Recent Advances in Enzyme Immobilization in Nanomaterials


Recent Advances in Enzyme Immobilization in Nanomaterials

Muhammad Hamza, Abdul Qadeer, Mabkhoot Alsaiari, Saleh Alsayari, Qudsia Kanwal, Abdur Rahim

This chapter described the advancements in the development of nanostructured supported material and enzyme immobilization techniques. The functionalized nanomaterials extremely affect the inherent mechanical properties and provide the highest biocompatibility and specific nano-environment surrounding the enzymes for improving enzymes stability, catalytic performance, and reaction’s activities. The enzyme immobilization on nanomaterials considerably enhances the robustness and durability of the enzyme for its frequent applications, which reduces the overall expenses of the bio-catalytic process. There are various types of nanomaterials i.e. metal nanoparticles, metal oxide, carbonaceous materials (carbon nanotubes, graphene, and activated carbon), that have been used for the immobilization of the enzyme. So that durability, catalytic activity, leaching of the enzyme, and mechanical steadiness are evaluated for their continual operation.

Enzyme Immobilization, Nanomaterials, Biomimetic, Co-factor, Carbonaceous Nanomaterials

Published online , 66 pages

Citation: Muhammad Hamza, Abdul Qadeer, Mabkhoot Alsaiari, Saleh Alsayari, Qudsia Kanwal, Abdur Rahim, Recent Advances in Enzyme Immobilization in Nanomaterials, Materials Research Foundations, Vol. 126, pp 1-66, 2022


Part of the book on Nanomaterial-Supported Enzymes

[1] D. Schomburg, M. Salzmann, Enzyme handbook, Enzyme Handbook, Springer1991, pp. 1-1175.
[2] E. Buchner, ” Biocatalyst” redirects here. For the use of natural catalysts in organic chemistry, see Biocatalysis.
[3] J.M. Murphy, H. Farhan, P.A. Eyers, Bio-Zombie: the rise of pseudoenzymes in biology, Biochemical Society Transactions 45 (2017) 537-544.
[4] J.M. Murphy, Q. Zhang, S.N. Young, M.L. Reese, F.P. Bailey, P.A. Eyers, D. Ungureanu, H. Hammaren, O. Silvennoinen, L.N. Varghese, A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties, Biochemical Journal 457 (2014) 323-334.
[5] I. Schomburg, A. Chang, S. Placzek, C. Söhngen, M. Rother, M. Lang, C. Munaretto, S. Ulas, M. Stelzer, A. Grote, BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA, Nucleic acids research 41 (2012) D764-D772.
[6] A. Radzicka, R. Wolfenden, Rates of uncatalyzed peptide bond hydrolysis in neutral solution and the transition state affinities of proteases, Journal of the American Chemical Society 118 (1996) 6105-6109.
[7] B.P. Callahan, B.G. Miller, OMP decarboxylase-An enigma persists, Bioorganic chemistry 35 (2007) 465-469.
[8] S. Paroha, R.D. Dubey, S. Mallick, Recent Targets in Drug Discovery: A Review, Research Journal of Pharmacology and Pharmacodynamics 3 (2011) 5-9.
[9] B.E. Güler, Farklı aminoasit içeren nanofibrillerde bacıllus subtılıs E6-5 suşundan ham proteaz ve ticari proteazın immobilizasyon çalışmaları, Uludağ Üniversitesi, 2017.
[10] M.B. Duza, S. Mastan, Microbial enzymes and their applications-a review, American Journal of Pharm Research 3 (2013) 6208-6219.
[11] A. Payen, J.-F. Persoz, Mémoire sur la diastase, les principaux produits de ses réactions, et leurs applications aux arts industriels, Ann. chim. phys 53 (1833) 73-92.
[12] K.L. Manchester, Louis Pasteur (1822-1895)-chance and the prepared mind, Trends in biotechnology 13 (1995) 511-515.
[13] A.F. Agrò, G. Mei, Allostery: The Rebound of Proteins, Allostery, Springer2021, pp. 1-6.
[14] E. Buchner, Academic Dictionaries and Encyclopedias.
[15] E. Buchner, Etymology and history.
[16] E. Buchner, From Infogalactic: the planetary knowledge core Jump to: navigation, search” Biocatalyst” redirects here. For the use of natural catalysts in organic chemistry, see Biocatalysis.
[17] M.A. Fraatz, M. Rühl, H. Zorn, Food and feed enzymes, Biotechnology of Food and Feed Additives (2013) 229-256.
[18] O. May, Industrial Enzyme Applications-Overview and Historic Perspective, Industrial enzyme applications (2019) 1-24.
[19] M. Piccolino, Biological machines: from mills to molecules, Nature Reviews Molecular Cell Biology 1 (2000) 149-152.
[20] V. Politi, Specialisation and the incommensurability among scientific specialties, Journal for General Philosophy of Science 50 (2019) 129-144.
[21] L. Shelfer, The alchemy of jargon: Etymologies of urologic neologisms. Number 2: Basic biochemical nomenclature, Wiley Online Library, 2009.
[22] J.L. Heilbron, The Oxford companion to the history of modern science, Oxford University Press2003.
[23] M.P.C. Bernal, The translation of scientific literature from German into Spanish at the turn of the 20th century, Translation & Interpreting 11 (2019) 87-105.
[24] Marquis, R.E., W.P. Brown, and W.O. Fenn, Pressure sensitivity of streptococcal growth in relation to catabolism. Journal of Bacteriology, 1971. 105(2): p. 504-511.
[25] R.B. Merrifield, Robert Bruce Merrifield, Nobel Prize in Chemistry 393.
[27] Moerner, W.E., High-resolution optical spectroscopy of single molecules in solids. Accounts of chemical research, 1996. 29(12): p. 563-571
[28] Kador, L., Optical detection and Spectroscopy of single molecules in a solid. Phys. Rev. Lett, 1989. 62(21): p. 2535-2538.
[29] Seaborg, G.T., History of Met Lab Section CI. 1980.
[30] E. Buchner, Nobel Lecture: Cell-Free Fermentation, Nobelprize. org (1907).
[31] C.-L. Liu, Relocating Pastorian Medicine: Accommodation and Acclimatization of Medical Practices at the Pasteur Institutes in China, 1899-1951, UCLA, 2016.
[32] N.J. Mulder, Protein family databases, eLS (2007).
[33] C.B. Anfinsen, Studies on the principles that govern the folding of protein chains, Les Prix Nobel en 1(1973) (1972) 103-119.
[34] D. Dunaway-Mariano, Enzyme function discovery, Structure 16 (2008) 1599-1600.
[35] G.A. Petsko, D. Ringe, Protein structure and function, New Science Press2004.
[36] L.H. Chen, G. Kenyon, F. Curtin, S. Harayama, M. Bembenek, G. Hajipour, C. Whitman, 4-Oxalocrotonate tautomerase, an enzyme composed of 62 amino acid residues per monomer, Journal of Biological Chemistry 267 (1992) 17716-17721.
[37] S. Smith, The animal fatty acid synthase: one gene, one polypeptide, seven enzymes, The FASEB journal 8 (1994) 1248-1259.
[38] A.J.M. Ribeiro, G.L. Holliday, N. Furnham, J.D. Tyzack, K. Ferris, J.M. Thornton, Mechanism and Catalytic Site Atlas (M-CSA): a database of enzyme reaction mechanisms and active sites, Nucleic acids research 46 (2018) D618-D623.
[39] H. Suzuki, Chapter 7: Active Site Structure, How Enzymes Work: From Structure to Function. Boca Raton (2015) 117-140.
[40] G. Krauss, S. Benjamin, M. Lake, Biochemistry of signal transduction and regulation, Wiley Online Library2003.
[41] A.T. Brown, The Effect of Feed Additives on Male Broiler Performance, Mississippi State University, 2019.
[42] M. De Bolster, Glossary of terms used in bioinorganic chemistry (IUPAC recommendations 1997), Pure and applied chemistry 69 (1997) 1251-1304.
[43] D. Voet, J.G. Voet, C.W. Pratt, Fundamentals of biochemistry: life at the molecular level, John Wiley & Sons2016.
[44] A. Chapman-Smith, J.E. Cronan Jr, The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity, Trends in biochemical sciences 24 (1999) 359-363.
[45] Z. Fisher, J.A. Hernandez Prada, C. Tu, D. Duda, C. Yoshioka, H. An, L. Govindasamy, D.N. Silverman, R. McKenna, Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II, Biochemistry 44 (2005) 1097-1105.
[46] M.J. kadhim AL-Imam, B.A.L. AL-Rubaii, The influence of some amino acids, vitamins and anti-inflammatory drugs on activity of chondroitinase produced by Proteus vulgaris caused urinary tract infection, Iraqi Journal of Science 57 (2016) 2412-2421.
[47] P. Sarmah, D. Mahanta, Computational Methods for Enzyme Design and Its Biological Significance.
[48] T. Braunschweig, BRENDA The Comprehensive Enzyme Information System, 2014.
[49] D. Schomburg, I. Schomburg, S. Placzek, BRENDA-the Comprehensive enzyme information system, URL http://www. brenda-enzymes. org/enzyme. php (2015).
[50] S. Törnroth-Horsefield, R. Neutze, Opening and closing the metabolite gate, Proceedings of the National Academy of Sciences 105 (2008) 19565-19566.
[51] A. Cornish-Bowden, Why is uncompetitive inhibition so rare?: A possible explanation, with implications for the design of drugs and pesticides, FEBS letters 203 (1986) 3-6.
[52] R. Kopelmann, Fractal kinetics, Science (Washington DC) 241 (1988) 1620-1625.
[53] J.M. Strelow, A perspective on the kinetics of covalent and irreversible inhibition, SLAS DISCOVERY: Advancing Life Sciences R&D 22 (2017) 3-20.
[54] N.C. Price, What is meant by ‘competitive inhibition’?, Trends in biochemical sciences 4 (1979) N272-N273.
[55] D.S. Goodsell, The molecular perspective: methotrexate, The Oncologist 4 (1999) 340-341.
[56] P. Wu, M.H. Clausen, T.E. Nielsen, Allosteric small-molecule kinase inhibitors, Pharmacology & therapeutics 156 (2015) 59-68.
[57] R. Seetharaman, M. Advani, S. Mali, S. Pawar, Enzymes as targets of Drug Action: an Overview, International Journal 3 (2020) 114.
[58] A.R. Jalalvand, Chemometrics in investigation of small molecule-biomacromolecule interactions: A review, International Journal of Biological Macromolecules (2021).
[59] J.F. Fisher, S.O. Meroueh, S. Mobashery, Bacterial resistance to β-lactam antibiotics: compelling opportunism, compelling opportunity, Chemical reviews 105 (2005) 395-424.
[60] D.S. Johnson, E. Weerapana, B.F. Cravatt, Strategies for discovering and derisking covalent, irreversible enzyme inhibitors, Future medicinal chemistry 2 (2010) 949-964.
[61] I.V. Shevelev, U. Hübscher, The 3′-5′ exonucleases, Nature reviews Molecular cell biology 3(5) (2002) 364-376.
[62] M. Ibba, D. Söll, Aminoacyl-tRNA synthesis, Annual review of biochemistry 69 (2000) 617-650.
[63] N. Zenkin, Y. Yuzenkova, K. Severinov, Transcript-assisted transcriptional proofreading, Science 313 (2006) 518-520.
[64] M. Yarus, S. Cline, L. Raftery, P. Wier, D. Bradley, The translational efficiency of tRNA is a property of the anticodon arm, Journal of Biological Chemistry 261 (1986) 10496-10505.
[65] O.K. Tawfik, D. S, Enzyme promiscuity: a mechanistic and evolutionary perspective, Annual review of biochemistry 79 (2010) 471-505.
[66] R.E. Ricklefs, Estimating diversification rates from phylogenetic information, Trends in ecology & evolution 22 (2007) 601-610.
[67] E. Fischer, Effects of configuration on enzyme activity, Ber Dtsch Chem Ges 27 (1894) 2985-2993.
[68] G.M. Cooper, The central role of enzymes as biological catalysts, Sinauer Associates2000.
[69] W.L. Jorgensen, Rusting of the lock and key model for protein-ligand binding, Science 254 (1991) 954-956.
[70] C.S. Rye, S.G. Withers, Glycosidase mechanisms, Current opinion in chemical biology 4 (2000) 573-580.
[71] R. Boyer, Chapter 6: Enzymes I, Reactions, Kinetics, and Inhibition, Concepts in Biochemistry (2002) 137-8.
[72] Y. Savir, T. Tlusty, Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition, PloS one 2 (2007) e468.
[73] K. Borgaonkar, R. Patil, RNA as ENZYMES and comparison of its properties with PROTEINS as ENZYMES, (2020).
[74] A. Warshel, P.K. Sharma, M. Kato, Y. Xiang, H. Liu, M.H. Olsson, Electrostatic basis for enzyme catalysis, Chemical reviews 106 (2006) 3210-3235.
[75] A.L. Lehninger, D.L. Nelson, M.M. Cox, Lehninger principles of biochemistry, New York: WH Freeman, 2013.
[76] S.J. Benkovic, S. Hammes-Schiffer, A perspective on enzyme catalysis, Science 301 (2003) 1196-1202.
[77] W.P. Jencks, Catalysis in chemistry and enzymology, Courier Corporation1987.
[78] J. Villa, M. Štrajbl, T. Glennon, Y. Sham, Z. Chu, A. Warshel, How important are entropic contributions to enzyme catalysis?, Proceedings of the National Academy of Sciences 97 (2000) 11899-11904.
[79] A. Ramanathan, A. Savol, V. Burger, C.S. Chennubhotla, P.K. Agarwal, Protein conformational populations and functionally relevant substates, Accounts of chemical research 47 (2014) 149-156.
[80] C.-J. Tsai, A. Del Sol, R. Nussinov, Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms, Molecular Biosystems 5 (2009) 207-216.
[81] J.-P. Changeux, S.J. Edelstein, Allosteric mechanisms of signal transduction, Science 308 (2005) 1424-1428.
[82] T. Hunter, A thousand and one protein kinases, Cell 50 (1987) 823-829.
[83] J. Berg, Powell BC, and Cheney RE, A millennial myosin census. Mol Biol Cell 12 (2001) 780-794.
[84] E.A. Meighen, Molecular biology of bacterial bioluminescence, Microbiological reviews 55 (1991) 123-142.
[85] E. De Clercq, Highlights in the development of new antiviral agents, Mini Rev Med Chem 2 (2002) 163-75.
[86] R.I. Mackie, B.A. White, Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output, Journal of dairy science 73 (1990) 2971-2995.
[87] R.G. Kurumbail, J.R. Kiefer, L.J. Marnett, Cyclooxygenase enzymes: catalysis and inhibition, Current opinion in structural biology 11 (2001) 752-760.
[88] B.W. Doble, J.R. Woodgett, GSK-3: tricks of the trade for a multi-tasking kinase, Journal of cell science 116 (2003) 1175-1186.
[89] P. Bennett, I. Chopra, Molecular basis of beta-lactamase induction in bacteria, Antimicrobial Agents and Chemotherapy 37 (1993) 153.
[90] G.G. Gibson, P. Skett, Induction and inhibition of drug metabolism, Introduction to drug metabolism, Springer1996, pp. 77-106.
[91] G.M. Cohen, Caspases: the executioners of apoptosis, Biochemical Journal 326 (1997) 1-16.
[92] H. Suzuki, Chapter 4: Effect of pH, Temperature, and High Pressure on Enzymatic Activity, How Enzymes Work: From Structure to Function (2015) 53-74.
[93] C. Noree, B.K. Sato, R.M. Broyer, J.E. Wilhelm, Identification of novel filament-forming proteins in Saccharomyces cerevisiae and Drosophila melanogaster, Journal of Cell Biology 190 (2010) 541-551.
[94] G.N. Aughey, J.-L. Liu, Metabolic regulation via enzyme filamentation, Critical reviews in biochemistry and molecular biology 51 (2016) 282-293.
[95] T. Nishimura, T. Iino, WO 2003080585 A1;(b) K. Kamata, M. Mitsuya, T. Nishimura, J. Eiki and Y. Nagata, Structure 12 (2004) 429.
[96] P. Froguel, H. Zouali, N. Vionnet, G. Velho, M. Vaxillaire, F. Sun, S. Lesage, M. Stoffel, J. Takeda, P. Passa, Familial hyperglycemia due to mutations in glucokinase–definition of a subtype of diabetes mellitus, New England Journal of Medicine 328 (1993) 697-702.
[97] V. Renugopalakrishnan, R. Garduno-Juarez, G. Narasimhan, C. Verma, X. Wei, P. Li, Rational design of thermally stable proteins: relevance to bionanotechnology, Journal of nanoscience and nanotechnology 5 (2005) 1759-1767.
[98] K. Hult, P. Berglund, Engineered enzymes for improved organic synthesis, Current opinion in biotechnology 14 (2003) 395-400.
[99] L. Jiang, E.A. Althoff, F.R. Clemente, L. Doyle, D. Röthlisberger, A. Zanghellini, J.L. Gallaher, J.L. Betker, F. Tanaka, C.F. Barbas, De novo computational design of retro-aldol enzymes, science 319 (2008) 1387-1391.
[100] Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresource technology 83 (2002) 1-11.
[101] O. Kirk, T., Vedel Borchert, and C. Crone Fuglsang. 2002. Industrial enzyme applications, Curr. Opin. Biotechnol 13 345-351.
[102] C. Dulieu, M. Moll, J. Boudrant, D. Poncelet, Improved Performances and Control of Beer Fermentation Using Encapsulated α‐Acetolactate Decarboxylase and Modeling, Biotechnology progress 16 (2000) 958-965.
[103] R. Tarté, Ingredients in meat products: properties, functionality and applications, Springer2009.
[104] V.B. Khyade, A.J. Jeffreys, Biogeometric Model for the Magnification of the Mechanism of Enzyme Catalyzed Reaction through the Utilization of Principles of Nine-Point Circle for the Triangular Form of Lineweaver-Burk Plot in Biochemistry, International Journal of Biochemistry and Biomolecules 6 (2020) 1-23.
[105] S. Cakmakci, E. Dagdemir, A.A. Hayaloglu, M. Gurses, B. Cetin, D. Tahmas‐Kahyaoglu, Effect of Penicillium roqueforti and incorporation of whey cheese on volatile profiles and sensory characteristics of mould‐ripened Civil cheese, International Journal of Dairy Technology 66 (2013) 512-526.
[106] H. Guzmán‐Maldonado, O. Paredes‐López, C.G. Biliaderis, Amylolytic enzymes and products derived from starch: a review, Critical Reviews in Food Science & Nutrition 35 (1995) 373-403.
[107] I. Alkorta, C. Garbisu, M.J. Llama, J.L. Serra, Industrial applications of pectic enzymes: a review, Process Biochemistry 33 (1998) 21-28.
[108] P. Bajpai, Application of enzymes in the pulp and paper industry, Biotechnology progress 15 (1999) 147-157.
[109] C. Begley, S. Paragina, A. Sporn, An analysis of contact lens enzyme cleaners, Journal of the American Optometric Association 61 (1990) 190-194.
[110] P.L. Farris, Economic Growth and Organization of the US Corn Starch Industry, Starch, Elsevier2009, pp. 11-21.
[111] D. Brady, J. Jordaan, Advances in enzyme immobilisation, Biotechnology letters 31 (2009) 1639-1650.
[112] C.K. Lee, A.N. Au‐Duong, Enzyme immobilization on nanoparticles: recent applications, Emerging Areas in Bioengineering 1 (2018) 67-80.
[113] C. Spahn, S.D. Minteer, Enzyme immobilization in biotechnology, Recent patents on engineering 2 (2008) 195-200.
[114] R. Johnson, Z.-G. Wang, F. Arnold, Surface site heterogeneity and lateral interactions in multipoint protein adsorption, The Journal of Physical Chemistry 100 (1996) 5134-5139.
[115] S.V. Rao, K.W. Anderson, L.G. Bachas, Oriented immobilization of proteins, Microchimica Acta 128 (1998) 127-143.
[116] J. Fu, J. Reinhold, N.W. Woodbury, Peptide-modified surfaces for enzyme immobilization, PLoS One 6 (2011) e18692.
[117] V. Singh, M. Sardar, M.N. Gupta, Immobilization of enzymes by bioaffinity layering, Immobilization of Enzymes and Cells, Springer2013, pp. 129-137.
[118] M. Hartmann, X. Kostrov, Immobilization of enzymes on porous silicas-benefits and challenges, Chemical Society Reviews 42 (2013) 6277-6289.
[119] D. Li, Q. He, Y. Cui, L. Duan, J. Li, Immobilization of glucose oxidase onto gold nanoparticles with enhanced thermostability, Biochemical and biophysical research communications 355 (2007) 488-493.
[120] C.-Y. Yu, L.-Y. Huang, I. Kuan, S.-L. Lee, Optimized production of biodiesel from waste cooking oil by lipase immobilized on magnetic nanoparticles, International journal of molecular sciences 14 (2013) 24074-24086.
[121] J. Hou, G. Dong, B. Xiao, C. Malassigne, V. Chen, Preparation of titania based biocatalytic nanoparticles and membranes for CO 2 conversion, Journal of Materials Chemistry A 3 (2015) 3332-3342.
[122] S. Wang, P. Su, J. Huang, J. Wu, Y. Yang, Magnetic nanoparticles coated with immobilized alkaline phosphatase for enzymolysis and enzyme inhibition assays, Journal of Materials Chemistry B 1 (2013) 1749-1754.
[123] V. Hooda, Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support, Applied biochemistry and biotechnology 172 (2014) 115-130.
[124] J.T. Holland, C. Lau, S. Brozik, P. Atanassov, S. Banta, Engineering of glucose oxidase for direct electron transfer via site-specific gold nanoparticle conjugation, Journal of the American Chemical Society 133 (2011) 19262-19265.
[125] S. Zhang, N. Wang, H. Yu, Y. Niu, C. Sun, Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor, Bioelectrochemistry 67 (2005) 15-22.
[126] S. Datta, L.R. Christena, Y.R.S. Rajaram, Enzyme immobilization: an overview on techniques and support materials, 3 Biotech 3 (2013) 1-9.
[127] A. Deshpande, S. D’souza, G. Nadkarni, Coimmobilization of D-amino acid oxidase and catalase by entrapment ofTrigonopsis variabilis in radiation polymerised Polyacrylamide beads, Journal of Biosciences 11 (1987) 137-144.
[128] Z. Grosová, M. Rosenberg, M. Rebroš, M. Šipocz, B. Sedláčková, Entrapment of β-galactosidase in polyvinylalcohol hydrogel, Biotechnology Letters 30 (2008) 763-767.
[129] R. Sheldon, Cross-linked enzyme aggregates (CLEA® s): stable and recyclable biocatalysts, Biochemical Society Transactions 35 (2007) 1583-1587.
[130] R.A. Sheldon, Enzyme immobilization: the quest for optimum performance, Advanced Synthesis & Catalysis 349 (2007) 1289-1307.
[131] A.A. Homaei, R. Sariri, F. Vianello, R. Stevanato, Enzyme immobilization: an update, Journal of chemical biology 6 (2013) 185-205.
[132] B. Katzbauer, M. Narodoslawsky, A. Moser, Classification system for immobilization techniques, Bioprocess Engineering 12 (1995) 173-179.
[133] C.A. White, J.F. Kennedy, Popular matrices for enzyme and other immobilizations, Enzyme and Microbial Technology 2 (1980) 82-90.
[134] S. Sommaruga, E. Galbiati, J. Peñaranda-Avila, C. Brambilla, P. Tortora, M. Colombo, D. Prosperi, Immobilization of carboxypeptidase from Sulfolobus solfataricus on magnetic nanoparticles improves enzyme stability and functionality in organic media, BMC biotechnology 14 (2014) 1-9.
[135] E.D. Hood, M. Chorny, C.F. Greineder, I.S. Alferiev, R.J. Levy, V.R. Muzykantov, Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation, Biomaterials 35 (2014) 3708-3715.
[136] C.-C. Yu, Y.-Y. Kuo, C.-F. Liang, W.-T. Chien, H.-T. Wu, T.-C. Chang, F.-D. Jan, C.-C. Lin, Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis, Bioconjugate chemistry 23 (2012) 714-724.
[137] L. Zhou, J. Wu, H. Zhang, Y. Kang, J. Guo, C. Zhang, J. Yuan, X. Xing, Magnetic nanoparticles for the affinity adsorption of maltose binding protein (MBP) fusion enzymes, Journal of Materials Chemistry 22 (2012) 6813-6818.
[138] E. Jang, S. Park, S. Park, Y. Lee, D.N. Kim, B. Kim, W.G. Koh, Fabrication of poly (ethylene glycol)‐based hydrogels entrapping enzyme‐immobilized silica nanoparticles, Polymers for Advanced Technologies 21 (2010) 476-482.
[139] S. Wang, E.S. Humphreys, S.-Y. Chung, D.F. Delduco, S.R. Lustig, H. Wang, K.N. Parker, N.W. Rizzo, S. Subramoney, Y.-M. Chiang, Peptides with selective affinity for carbon nanotubes, Nature materials 2 (2003) 196-200.
[140] P. Ji, H. Tan, X. Xu, W. Feng, Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent, AIChE journal 56 (2010) 3005-3011.
[141] H. Tan, W. Feng, P. Ji, Lipase immobilized on magnetic multi-walled carbon nanotubes, Bioresource technology 115 (2012) 172-176.
[142] W. Feng, X. Sun, P. Ji, Activation mechanism of Yarrowia lipolytica lipase immobilized on carbon nanotubes, Soft Matter 8 (2012) 7143-7150.
[143] A.K. Geim, K.S. Novoselov, The rise of graphene, Nanoscience and technology: a collection of reviews from nature journals, World Scientific2010, pp. 11-19.
[144] O.C. Compton, S.T. Nguyen, Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon‐based materials, small 6 (2010) 711-723.
[145] S. Hermanová, M. Zarevúcká, D. Bouša, M. Pumera, Z. Sofer, Graphene oxide immobilized enzymes show high thermal and solvent stability, Nanoscale 7 (2015) 5852-5858.
[146] E.C. Dreaden, A.M. Alkilany, X. Huang, C.J. Murphy, M.A. El-Sayed, The golden age: gold nanoparticles for biomedicine, Chemical Society Reviews 41 (2012) 2740-2779.
[147] I. Venditti, C. Palocci, L. Chronopoulou, I. Fratoddi, L. Fontana, M. Diociaiuti, M.V. Russo, Candida rugosa lipase immobilization on hydrophilic charged gold nanoparticles as promising biocatalysts: Activity and stability investigations, Colloids and Surfaces B: Biointerfaces 131 (2015) 93-101.
[148] B.J. Sanghavi, S.M. Mobin, P. Mathur, G.K. Lahiri, A.K. Srivastava, Biomimetic sensor for certain catecholamines employing copper (II) complex and silver nanoparticle modified glassy carbon paste electrode, Biosensors and Bioelectronics 39 (2013) 124-132.
[149] M. Falasconi, M. Pardo, G. Sberveglieri, I. Riccò, A. Bresciani, The novel EOS835 electronic nose and data analysis for evaluating coffee ripening, Sensors and Actuators B: Chemical 110 (2005) 73-80.
[150] N.J. Vickers, Animal communication: when i’m calling you, will you answer too?, Current biology 27 (2017) R713-R715.
[151] J. Jeong, T.H. Ha, B.H. Chung, Enhanced reusability of hexa-arginine-tagged esterase immobilized on gold-coated magnetic nanoparticles, Analytica Chimica Acta 569 (2006) 203-209.
[152] A.J. Wikieł, I. Datsenko, M. Vera, W. Sand, Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment, Bioelectrochemistry 97 (2014) 52-60.
[153] C. Radhakumary, K. Sreenivasan, Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles, Analytical chemistry 83 (2011) 2829-2833.
[154] U. Saxena, M. Chakraborty, P. Goswami, Covalent immobilization of cholesterol oxidase on self-assembled gold nanoparticles for highly sensitive amperometric detection of cholesterol in real samples, Biosensors and Bioelectronics 26 (2011) 3037-3043.
[155] X. Ren, D. Chen, X. Meng, F. Tang, A. Du, L. Zhang, Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilization matrix, Colloids and Surfaces B: Biointerfaces 72 (2009) 188-192.
[156] A. Homaei, D. Saberi, Immobilization of α-amylase on gold nanorods: An ideal system for starch processing, Process Biochemistry 50 (2015) 1394-1399.
[157] S. Aravamudhan, N.S. Ramgir, S. Bhansali, Electrochemical biosensor for targeted detection in blood using aligned Au nanowires, Sensors and Actuators B: Chemical 127 (2007) 29-35.
[158] T. Xu, J. Zhang, H. Chi, F. Cao, Multifunctional properties of organic-inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides for ocular drug delivery, Acta biomaterialia 36 (2016) 152-163.
[159] S. He, Z. An, M. Wei, D.G. Evans, X. Duan, Layered double hydroxide-based catalysts: nanostructure design and catalytic performance, Chemical communications 49 (2013) 5912-5920.
[160] J. Wang, P. Wang, H. Wang, J. Dong, W. Chen, X. Wang, S. Wang, T. Hayat, A. Alsaedi, X. Wang, Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium (VI), ACS Sustainable Chemistry & Engineering 5 (2017) 7165-7174.
[161] C. Mousty, V. Prévot, Hybrid and biohybrid layered double hydroxides for electrochemical analysis, Analytical and bioanalytical chemistry 405 (2013) 3513-3523.
[162] P.A. Harris, R. Taylor, B.L. Minor, V. Elliott, M. Fernandez, L. O’Neal, L. McLeod, G. Delacqua, F. Delacqua, J. Kirby, The REDCap consortium: Building an international community of software platform partners, Journal of biomedical informatics 95 (2019) 103208.
[163] M. Foresti, G. Valle, R. Bonetto, M. Ferreira, L. Briand, FTIR, SEM and fractal dimension characterization of lipase B from Candida antarctica immobilized onto titania at selected conditions, Applied Surface Science 256 (2010) 1624-1635.
[164] R.P. Lopes, R.C. Reyes, R. Romero-González, A.G. Frenich, J.L.M. Vidal, Development and validation of a multiclass method for the determination of veterinary drug residues in chicken by ultra high performance liquid chromatography-tandem mass spectrometry, Talanta 89 (2012) 201-208.
[165] W. Xie, N. Ma, Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production, Energy & Fuels 23 (2009) 1347-1353.
[166] S.M.U. Ali, O. Nur, M. Willander, B. Danielsson, A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire, Sensors and Actuators B: Chemical 145 (2010) 869-874.
[167] D.-M. Liu, J. Chen, Y.-P. Shi, Advances on methods and easy separated support materials for enzymes immobilization, TrAC Trends in Analytical Chemistry 102 (2018) 332-342.
[168] H. Vaghari, H. Jafarizadeh-Malmiri, M. Mohammadlou, A. Berenjian, N. Anarjan, N. Jafari, S. Nasiri, Application of magnetic nanoparticles in smart enzyme immobilization, Biotechnology letters 38 (2016) 223-233.
[169] R. Marcus, Sutin, N. flioc/iim, Biophys. Acta 811 (1985) 265.
[170] Y. Zhao, X. Li, Y. Yang, S. Si, C. Deng, H. Wu, A simple aptasensor for Aβ40 oligomers based on tunable mismatched base pairs of dsDNA and graphene oxide, Biosensors and Bioelectronics 149 (2020) 111840.
[171] M.A. Rahman, N.-H. Kwon, M.-S. Won, E.S. Choe, Y.-B. Shim, Functionalized conducting polymer as an enzyme-immobilizing substrate: an amperometric glutamate microbiosensor for in vivo measurements, Analytical Chemistry 77 (2005) 4854-4860.
[172] L. Kergoat, B. Piro, D.T. Simon, M.C. Pham, V. Noël, M. Berggren, Detection of glutamate and acetylcholine with organic electrochemical transistors based on conducting polymer/platinum nanoparticle composites, Advanced Materials 26 (2014) 5658-5664.
[173] A.A. Abdelwahab, W.C.A. Koh, H.-B. Noh, Y.-B. Shim, A selective nitric oxide nanocomposite biosensor based on direct electron transfer of microperoxidase: removal of interferences by co-immobilized enzymes, Biosensors and Bioelectronics 26 (2010) 1080-1086.
[174] Z.-X. Tang, J.-Q. Qian, L.-E. Shi, Preparation of chitosan nanoparticles as carrier for immobilized enzyme, Applied Biochemistry and Biotechnology 136 (2007) 77-96.
[175] M. Babaki, M. Yousefi, Z. Habibi, M. Mohammadi, P. Yousefi, J. Mohammadi, J. Brask, Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t-butanol and blue silica gel contents, Renewable Energy 91 (2016) 196-206.
[176] X.-J. Huang, P.-C. Chen, F. Huang, Y. Ou, M.-R. Chen, Z.-K. Xu, Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane, Journal of Molecular Catalysis B: Enzymatic 70 (2011) 95-100.
[177] W. Li, P. Zheng, J. Guo, J. Ji, M. Zhang, Z. Zhang, E. Zhan, G. Abbas, Characteristics of self-alkalization in high-rate denitrifying automatic circulation (DAC) reactor fed with methanol and sodium acetate, Bioresource technology 154 (2014) 44-50.
[178] N. An, C.H. Zhou, X.Y. Zhuang, D.S. Tong, W.H. Yu, Immobilization of enzymes on clay minerals for biocatalysts and biosensors, Applied Clay Science 114 (2015) 283-296.
[179] X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chemical Communications 51 (2015) 13408-13411.
[180] Z. Zhou, M. Hartmann, Progress in enzyme immobilization in ordered mesoporous materials and related applications, Chemical Society Reviews 42 (2013) 3894-3912.
[181] X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, H.-C. Zhou, Enzyme-MOF (metal-organic framework) composites, Chemical Society Reviews 46 (2017) 3386-3401.
[182] L.C. Clark Jr, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Annals of the New York Academy of sciences 102 (1962) 29-45.
[183] P. Bollella, L. Gorton, Enzyme based amperometric biosensors, Current Opinion in Electrochemistry 10 (2018) 157-173.
[184] S. Kurbanoglu, M.N. Zafar, F. Tasca, I. Aslam, O. Spadiut, D. Leech, D. Haltrich, L. Gorton, Amperometric Flow Injection Analysis of Glucose and Galactose Based on Engineered Pyranose 2‐Oxidases and Osmium Polymers for Biosensor Applications, Electroanalysis 30 (2018) 1496-1504.
[185] D. Grieshaber, R. MacKenzie, J. Vörös, E. Reimhult, Electrochemical biosensors-sensor principles and architectures, Sensors 8 (2008) 1400-1458.
[186] T.T. Dung, Y. Oh, S.-J. Choi, I.-D. Kim, M.-K. Oh, M. Kim, Applications and advances in bioelectronic noses for odour sensing, Sensors 18 (2018) 103.
[187] C.D. Fung, P.W. Cheung, W.H. Ko, A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor, IEEE Transactions on Electron Devices 33 (1986) 8-18.
[188] W.-Y. Lee, S.-R. Kim, T.-H. Kim, K.S. Lee, M.-C. Shin, J.-K. Park, Sol-gel-derived thick-film conductometric biosensor for urea determination in serum, Analytica Chimica Acta 404 (2000) 195-203.
[189] S.R. Mikkelsen, G.A. Rechnitz, Conductometric tranducers for enzyme-based biosensors, Analytical chemistry 61 (1989) 1737-1742.
[190] U. Bilitewski, W. Drewes, R. Schmid, Thick film biosensors for urea, Sensors and Actuators B: Chemical 7 (1992) 321-326.
[191] A. Shul’ga, A. Soldatkin, A. El’skaya, S. Dzyadevich, S. Patskovsky, V. Strikha, Thin-film conductometric biosensors for glucose and urea determination, Biosensors and Bioelectronics 9 (1994) 217-223.
[192] M. Castillo-Ortega, D. Rodriguez, J. Encinas, M. Plascencia, F. Mendez-Velarde, R. Olayo, Conductometric uric acid and urea biosensor prepared from electroconductive polyaniline-poly (n-butyl methacrylate) composites, Sensors and Actuators B: Chemical 85 (2002) 19-25.
[193] W.O. Ho, S. Krause, C.J. McNeil, J.A. Pritchard, R.D. Armstrong, D. Athey, K. Rawson, Electrochemical sensor for measurement of urea and creatinine in serum based on ac impedance measurement of enzyme-catalyzed polymer transformation, Analytical Chemistry 71 (1999) 1940-1946.
[194] S.V. Dzyadevych, J.-M. Chovelon, A comparative photodegradation studies of methyl parathion by using Lumistox test and conductometric biosensor technique, Materials Science and Engineering: C 21 (2002) 55-60.
[195] S.V. Dzyadevych, A.P. Soldatkin, J.-M. Chovelon, Assessment of the toxicity of methyl parathion and its photodegradation products in water samples using conductometric enzyme biosensors, Analytica Chimica Acta 459 (2002) 33-41.
[196] P. Jin, A. Yamaguchi, F.A. Oi, S. Matsuo, J. Tan, H. Misawa, Glucose sensing based on interdigitated array microelectrode, Analytical sciences 17 (2001) 841-846.
[197] S.V. Dzyadevych, V.N. Arkhypova, Y.I. Korpan, V. Anna, A.P. Soldatkin, N. Jaffrezic-Renault, C. Martelet, Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics, Analytica chimica acta 445 (2001) 47-55.
[198] M. Marrakchi, S.V. Dzyadevych, F. Lagarde, C. Martelet, N. Jaffrezic-Renault, Conductometric biosensor based on glucose oxidase and beta-galactosidase for specific lactose determination in milk, Materials Science and Engineering: C 28 (2008) 872-875.
[199] T.M. Anh, S.V. Dzyadevych, M.C. Van, N.J. Renault, C.N. Duc, J.-M. Chovelon, Conductometric tyrosinase biosensor for the detection of diuron, atrazine and its main metabolites, Talanta 63 (2004) 365-370.
[200] S.K. Kirdeciler, E. Soy, S. Öztürk, I. Kucherenko, O. Soldatkin, S. Dzyadevych, B. Akata, A novel urea conductometric biosensor based on zeolite immobilized urease, Talanta 85 (2011) 1435-1441.
[201] A.N. Hendji, N. Jaffrezic-Renault, C. Martelet, A. Shul’ga, S. Dzydevich, A. Soldatkin, A. El’skaya, Enzyme biosensor based on a micromachined interdigitated conductometric transducer: application to the detection of urea, glucose, acetyl-andbutyrylcholine chlordes, Sensors and Actuators B: Chemical 21 (1994) 123-129.
[202] H.H. Nguyen, S.H. Lee, U.J. Lee, C.D. Fermin, M. Kim, Immobilized enzymes in biosensor applications, Materials 12 (2019) 121.
[203] V. Arkhypova, S. Dzyadevych, A. Soldatkin, A. El’Skaya, N. Jaffrezic-Renault, H. Jaffrezic, C. Martelet, Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances, Talanta 55 (2001) 919-927.
[204] S.V. Dzyadevych, A.P. Soldatkin, V.N. Arkhypova, V. Anna, J.-M. Chovelon, C.A. Georgiou, C. Martelet, N. Jaffrezic-Renault, Early-warning electrochemical biosensor system for environmental monitoring based on enzyme inhibition, Sensors and Actuators B: Chemical 105 (2005) 81-87.
[205] T. Sergeyeva, N. Lavrik, A. Rachkov, Z. Kazantseva, S. Piletsky, A. El’skaya, Hydrogen peroxide-sensitive enzyme sensor based on phthalocyanine thin film, Analytica Chimica Acta 391 (1999) 289-297.
[206] D. Cullen, R. Sethi, C. Lowe, Multi-analyte miniature conductance biosensor, Analytica Chimica Acta 231 (1990) 33-40.
[207] S. Myler, S.D. Collyer, F. Davis, D.D. Gornall, S.P. Higson, Sonochemically fabricated microelectrode arrays for biosensors: Part III. AC impedimetric study of aerobic and anaerobic response of alcohol oxidase within polyaniline, Biosensors and Bioelectronics 21 (2005) 666-671.
[208] R.K. Shervedani, A.H. Mehrjardi, N. Zamiri, A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor, Bioelectrochemistry 69 (2006) 201-208.
[209] D. Zane, G. Appetecchi, C. Bianchini, S. Passerini, A. Curulli, An impedimetric glucose biosensor based on overoxidized polypyrrole thin film, Electroanalysis 23 (2011) 1134-1141.
[210] F. Abdelmalek, M. Shadaram, H. Boushriha, Ellipsometry measurements and impedance spectroscopy on Langmuir-Blodgett membranes on Si/SiO2 for ion sensitive sensor, Sensors and Actuators B: Chemical 72(3) (2001) 208-213.
[211] N. Bouyahia, M.L. Hamlaoui, M. Hnaien, F. Lagarde, N. Jaffrezic-Renault, Impedance spectroscopy and conductometric biosensing for probing catalase reaction with cyanide as ligand and inhibitor, Bioelectrochemistry 80 (2011) 155-161.
[212] M. Cortina, M. Esplandiu, S. Alegret, M. Del Valle, Urea impedimetric biosensor based on polymer degradation onto interdigitated electrodes, Sensors and Actuators B: Chemical 118 (2006) 84-89.
[213] N. Zehani, S.V. Dzyadevych, R. Kherrat, N.J. Jaffrezic-Renault, Sensitive impedimetric biosensor for direct detection of diazinon based on lipases, Frontiers in chemistry 2 (2014) 44.
[214] M. Shamsipur, M. Asgari, M.G. Maragheh, A.A. Moosavi-Movahedi, A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase, Bioelectrochemistry 83 (2012) 31-37.
[215] R. Maalouf, H. Chebib, Y. Saïkali, O. Vittori, M. Sigaud, N. Jaffrezic-Renault, Amperometric and impedimetric characterization of a glutamate biosensor based on Nafion® and a methyl viologen modified glassy carbon electrode, Biosensors and Bioelectronics 22 (2007) 2682-2688.
[216] E.T. Hwang, M.B. Gu, Enzyme stabilization by nano/microsized hybrid materials, Engineering in Life Sciences 13 (2013) 49-61.
[217] X. Wang, P. Dou, P. Zhao, C. Zhao, Y. Ding, P. Xu, Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production, ChemSusChem: Chemistry & Sustainability Energy & Materials 2 (2009) 947-950.
[218] W. Xie, N. Ma, Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles, Biomass and Bioenergy 34 (2010) 890-896.
[219] X. Wang, X. Liu, X. Yan, P. Zhao, Y. Ding, P. Xu, Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability, PLoS One 6 (2011) e24207.
[220] M.L. Verma, M. Puri, C.J. Barrow, Recent trends in nanomaterials immobilised enzymes for biofuel production, Critical reviews in biotechnology 36 (2016) 108-119.
[221] M. Jacoby, The mystery of hot gold nanoparticles, Chemical & Engineering News 91 (2013) 44-45.
[222] S.-F. Li, Y.-H. Fan, R.-F. Hu, W.-T. Wu, Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil, Journal of Molecular Catalysis B: Enzymatic 72 (2011) 40-45.
[223] S. Gaikwad, A.P. Ingle, S.S. da Silva, M. Rai, Immobilized nanoparticles-mediated enzymatic hydrolysis of cellulose for clean sugar production: A novel approach, Current Nanoscience 15 (2019) 296-303.
[224] A.N. Kozitsina, T.S. Svalova, N.N. Malysheva, A.V. Okhokhonin, M.B. Vidrevich, K.Z. Brainina, Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis, Biosensors 8 (2018) 35.
[225] N. Noah, Design and Synthesis of Nanostructured Materials forSensor Applications, (2020).
[226] N.M. Noah, Design and Synthesis of Nanostructured Materials for Sensor Applications, Journal of Nanomaterials 2020 (2020).
[227] M. Rai, A.P. Ingle, S. Gaikwad, K.J. Dussán, S.S. da Silva, Role of nanoparticles in enzymatic hydrolysis of lignocellulose in ethanol, Nanotechnology for bioenergy and biofuel production, Springer2017, pp. 153-171.
[228] S.K. Sahu, S. Sahu, V. Nourani, C.A. Board, U. Shanker, R. Shanker, V. Kumari, K.K. Bansal, D. Garg, V.A. Athavale, Untitled-International Journal of Engineering and Advanced.
[229] A.K. Shukla, M. Verma, A. Acharya, Biomolecules Immobilized Nanomaterials and Their Biological Applications, Nanomaterial-Based Biomedical Applications in Molecular Imaging, Diagnostics and Therapy, Springer2020, pp. 79-101.
[230] M. Singhvi, B.S. Kim, Current Developments in Lignocellulosic Biomass Conversion into Biofuels Using Nanobiotechology Approach, Energies 13 (2020) 5300.
[231] G.S. Wilson, Y. Hu, Enzyme-based biosensors for in vivo measurements, Chemical reviews 100(7) (2000) 2693-2704.
[232] C. Karunakaran, R. Rajkumar, K. Bhargava, Introduction to biosensors, Biosensors and bioelectronics, Elsevier2015, pp. 1-68.
[233] P. Sistani, L. Sofimaryo, Z.R. Masoudi, A. Sayad, R. Rahimzadeh, B. Salehi, A penicillin biosensor by using silver nanoparticles, Int. J. Electrochem. Sci 9 (2014) 6201-6212.
[234] S. Bourigua, A. Maaref, F. Bessueille, N.J. Renault, A new design of electrochemical and optical biosensors based on biocatalytic growth of Au nanoparticles-example of glucose detection, Electroanalysis 25 (2013) 644-651.
[235] B. Sharma, S. Mandani, T.K. Sarma, Enzymes as bionanoreactors: glucose oxidase for the synthesis of catalytic Au nanoparticles and Au nanoparticle-polyaniline nanocomposites, Journal of Materials Chemistry B 2 (2014) 4072-4079.
[236] T. Yang, Z. Li, L. Wang, C. Guo, Y. Sun, Synthesis, characterization, and self-assembly of protein lysozyme monolayer-stabilized gold nanoparticles, Langmuir 23 (2007) 10533-10538.
[237] T.T. Baby, S. Ramaprabhu, SiO2 coated Fe3O4 magnetic nanoparticle dispersed multiwalled carbon nanotubes based amperometric glucose biosensor, Talanta 80 (2010) 2016-2022.
[238] P. Díez, R. Villalonga, M.L. Villalonga, J.M. Pingarrón, Supramolecular immobilization of redox enzymes on cyclodextrin-coated magnetic nanoparticles for biosensing applications, Journal of colloid and interface science 386 (2012) 181-188.
[239] M.-H. Liao, J.-C. Guo, W.-C. Chen, A disposable amperometric ethanol biosensor based on screen-printed carbon electrodes mediated with ferricyanide-magnetic nanoparticle mixture, Journal of Magnetism and Magnetic Materials 304 (2006) e421-e423.
[240] S. Pal, E.C. Alocilja, Electrically active polyaniline coated magnetic (EAPM) nanoparticle as novel transducer in biosensor for detection of Bacillus anthracis spores in food samples, Biosensors and Bioelectronics 24 (2009) 1437-1444.
[241] L. Stanciu, Y.-H. Won, M. Ganesana, S. Andreescu, Magnetic particle-based hybrid platforms for bioanalytical sensors, Sensors 9 (2009) 2976-2999.
[242] S. Wang, Y. Tan, D. Zhao, G. Liu, Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite, Biosensors and Bioelectronics 23 (2008) 1781-1787.
[243] W. Putzbach, N.J. Ronkainen, Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: A review, Sensors 13 (2013) 4811-4840.
[244] T. Endo, R. Ikeda, Y. Yanagida, T. Hatsuzawa, Stimuli-responsive hydrogel-silver nanoparticles composite for development of localized surface plasmon resonance-based optical biosensor, Analytica chimica acta 611 (2008) 205-211.
[245] S. Chawla, R. Rawal, C. Pundir, Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol, Journal of nanoparticle research 15 (2013) 1-9.
[246] O.R. Miranda, X. Li, L. Garcia-Gonzalez, Z.-J. Zhu, B. Yan, U.H. Bunz, V.M. Rotello, Colorimetric bacteria sensing using a supramolecular enzyme-nanoparticle biosensor, Journal of the American Chemical Society 133 (2011) 9650-9653.
[247] B. De Strooper, R. Vassar, T. Golde, The secretases: enzymes with therapeutic potential in Alzheimer disease, Nature Reviews Neurology 6 (2010) 99-107.
[248] A.A. Vertegel, V. Reukov, V. Maximov, Enzyme-Nanoparticle conjugates for biomedical applications, Enzyme Stabilization and Immobilization, Springer2011, pp. 165-182.
[249] M. Wang, J. Zhang, Z. Yuan, W. Yang, Q. Wu, H. Gu, Targeted thrombolysis by using of magnetic mesoporous silica nanoparticles, Journal of biomedical nanotechnology 8 (2012) 624-632.
[250] C.F. Driscoll, R.M. Morris, A.E. Senyei, K.J. Widder, G.S. Heller, Magnetic targeting of microspheres in blood flow, Microvascular research 27 (1984) 353-369.
[251] V. Torchilin, M. Papisov, V. Smirnov, Magnetic Sephadex as a carrier for enzyme immobilization and drug targeting, Journal of biomedical materials research 19 (1985) 461-466.
[252] C. Capitanescu, A.M. Macovei Oprescu, D. Ionita, G.V. Dinca, C. Turculet, G. Manole, R.A. Macovei, Molecular processes in the streptokinase thrombolytic therapy, Journal of enzyme inhibition and medicinal chemistry 31 (2016) 1411-1414.
[253] Y.-H. Ma, Y.-W. Hsu, Y.-J. Chang, M.-Y. Hua, J.-P. Chen, T. Wu, Intra-arterial application of magnetic nanoparticles for targeted thrombolytic therapy: A rat embolic model, Journal of magnetism and magnetic materials 311 (2007) 342-346.
[254] S.D. Tiukinhoy-Laing, S. Huang, M. Klegerman, C.K. Holland, D.D. McPherson, Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes, Thrombosis research 119 (2007) 777-784.
[255] P. Sharma, A.B. Jha, R.S. Dubey, M. Pessarakli, Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions, Journal of botany 2012 (2012).
[256] E. Bargagli, C. Olivieri, D. Bennett, A. Prasse, J. Muller-Quernheim, P. Rottoli, Oxidative stress in the pathogenesis of diffuse lung diseases: a review, Respiratory medicine 103 (2009) 1245-1256.
[257] C.R. Kliment, T.D. Oury, Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis, Free Radical Biology and Medicine 49 (2010) 707-717.
[258] T.D. Dziubla, V.V. Shuvaev, N.K. Hong, B.J. Hawkins, M. Madesh, H. Takano, E. Simone, M.T. Nakada, A. Fisher, S.M. Albelda, Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies, Biomaterials 29 (2008) 215-227.
[259] S. Lee, S.C. Yang, M.J. Heffernan, W.R. Taylor, N. Murthy, Polyketal microparticles: a new delivery vehicle for superoxide dismutase, Bioconjugate chemistry 18 (2007) 4-7.
[260] M.I. Alam, S. Beg, A. Samad, S. Baboota, K. Kohli, J. Ali, A. Ahuja, M. Akbar, Strategy for effective brain drug delivery, European journal of pharmaceutical sciences 40 (2010) 385-403.
[261] D.J. Begley, Delivery of therapeutic agents to the central nervous system: the problems and the possibilities, Pharmacology & therapeutics 104 (2004) 29-45.
[262] V. Reukov, V. Maximov, A. Vertegel, Proteins conjugated to poly (butyl cyanoacrylate) nanoparticles as potential neuroprotective agents, Biotechnology and bioengineering 108 (2011) 243-252.
[263] U. Schroeder, P. Sommerfeld, S. Ulrich, B.A. Sabel, Nanoparticle technology for delivery of drugs across the blood-brain barrier, Journal of pharmaceutical sciences 87 (1998) 1305-1307.
[264] Y.-P. Chen, C.-T. Chen, Y. Hung, C.-M. Chou, T.-P. Liu, M.-R. Liang, C.-T. Chen, C.-Y. Mou, A new strategy for intracellular delivery of enzyme using mesoporous silica nanoparticles: superoxide dismutase, Journal of the American Chemical Society 135 (2013) 1516-1523.
[265] H. Yang, L. Qu, A. Wimbrow, X. Jiang, Y.-P. Sun, Enhancing antimicrobial activity of lysozyme against Listeria monocytogenes using immunonanoparticles, Journal of food protection 70 (2007) 1844-1849.
[266] S. Ashraf, M.A. Chatha, W. Ejaz, H.A. Janjua, I. Hussain, Lysozyme-coated silver nanoparticles for differentiating bacterial strains on the basis of antibacterial activity, Nanoscale research letters 9 (2014) 1-10.
[267] R. Satishkumar, A. Vertegel, Charge‐directed targeting of antimicrobial protein‐nanoparticle conjugates, Biotechnology and bioengineering 100 (2008) 403-412.
[268] B. Sharma, A.K. Dangi, P. Shukla, Contemporary enzyme based technologies for bioremediation: a review, Journal of environmental management 210 (2018) 10-22.
[269] L.F. Stadlmair, T. Letzel, J.E. Drewes, J. Grassmann, Enzymes in removal of pharmaceuticals from wastewater: A critical review of challenges, applications and screening methods for their selection, Chemosphere 205 (2018) 649-661.
[270] M. Wang, Y. Chen, V.A. Kickhoefer, L.H. Rome, P. Allard, S. Mahendra, A vault-encapsulated enzyme approach for efficient degradation and detoxification of Bisphenol A and its analogues, ACS Sustainable Chemistry & Engineering 7 (2019) 5808-5817.
[271] C.A. Gasser, E.M. Ammann, P. Shahgaldian, P.F.-X. Corvini, Laccases to take on the challenge of emerging organic contaminants in wastewater, Applied microbiology and biotechnology 98 (2014) 9931-9952.
[272] M. Bilal, M. Adeel, T. Rasheed, Y. Zhao, H.M. Iqbal, Emerging contaminants of high concern and their enzyme-assisted biodegradation-a review, Environment international 124 (2019) 336-353.
[273] L. Betancor, H.R. Luckarift, Bioinspired enzyme encapsulation for biocatalysis, Trends in biotechnology 26 (2008) 566-572.
[274] C.A. Gasser, L. Yu, J. Svojitka, T. Wintgens, E.M. Ammann, P. Shahgaldian, P.F.-X. Corvini, G. Hommes, Advanced enzymatic elimination of phenolic contaminants in wastewater: a nano approach at field scale, Applied microbiology and biotechnology 98 (2014) 3305-3316.
[275] H.R. Luckarift, M.B. Dickerson, K.H. Sandhage, J.C. Spain, Rapid, room‐temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania, Small 2 (2006) 640-643.
[276] P. Asuri, S.S. Karajanagi, R.S. Kane, J.S. Dordick, Polymer-nanotube-enzyme composites as active antifouling films, Small 3 (2007) 50-53.
[277] D. Pan, Y. Gu, H. Lan, Y. Sun, H. Gao, Functional graphene-gold nano-composite fabricated electrochemical biosensor for direct and rapid detection of bisphenol A, Analytica chimica acta 853 (2015) 297-302.
[278] R. Pang, M. Li, C. Zhang, Degradation of phenolic compounds by laccase immobilized on carbon nanomaterials: diffusional limitation investigation, Talanta 131 (2015) 38-45.
[279] R.C. Pangule, S.J. Brooks, C.Z. Dinu, S.S. Bale, S.L. Salmon, G. Zhu, D.W. Metzger, R.S. Kane, J.S. Dordick, Antistaphylococcal nanocomposite films based on enzyme− nanotube conjugates, ACS nano 4 (2010) 3993-4000.
[280] W. Wei, J. Du, J. Li, M. Yan, Q. Zhu, X. Jin, X. Zhu, Z. Hu, Y. Tang, Y. Lu, Construction of robust enzyme nanocapsules for effective organophosphate decontamination, detoxification, and protection, Advanced materials 25 (2013) 2212-2218.
[281] J. Ge, J. Lei, R.N. Zare, Protein-inorganic hybrid nanoflowers, Nature nanotechnology 7 (2012) 428-432.
[282] F. Lyu, Y. Zhang, R.N. Zare, J. Ge, Z. Liu, One-pot synthesis of protein-embedded metal-organic frameworks with enhanced biological activities, Nano letters 14 (2014) 5761-5765.
[283] I. Ocsoy, E. Dogru, S. Usta, A new generation of flowerlike horseradish peroxides as a nanobiocatalyst for superior enzymatic activity, Enzyme and microbial technology 75 (2015) 25-29.
[284] E.P. Cipolatti, A. Valerio, R.O. Henriques, D.E. Moritz, J.L. Ninow, D.M. Freire, E.A. Manoel, R. Fernandez-Lafuente, D. de Oliveira, Nanomaterials for biocatalyst immobilization-state of the art and future trends, RSC advances 6 (2016) 104675-104692.
[285] J. Liu, Y. Lu, A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles, Journal of the American Chemical Society 125 (2003) 6642-6643.
[286] A. Simonian, T. Good, S.-S. Wang, J. Wild, Nanoparticle-based optical biosensors for the direct detection of organophosphate chemical warfare agents and pesticides, Analytica chimica acta 534 (2005) 69-77.
[287] Y. Azuma, D.L. Bader, D. Hilvert, Substrate sorting by a supercharged nanoreactor, Journal of the American Chemical Society 140 (2018) 860-863.
[288] D.C. Buehler, M.D. Marsden, S. Shen, D.B. Toso, X. Wu, J.A. Loo, Z.H. Zhou, V.A. Kickhoefer, P.A. Wender, J.A. Zack, Bioengineered vaults: Self-assembling protein shell-lipophilic core nanoparticles for drug delivery, ACS nano 8 (2014) 7723-7732.
[289] D.P. Patterson, K. McCoy, C. Fijen, T. Douglas, Constructing catalytic antimicrobial nanoparticles by encapsulation of hydrogen peroxide producing enzyme inside the P22 VLP, Journal of Materials Chemistry B 2 (2014) 5948-5951.
[290] M. Wang, D. Abad, V.A. Kickhoefer, L.H. Rome, S. Mahendra, Vault nanoparticles packaged with enzymes as an efficient pollutant biodegradation technology, ACS nano 9 (2015) 10931-10940.
[291] J. Fu, M. Liu, Y. Liu, N.W. Woodbury, H. Yan, Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures, Journal of the American Chemical Society 134 (2012) 5516-5519.
[292] B. Saccà, C.M. Niemeyer, Functionalization of DNA nanostructures with proteins, Chemical Society Reviews 40 (2011) 5910-5921.
[293] B. Thallinger, E.N. Prasetyo, G.S. Nyanhongo, G.M. Guebitz, Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms, Biotechnology journal 8 (2013) 97-109.
[294] S.H. Bang, A. Jang, J. Yoon, P. Kim, J.S. Kim, Y.-H. Kim, J. Min, Evaluation of whole lysosomal enzymes directly immobilized on titanium (IV) oxide used in the development of antimicrobial agents, Enzyme and microbial technology 49 (2011) 260-265.
[295] M. Wang, S.K. Mohanty, S. Mahendra, Nanomaterial-supported enzymes for water purification and monitoring in point-of-use water supply systems, Accounts of chemical research 52 (2019) 876-885.
[296] L. Zhu, L. Gong, Y. Zhang, R. Wang, J. Ge, Z. Liu, R.N. Zare, Rapid detection of phenol using a membrane containing laccase nanoflowers, Chemistry-an Asian Journal 8 (2013) 2358-2360.
[297] J. Wang, Amperometric biosensors for clinical and therapeutic drug monitoring: a review, Journal of pharmaceutical and biomedical analysis 19 (1999) 47-53.
[298] S.R. Couto, J.L.T. Herrera, Industrial and biotechnological applications of laccases: a review, Biotechnology advances 24 (2006) 500-513.
[299] A. Kunamneni, F.J. Plou, A. Ballesteros, M. Alcalde, Laccases and their applications: a patent review, Recent patents on biotechnology 2 (2008) 10-24.
[300] S. Riva, Laccases: blue enzymes for green chemistry, TRENDS in Biotechnology 24 (2006) 219-226.
[301] F. Xu, Applications of oxidoreductases: recent progress, Industrial Biotechnology 1 (2005) 38-50.
[302] H. Claus, G. Faber, H. König, Redox-mediated decolorization of synthetic dyes by fungal laccases, Applied microbiology and biotechnology 59 (2002) 672-678.
[303] D. Rochefort, D. Leech, R. Bourbonnais, Electron transfer mediator systems for bleaching of paper pulp, Green Chemistry 6 (2004) 14-24.