane, ACS Publ. 48 (2014) 6859-6866.
[71] M. Wang, S.K. Mohanty, S. Mahendra, Nanomaterial-Supported Enzymes for Water Purification and Monitoring in Point-of-Use Water Supply Systems, Acc. Chem. Res. 52 (2019) 876-885.
[72] B. Thallinger, E.N. Prasetyo, G.S. Nyanhongo, G.M. Guebitz, Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms, Biotechnol. J. 8 (2013) 97-109.
[73] H. Luckarift, M. Dickerson, K. Sandhage, J.S.- Small, undefined 2006, Rapid, room‐temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania, Wiley Online Libr. 2 (2006) 640-643.
[74] R.C. Pangule, S.J. Brooks, C.Z. Dinu, S.S. Bale, S.L. Salmon, G. Zhu, D.W. Metzger, R.S. Kane, J.S. Dordick, Antistaphylococcal nanocomposite films based on enzyme – Nanotube conjugates, ACS Nano. 4 (2010) 3993-4000.
[75] D. Patterson, K. McCoy, … C.F.-J. of M., U. 2014, Constructing catalytic antimicrobial nanoparticles by encapsulation of hydrogen peroxide producing enzyme inside the P22 VLP, Pubs.Rsc.Org. (2014). (accessed August 18, 2021).
[76] S. Bang, A. Jang, J. Yoon, P. Kim, … J.K.-E. and microbial, U. 2011, Evaluation of whole lysosomal enzymes directly immobilized on titanium (IV) oxide used in the development of antimicrobial agents, Elsevier. (2011). (accessed August 18, 2021).
[77] P. Asuri, S. Karajanagi, R. Kane, J.D.- Small, undefined 2007, Polymer-nanotube-enzyme composites as active antifouling films, Wiley Online Libr. 3 (2007) 50-53.
[78] X. Qu, J. Brame, Q. Li, P.A.-A. of chemical research, undefined 2013, Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse, ACS Publ. 28 (2012) 834-843.
[79] R. Deo, J. Wang, I. Block, A. Mulchandani, … K.J.-A. chimica, U. 2005, Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor, Elsevier. (2005). (accessed August 18, 2021).
[80] Y. Li, Z. Liu, Y. Liu, Y. Yang, G. Shen, R.Y.-A. Biochemistry, U. 2006, A mediator-free phenol biosensor based on immobilizing tyrosinase to ZnO nanoparticles, Elsevier. (2006). (accessed August 18, 2021).
[81] D. Pan, Y. Gu, H. Lan, Y. Sun, H.G.-A. chimica Acta, U. 2015, Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A, Elsevier. (2015). (accessed August 18, 2021).
[82] G. Liu, Y. Lin, Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents, Anal. Chem. 77 (2005) 5894-5901.
[83] A. Amine, H. Mohammadi, … I.B.-B. and, U. 2006, Enzyme inhibition-based biosensors for food safety and environmental monitoring, Elsevier. (2006). (accessed August 18, 2021).
[84] Y. Yang, Z. Wang, M. Yang, M. Guo, Z. Wu, … G.S.-S. and A.B., U. 2006, Inhibitive determination of mercury ion using a renewable urea biosensor based on self-assembled gold nanoparticles, Elsevier. (2006). (accessed August 19, 2021).
[85] L. Zhu, L. Gong, Y. Zhang, R. Wang, … J.G.-C.A., undefined 2013, Rapid detection of phenol using a membrane containing laccase nanoflowers, Wiley Online Libr. 8 (2013) 2358-2360.
[86] O.R. Miranda, X. Li, L. Garcia-Gonzalez, Z.J. Zhu, B. Yan, U.H.F. Bunz, V.M. Rotello, Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor, J. Am. Chem. Soc. 133 (2011) 9650-9653.
[87] P.K. Kumar, V., Singh, D., Sangwan, P., and Gill, Industrial enzymes : trends, scope and relevance, New York Nov. Sci. Publ. (2014) 211.
[88] R. Pang, M. Li, C.Z.- Talanta, U. 2015, Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation, Elsevier. (2015). (accessed August 22, 2021).
[89] A. Simonian, T. Good, S. Wang, J.W.-A. chimica Acta, U. 2005, Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides, Elsevier. (2005). (accessed August 18, 2021).