Advanced Functional Membranes for Energy Applications


Advanced Functional Membranes for Energy Applications

E. Kavitha, S. Kiruthika, S. Vishali

Global warming has become a serious threat to the environment as well as human life. The application of renewable and green energy sources has been emphasized in recent years to overcome the energy demand and save the environment. As a competent alternative to renewable energy sources, membrane-based energy generation has attracted the attention of researchers. In the past few decades, the application of advanced functional membranes in green energy production has gained importance. The application of polyelectrolyte membranes in fuel cells has become an emerging technology due to high proton conductivity, excellent thermal, chemical stability, and mechanical strength. Pressure retarded osmosis is also one of the membrane-based energy generation techniques which have been upgraded with significant developments. The various polymeric membranes, both inorganic and organic, have been employed in the energy production processes. In the past few years, the application of biopolymeric membranes made up of chitosan blends has shown excellent progress. The storage of energy also plays an equivalent role in energy production. The application of membranes has a vital role in energy storage batteries. This chapter deals with all the advanced functional membranes for energy production and storage.

Osmosis Membrane, Hybrid Membrane, Fuel Cell, Batteries

Published online 2/5/2022, 30 pages

Citation: E. Kavitha, S. Kiruthika, S. Vishali, Advanced Functional Membranes for Energy Applications, Materials Research Foundations, Vol. 120, pp 237-266, 2022


Part of the book on Advanced Functional Membranes

[1] L. Dai, K. Huang, Y. Xia, Z. Xu, Two-dimensional material separation membranes for renewable energy purification, storage, and conversion, Green Energy Environ. 6 (2021) 193–211.
[2] H. Wang, J. Xu, L. Sheng, X. Liu, Y. Lu, W. Li, A review on bio-hydrogen production technology, Int. J. Energy Res. 42 (2018) 3442–3453.
[3] S.J. Einarsson, B. Wu, Thermal associated pressure-retarded osmosis processes for energy production: A review, Sci. Total Environ. 757 (2021) 143731.
[4] J. Zaidi, T. Matsuura (Eds.), Polymer membranes for fuel cells, Springer Sci. Rev. 2008.
[5] G. Hoogers, Fuel Cell Technology Handbook, CRC Press, Boca Raton (FL), 2003.
[6] C. Berger, Handbook of Fuel Cell Technology, Prentice-Hall, Englewood Cliffs (NJ), 1968.
[7] B. Smitha, S. Sridhar, A.A. Khan, Solid polymer electrolyte membranes for fuel cell applications – a review, J. Membr. Sci. 259 (2005) 10-26.
[8] N.M. Sammes, Fuel Cell Technology: Reaching Towards Commercialization, Springer, London, 2006.
[9] G.F. McLean, T. Niet, S. P. Richard, N. Djilali, An assessment of alkaline fuel cell technology, Int. J. Hydrog. Energy 27 (2002) 507-526.
[10] M.W. Ellis, M.R.V. Spakovsky, D.J. Nelson, Fuel cell systems: efficient, flexible energy conversion for the 21st century, Proc. IEEE. 89(12) (2001) 1808-1818.
[11] F. Barbir, PEM fuel cells, In Fuel Cell Technology, Springer, London, 2006, pp. 27-51.
[12] S. Giddey, S.P.S. Badwal, A. Kulkarni, C. Munnings, A comprehensive review of direct carbon fuel cell technology, Prog. Energy Combust. Sci. 38(3) (2012) 360-399.
[13] P. Hoffmann, Tomorrow’s energy: hydrogen, fuel cells, and the prospects for a cleaner planet, MIT press, 2012.
[14] Y. Song, C. Zhang, C.Y. Ling, M. Han, R.Y. Yong, D. Sun, J. Chen, Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell, Int. J.Hydrog. Energy 45(54) (2020) 29832-29847.
[15] B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature. 488 (2012) 313-319.
[16] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination—Development to date and future potential, J. Membr. Sci. 370 (2011) 1-22.
[17] S. Chou, R. Wang, L. Shi, Q. She, C. Tang, A. Fane, Thin-film composite hollow fiber membranes for Pressure Retarded Osmosis (PRO) process with high power density, J. Membr. Sci. 389 (2012) 25–33.
[18] J.W. Post, H.V.M. Hamelers, C.J.N. Buisman, Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System, Environ. Sci. Technol. 42 (2008) 5785-5790.
[19] A. Achilli, T.Y. Cath, A.E. Childress, Power generation with pressure retarded osmosis: An experimental and theoretical investigation, J. Memb. Sci. 343 (2009) 42-52.
[20] A. Achilli, A.E. Childress, Pressure retarded osmosis: From the vision of Sidney Loeb to the first prototype installation – Review, Desalination 261 (2010) 205–211.
[21] K. Nijmeijer, S. Metz, Chapter 5 Salinity Gradient Energy, in: I.C. Escobar, A.I.B.T.-S.S. and E. Schafer (Eds.), Sustain. Water Futur. Water Recycl. versus Desalin., Elsevier, 2010, pp. 95-139.
[22] S. Loeb, Large-scale power production by pressure-retarded osmosis, using river water and sea water passing through spiral modules, Desalination 143 (2002) 115–122.
[23] N. Bajraktari, C. Helix-Nielsen, H.T. Madsen, Pressure retarded osmosis from hypersaline sources — A review, Desalination 413 (2017) 65–85.
[24] H. Manzoor, M.A. Selam, S. Adham, H.K. Shon, M. Castier, A. Abdel-Wahab, Energy recovery modeling of pressure-retarded osmosis systems with membrane modules compatible with high salinity draw streams, Desalination 493 (2020) 114624.
[25] Q. She, Y.K.W. Wong, S. Zhao, C.Y. Tang, Organic fouling in pressure retarded osmosis: Experiments, mechanisms and implications, J. Membr. Sci. 428 (2013) 181–189.
[26] X. Li, T. Cai, T.-S. Chung, Anti-Fouling Behavior of Hyperbranched Polyglycerol-Grafted Poly(ether sulfone) Hollow Fiber Membranes for Osmotic Power Generation, Environ. Sci. Technol. 48 (2014) 9898–9907.
[27] L. Zhang, Q. She, R. Wang, S. Wongchitphimon, Y. Chen, A.G. Fane, Unique roles of aminosilane in developing anti-fouling thin film composite (TFC) membranes for pressure retarded osmosis (PRO), Desalination 389 (2016) 119–128.
[28] G. Han, Z.L. Cheng, T.-S. Chung, Thin-film composite (TFC) hollow fiber membrane with double-polyamide active layers for internal concentration polarization and fouling mitigation in osmotic processes, J. Membr. Sci. 523 (2017) 497–504.
[29] E. Abbasi-Garravand, C.N. Mulligan, C.B. Laflamme, G. Clairet, Role of two different pretreatment methods in osmotic power (salinity gradient energy) generation, Renew. Energy. 96 (2016) 98–119.
[30] Q. She, X. Jin, C.Y. Tang, Osmotic power production from salinity gradient resource by pressure retarded osmosis: Effects of operating conditions and reverse solute diffusion, J. Membr. Sci. 401–402 (2012) 262–273.
[31] Y. Li, S. Zhao, L. Setiawan, L. Zhang, R. Wang, Integral hollow fiber membrane with chemical cross-linking for pressure retarded osmosis operated in the orientation of active layer facing feed solution, J. Membr. Sci. 550 (2018) 163–172.
[32] I. MS, S. Sultana, S. Adhikary, R. MS, Highly effective organic draw solutions for renewable power generation by closed-loop pressure retarded osmosis, Energy Convers. Manag. 171 (2018) 1226–1236.
[33] Z. Yuan, Y. Yu, L. Wei, X. Sui, Q. She, Y. Chen, Pressure-retarded membrane distillation for simultaneous hypersaline brine desalination and low-grade heat harvesting, J. Membr. Sci. 597 (2020) 117765.
[34] S.K. Hubadillah, Z.S. Tai, M.H.D. Othman, Z. Harun, M.R. Jamalludin, M.A. Rahman, J. Jaafar, A.F. Ismail, Hydrophobic ceramic membrane for membrane distillation: A mini review on preparation, characterization, and applications, Sep. Purif. Technol. 217 (2019) 71–84.
[35] F.J. Arias, S. de las Heras, The brinesiphon: A homolog of the thermosiphon driven by induced salinity and downward heat transfer, Sol. Energy. 153 (2017) 454–458.
[36] F.J. Arias, A first estimate for a pressure retarded osmosis-driven thermosyphon, Sol. Energy. 159 (2018) 962–965.
[37] A.M.O. Mohamed, Y. Bicer, Integration of pressure retarded osmosis in the solar ponds for desalination and photo-assisted chloralkali processes: Energy and exergy analysis, Energy Convers. Manag. 195 (2019) 630–640.
[38] N. Sezer, M. Koç, Development and performance assessment of a new integrated solar, wind, and osmotic power system for multigeneration, based on thermodynamic principles, Energy Convers. Manag. 188 (2019) 94–111.
[39] P. Wang, Y. Cui, Q. Ge, T. Fern Tew, T.S. Chung, Evaluation of hydroacid complex in the forward osmosis–membrane distillation (FO–MD) system for desalination, J. Membr. Sci. 494 (2015) 1–7.
[40] N. Cong Nguyen, H. Cong Duong, S.-S. Chen, H. Thi Nguyen, H. Hao Ngo, W. Guo, H. Quang Le, C. Cong Duong, L. Thuy Trang, A. Hoang Le, X. Thanh Bui, P. Dan Nguyen, Water and nutrient recovery by a novel moving sponge – Anaerobic osmotic membrane bioreactor – Membrane distillation (AnOMBR-MD) closed-loop system, Bioresour. Technol. 312 (2020) 123573.
[41] F. Gao, L. Wang, J. Wang, H. Zhang, S. Lin, Nutrient recovery from treated wastewater by a hybrid electrochemical sequence integrating bipolar membrane electrodialysis and membrane capacitive deionization, Environ. Sci. Water Res. Technol. 6 (2020) 383–391.
[42] S.H. Chae, J. Seo, J. Kim, Y.M. Kim, J.H. Kim, A simulation study with a new performance index for pressure-retarded osmosis processes hybridized with seawater reverse osmosis and membrane distillation, Desalination 444 (2018) 118–128.
[43] S. Surampudi, S.R. Narayanan, E. Vamos, H. Frank, G. Halpert, Advances in Direct Methanol Fuel Cells, J.Power sources 47 (1994) 377–385.
[44] M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev. 104 (2004) 4587–4611.
[45] H. Matsuyama, Y. Kitamura, Y. Naramura, Diffusive Permeability of Ionic Solutes in Charged Chitosan Membrane, J. Appl. Polym. Sci. 72 (1999) 397–404.<397::AID-APP9>3.0.CO;2-C
[46] R. Xu, Y. Wu, X. Wang, J. Zhang, X. Yang, B. Zhu, Enhanced ionic conductivity of yttria-stabilized ZrO2 with natural CuFe-oxide mineral heterogeneous composite for low temperature solid oxide fuel cells, Int. J. Hydrogen Energy 42 (2017) 17495–17503.
[47] L. Li, Q. Shi, L. Huang, C. Yan, Y. Wu, Green synthesis of faujasite-La0.6Sr0.4Co0.2Fe0.8O3-δ mineral nanocomposite membrane for low temperature advanced fuel cells, Int. J. Hydrogen Energy 46 (2021) 9826–9834.
[48] U. Lucia, Overview on fuel cells, Renew. Sustain. Energy Rev. 30 (2014) 164-169.
[49] O.Z. Sharaf, M.F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sustain. Energy Rev. 32 (2014) 810-853.
[50] G. Cacciola, V. Antonucci, S. Freni, Technology up date and new strategies on fuel cells, J. Power Sources 100(1-2) (2001) 67-79.
[51] V.S. Bagotsky, Fuel cells: problems and solutions, 56, John Wiley & Sons, 2012.
[52] J. A. Flores, Comparative study of different fuel cell technologies, Bol. Soc. Esp. Ceram. Vidr. 52(3) (2013) 105-117.
[53] L. An, T.S. Zhao, Transport phenomena in alkaline direct ethanol fuel cells for sustainable energy production, J. Power Sources 341 (2017) 199-211.
[54] E.H. Majlan, D. Rohendi, W.R.W. Daud, T. Husaini, M.A. Haque, Electrode for proton exchange membrane fuel cells: A review, Renew. Sustain. Energy Rev. 89 (2018) 117-134.
[55] S. Shahgaldi, A. Ozden, X. Li, F. Hamdullahpur, A novel membrane electrode assembly design for proton exchange membrane fuel cells: Characterization and performance evaluation, Electrochim. Acta. 299 (2019) 809-819.
[56] A. Abaspour, N.T. Parsa, M. Sadeghi, A new feedback Linearization-NSGA-II based control design for PEM fuel cell, Int. J. Comput. Appl. 97(10) (2014) 25-32.
[57] L. Zhang, S.R. Chae, Z. Hendren, J.S. Park, M.R. Wiesner, Recent advances in proton exchange membranes for fuel cell applications, Chem. Eng. J. 204 (2012) 87-97.
[58] S. Bose, T. Kuila, T.X.H. Nguyen, N.H. Kim, K.T. Lau, J.H. Lee, Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges, Prog. Polym. Sci. 36(6) (2011) 813-843.
[59] B. Zhang, Y. Cao, S. Jiang, Z. Li, G. He, H. Wu, Enhanced proton conductivity of Nafionnanohybrid membrane incorporated with phosphonic acid functionalized graphene oxide at elevated temperature and low humidity. J. Membr. Sci. 518 (2016) 243-253.
[60] S. Ren, G. Sun, C. Li, Z. Liang, Z. Wu, W. Jin, X. Qin, X. Yang, Organic silica/Nafion® composite membrane for direct methanol fuel cells, J. Membr. Sci. 282(1-2) (2006) 450-455.
[61] V. Tricoli, Proton and methanol transport in poly(perfluorosulfonote) membranes containing Cs+ and H+ cations, J. Electrochem. Soc. 145 (1998) 3798-3801.
[62] L. Merlo, A. Ghielmi, L. Cirillo, M. Gebert, V. Arcella, Membrane electrode assemblies based on HYFLON® ion for an evolving fuel cell technology, Sep. Sci. Technol. 42(13) (2007) 2891-2908.
[63] S.J. Paddison, J.A. Elliott, Molecular modeling of the short-side-chain perfluorosulfonic acid membrane, J. Phys. Chem. A. 109(33) (2005) 7583-7593.
[64] M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev. 104(10) (2004) 4587-4612.
[65] G.S. Prakash, M.C. Smart, Q.J. Wang, A. Atti, V. Pleynet, B. Yang, … S. Surampudi, High efficiency direct methanol fuel cell based on poly (styrenesulfonic) acid (PSSA)–poly (vinylidene fluoride)(PVDF) composite membranes, J. Fluor. Chem. 125(8) (2004) 1217-1230.
[66] A. Shukla, P. Dhanasekaran, S. Sasikala, N. Nagaraju, S.D. Bhat, V.K. Pillai, Covalent grafting of polystyrene sulfonic acid on graphene oxide nanoplatelets to form a composite membrane electrolyte with sulfonated poly (ether ether ketone) for direct methanol fuel cells, J. Membr. Sci. 595 (2020) 117484.
[67] K.I. Okamoto, Sulfonated polyimides for polymer electrolyte membrane fuel cell, J Photopolym Sci Technol. 16(2) (2003) 247-254.
[68] F. Zhang, N. Li, S. Zhang, S. Li, Ionomers based on multi sulfonated perylenedianhydride: Synthesis and properties of water resistant sulfonated polyimides, J. Power Sources 195(8) (2010) 2159-2165.
[69] Y. He, C. Tong, L. Geng, L. Liu, C. Lu, Enhanced performance of the sulfonated polyimide proton exchange membranes by graphene oxide: Size effect of graphene oxide, J. Membr. Sci. 458 (2014) 36-46.
[70] H.R. Allcock, Polyphosphazene elastomers, gels, and other soft materials, Soft Matter. 8(29) (2012) 7521-7532.
[71] H.R. Allcock, Generation of structural diversity in polyphosphazenes, Appl. Organomet. Chem. 27(11) (2013) 620-629.
[72] H. Tang, P.N. Pintauro, Polyphosphazene membranes. IV. Polymer morphology and proton conductivity in sulfonated poly [bis (3‐methylphenoxy) phosphazene] films, J. Appl. Polym. Sci. 79(1) (2001) 49-59.<49::AID-APP60>3.0.CO;2-J
[73] F.M. Vichi, M.I. T.Tejedor, M.A. Anderson, Effect of pore-wall chemistry on proton conductivity in mesoporous titanium dioxide, Chem. Mater. 12(6) (2000) 1762-1770.
[74] S.M. Haile, Fuel cell materials and components, Acta Mater. 51(19) (2003) 5981-6000.
[75] E.M. Tsui, M.R. Wiesner, Fast proton-conducting ceramic membranes derived from ferroxane nanoparticle-precursors as fuel cell electrolytes, J. Membr. Sci. 318(1-2) (2008) 79-83.
[76] S. Shamim, K. Sudhakar, B. Choudhary, J. Anwar, A review on recent advances in proton exchange membrane fuel cells: materials, technology and applications, Adv. Appl. Sci. Res. 6(9) (2015) 89-100.
[77] S.P. Jiang, Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells, J. Mater. Chem. A. 2(21) (2014) 7637-7655.
[78] J. Lu, J. Zhang, Mesoporous Structured Materials as New Proton Exchange Membranes for Fuel Cells, In Mesoporous Materials for Advanced Energy Storage and Conversion Technologies, CRC Press, 2017, pp. 97-151.
[79] X. Sun, S.C. Simonsen, T. Norby, A. Chatzitakis, Composite membranes for high temperature PEM fuel cells and electrolysers: a critical review, Membranes. 9(7), (2019) 83.
[80] C.H.L. Tempelman, J.F. Jacobs, R.M. Balzer, V. Degirmenci, Membranes for all vanadium redox flow batteries, J. Energy Storage. 32 (2020) 101754.
[81] Z. Mai, H. Zhang, X. Li, C. Bi, H. Dai, Sulfonated poly (tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application, J. Power Sources. 196(1) (2011) 482-487.
[82] D. Ariono, I.G. Wenten, Surface modification of ion‐exchange membranes: Methods, characteristics, and performance, J. Appl. Polym. Sci. 134(48) (2017) 45540.
[83] J. Zuo, S. Bonyadi, T.S. Chung, Exploring the potential of commercial polyethylene membranes for desalination by membrane distillation, J. Membr. Sci. 497, (2016) 239-247.
[84] J. Liao, Y. Chu, Q. Zhang, K. Wu, J. Tang, M. Lu, J. Wang, Fluoro-methyl sulfonated poly (arylene ether ketone-co-benzimidazole) amphoteric ion-exchange membranes for vanadium redox flow battery, Electrochim. Acta. 258 (2017) 360-370.
[85] A. Eftekhari, Y.M. Shulga, S.A. Baskakov, G.L. Gutsev, Graphene oxide membranes for electrochemical energy storage and conversion, Int. J. Hydrog. Energy. 43(4) (2018) 2307-2326.
[86] M. Ulaganathan, V. Aravindan, Q. Yan, S. Madhavi, M. S. Kazacos, T.M. Lim, Recent advancements in all‐vanadium redox flow batteries, Adv. Mater. Interfaces 3(1) (2016) 1500309.
[87] P. Yang, J. Long, S. Xuan, Y. Wang, Y. Zhang, J. Li, H. Zhang, Branched sulfonated polyimide membrane with ionic cross-linking for vanadium redox flow battery application, J. Power Sources 438 (2019) 226993.
[88] J. Xi, Z. Wu, X. Qiu, L. Chen, Nafion/SiO2 hybrid membrane for vanadium redox flow battery, J. Power Sources 166(2) (2007) 531-536.
[89] M.A. Aziz, S. Shanmugam, Zirconium oxide nanotube–Nafion composite as high performance membrane for all vanadium redox flow battery, J. Power Sources 337 (2017) 36-44.
[90] J. Ran, L. Wu, Y. He, Z. Yang, Y. Wang, C. Jiang … T. Xu, Ion exchange membranes: New developments and applications, J. Membr. Sci. 522 (2017) 267-291.
[91] H. Prifti, A. Parasuraman, S. Winardi, T.M. Lim, M. Skyllas-Kazacos, Membranes for redox flow battery applications, Membranes 2(2) (2012) 275-306.
[92] B. Shanahan, T. Böhm, B. Britton, S. Holdcroft, R. Zengerle, S. Vierrath, … M. Breitwieser, 30 μm thin hexamethyl-p-terphenyl poly (benzimidazolium) anion exchange membrane for vanadium redox flow batteries, Electrochem. Commun. 102 (2019) 37-40.
[93] L. Wang, A.T. Pingitore, W. Xie, Z. Yang, M.L. Perry, B.C. Benicewicz, Sulfonated PBI gel membranes for redox flow batteries, J. Electrochem. Soc. 166(8), (2019) A1449.
[94] J.K. Jang, T.H. Kim, S.J. Yoon, J.Y. Lee, J.C. Lee, Y.T. Hong, Highly proton conductive, dense polybenzimidazole membranes with low permeability to vanadium and enhanced H2SO4 absorption capability for use in vanadium redox flow batteries, J. Mater. Chem. A. 4(37) (2016) 14342-14355.
[95] D. Chen, X. Chen, L. Ding, X. Li, Advanced acid-base blend ion exchange membranes with high performance for vanadium flow battery application, J. Membr. Sci. 553 (2018) 25-31.
[96] M. Bhushan, S. Kumar, A.K. Singh, V. K. Shahi, High-performance membrane for vanadium redox flow batteries: Cross-linked poly (ether ether ketone) grafted with sulfonic acid groups via the spacer, J. Membr. Sci. 583 (2019) 1-8.
[97] P.K. Leung, Q. Xu, T.S. Zhao, L. Zeng, C. Zhang, Preparation of silica nanocomposite anion-exchange membranes with low vanadium-ion crossover for vanadium redox flow batteries, Electrochim. Acta. 105 (2013) 584-592.
[98] S.H. Cha, Recent development of nanocomposite membranes for vanadium redox flow batteries, J. Nanomater. (2015) 207525.
[99] J. Kim, J.D. Jeon, S.Y. Kwak, Sulfonated poly (ether ether ketone) composite membranes containing microporous layered silicate AMH-3 for improved membrane performance in vanadium redox flow batteries, Electrochim. Acta. 243 (2017) 220-227.
[100] X. Teng, Y. Guo, D. Liu, G. Li, C. Yu, J. Dai, A polydopamine-coated polyamide thin film composite membrane with enhanced selectivity and stability for vanadium redox flow battery, J. Membr. Sci. 601 (2020) 117906.