Multiferroicity in Aurivillius Based Bi4Ti3O12 Ceramics: An Overview, Future Prospective and Comparison with Ferrites


Multiferroicity in Aurivillius Based Bi4Ti3O12 Ceramics: An Overview, Future Prospective and Comparison with Ferrites

Sumit Bhardwaj, Joginder Paul, Gagan Kumar, Pankaj Sharma, Ravi Kumar

The growing modern society demands more new generation devices to fulfil their requirements. This has forced the scientific community to develop multifunctional smart devices. Aurivillius based Bi4Ti3O12 ceramics are one of the leading families of oxide materials, which attract immense attention due to their electrical, ferroelectric, optical, and dielectric properties. These materials have gained special attention due to their numerous device applications such as magnetic recording, sensors, read head technology, spintronic devices, switching devices, data storage devices and multiple state memory devices etc. Multiferroic are the materials in which two or more than two ferroic orders exist simultaneously. This chapter focuses on the possibility of existence of multiferroic behaviour in Aurivillius based compounds specially Bi4Ti3O12. Firstly, we have discussed the basics of multiferroics and their types and the magnetoelectric effect. The effect of different dopants in originating the multiferroism in Bi4Ti3O12 have been reviewed and discuss in detail. At the end comparison of multiferroic and ferrite materials and their future perspective have been discussed.

Multiferroics, Bi4Ti3O12, Ferroelectrics, Ferromagnetic

Published online , 25 pages

Citation: Sumit Bhardwaj, Joginder Paul, Gagan Kumar, Pankaj Sharma, Ravi Kumar, Multiferroicity in Aurivillius Based Bi4Ti3O12 Ceramics: An Overview, Future Prospective and Comparison with Ferrites, Materials Research Foundations, Vol. 112, pp 311-335, 2021


Part of the book on Ferrite

[1] H. Schmid, Multi-ferroic magnetoelectrics, Ferroelectrics,162 (1994) 317-338.
[2] Y. Tokura, and S. Seki, Multiferroics with spiral spin orders, Adv. Mater., 22 (2010) 1554-1565.
[3] T. Kimura, Spiral magnets as magnetoelectrics, Annu. Rev. Mater. Res., 37 (2007) 387-413.
[4] J. Vanden Brink, and D. Khomskii, Multiferroicity due to charge ordering, J. Phys.: Condens. Matter, 20 (2008) 434217.
[5] P. Curie, “Sur la symetriedans les phenomenes physiques, symetrie d’un champ electrique et d’un champ magnetique, J. Phys. Theor. Appl., 3(1) (1894) 393-415.
[6] P. G. Radaelli, L. C. Chapon, A. Daoud-Aladine, C. Vecchini, P. J. Brown, T. Chatterji, S. Park, and S. W. Cheong, Electric field switching of antiferromagnetic domains in YMn2O5: A probe of the multiferroic mechanism, Phys. Rev. Lett., 101 (2008) 067205.
[7] M. Fiebig, Revival of the magnetoelectric effect, J. Phys. D: Appl. Phys., 38 (2005) R123.
[8] W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature, 442 (2006) 759-765.
[9] D. I. Khomskii, Multiferroics: Different ways to combine magnetism and ferroelectricity, Journal of Magnetism and Magnetic Materials, 306 (2006) 1-8.
[10] S. W. Cheong, and M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity, Nature Materials, 6 (2007) 13-20.
[11] J. P. Velev, S. S. Jaswal, and E. Y. Tsymbd, Multiferroic and magnetoelectric materials and interfaces, Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences, 369 (2011) 3069.
[12] D. Khomskii, Classifying multiferroics: Mechanisms and effects, Physics, 2 (2009) 20.
[13] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Magnetic control of ferroelectric polarization, Nature 426 (2003) 55.
[14] T. Lottermoser, T. Lonkai, U. Amann, D. Honlwein, J. Ihringer, and M. Fiebig, Magnetic phase control by an electric field, Nature, 430 (2004) 541-544.
[15] W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature, 442 (2006) 759-765.
[16] M. Gajek, M. Bibes, S. Fusil, K. Bouzenouane, J. Fontcuberta, A. Barthelemy, and A. Fort, Tunnel junction with multiferroic barriers, Nat. Mater., 6 (2007) 296.
[17] W. C. Rontgen, Uber die durch Bewegung eines in homogenous electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft, Ann. Phys., 35, (1888) 264-270.
[18] H. A. Wilson, Phil. Trans. R. Soc. A, 204 (1905) 129-136.
[19] I. Dzyaloshinskii, On the magnetoelectric effect in antiferromagnets, Sov. Phys. JETP, 10 (1959) 628.
[20] D. N. Astrov, The magnetoelectric effect in antiferromagnetics, Sov. Phys. JETP, 11 (1960) 708.
[21] D. N. Astrov, Magnetoelectric effect in chromium oxide, Sov. Phys., 13, (1961) 729-733.
[22] W. J. Merz, Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals, Phys. Rev., 95 (1954) 690.
[23] R. D. King-Smith, and D. Vanderbilt, First-principles investigation of ferroelectricity in perovskite compounds, Phys. Rev. B, 49 (1994) 5828.
[24] G. Burns, and B. A. Scott, Lattice modes in ferroelectric Perovskite: PbTiO3, Phys. Rev. B, 7 (1973) 3088.
[25] J. M. Herbert, Electrocomponent Science Monographs, Gordon and Breach, New York, 1982.
[26] B. Aurivillius, Mixed bismuth oxides with layer lattices: The structure type of CaNb2Bi2O9, Arkiv for kemi., 1 (1949) 463-480.
[27] B. Aurivillius, Mixed bismuth oxides with layer lattices, structure of Bi4Ti3O12, Arkivforkemi1, 58 (1949) 499-512.
[28] B. Aurivillius, Mixed oxides with layer lattices, structure of BaBi4Ti4O15, Arkiv for kemi2, 37 (1950) 519-527.
[29] E. C. Subbarao, Ferroelectricity in Bi4Ti3O12 and its solid solutions, Phys. Rev., 122 (1961) 804-807.
[30] T. Takenaka, K. Sakata, Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric solid solution, ceramics of ferroelectric bismuth compound with layer structure, Jpn. J. Appl. Phys., 5513 (1984) 1092-1099.
[31] Q. Zhou, and B. J. Kennedy, Structural studies of the ferroelectric phase transition in Bi4Ti3O12, Chem. Mater., 15 (2003) 5025-5028.
[32] B. D. Stojanovic, C. O. Paiva-Santos, M. Cilense, C. Jovalekic, and Z. Z. Lazarevic, Strictly study of Bi4Ti3O12 produced via mechano-chemically assisted synthesis, Mater. Res. Bull., 43 (2008) 1743-1753.
[33] J. Lu, L. J. Qiao, and W. Y. Chu, Comparison of room temperature multiferroics in Bi4Fe2TiO12 film and bulk, J. Univ. Sci. Technol. Beijing, 15 (2008) 782.
[34] X. Q. Chen, F. J. Yang, W. Q. Cao, D. Y. Wang, and K. Chen, Room temperature magnetoelectric coupling in Bi4 (Ti1Fe2) O12-δ system, J. Phys. D: Appl. Phys., 43 (2010) 065001.
[35] X. Q. Chen, F. J. Yang, W. Q. Cao, H. Wang, C. P. Yang, D. Y. Wang, and K. Chen, Enhanced multiferroic characteristics in Fe-doped Bi4Ti3O12 ceramics, Solid State Commun., 150 (2010) 1221-1224.
[36] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, W. Jo, Lanthanum-substituted bismuth titanate for use in non-volatile memories, Nature, 401 (1999) 682-684.
[37] J. S. Kim, and S. S. Kim, Ferroelectric properties of Nd-substituted bismuth titanate thin films processed at low temperature, Appl. Phys. A: Materials science & amp; processing, 81 (2005) 1427-1430.
[38] X. Y. Mao, F. W. Mao, and X. B. Chen, Ferroelectric and dielectric properties of Bi4-xNdxTi3O12 ceramics, Integrated Ferroelectrics: An international Journal, 79 (2011) 155-161.
[39] M. S. Tomar, R. E. Melgarejo, and S. P. Singh, Leakage current and ferroelectric memory in Nd and Sm substituted Bi4Ti3O12 films, Journal of Microelectronics, 36 (2005) 574-577.
[40] T. Shigyo, H. Kiyono, J. Nakano, H. Itoh, and J. Takahashi, Synthesis and dielectric-magnetic properties of rare-earth (La, Nd, Sm)-modified Bi4Ti3O12, Jpn. Soc. Appl. Phys., 47 (2008) 7617-7622.
[41] Y. Noguchi, and M. Miyayama, Large remanent polarization of vanadium-doped Bi4Ti3O12, Appl. Phys. Lett., 78 (2001) 13.
[42] J. Paul, S. Bhardwaj, K. K. Sharma, R. K. Kotnala, R. Kumar, Room temperature multiferroic behaviour and magnetoelectric coupling in Sm/Fe modified Bi4Ti3 O12 ceramics synthesized by solid state reaction method, J. Alloys Compd., 634 (2015) 58-64.
[43] J. Paul, S. Bhardwaj, K. K. Sharma, R. K. Kotnala, R. Kumar, Room-temperature multiferroic properties and magnetoelectric coupling in Bi4-xSmxTi3-xCoxO12-δ ceramics, J. Mater. Sci., 49 (2014) 6056-6066.
[44] J. Paul, S. Bhardwaj, K. K. Sharma, R.K. Kotnala, R. Kumar, Room temperature multiferroic properties and magnetoelectric coupling in Sm and Ni substituted Bi4-xSmxTi3-xNixO12- (x = 0, 0.02, 0.05, 0.07) ceramics, J. Appl. Phys., 115 (2014) 204909.
[45] J. Xiao, H. Zhang, Y. Xue, Z. Lu, X. Chen, P. Su, F. Yang, X. Zeng, The influence of Ni-doping concentration on multiferroic behaviors in Bi4NdTi3FeO15 ceramics, Ceram. Int., 41 (2015) 1087-1092.
[46] R. Ti, X. Lu, J. He, F. Huang, H. Wu, F. Mei, M. Zhou, Y. Li, T. Xu and J. Zhu, Multiferroic properties and magnetoelectric coupling in Fe/Co co-doped Bi3.25La0.75Ti3O12 ceramics, J. Mater. Chem. C, 3 (2015) 11868-11873.
[47] D. L. Zhang, W. C. Huang, Z. W. Chen, W. B. Zhao, L. Feng, M. Li, Y. W. Yin, S. N. Dong and X. G. Li, Structure Evolution and Multiferroic Properties in Cobalt Doped Bi4NdTi3Fe1-xCoxO15-Bi3NdTi2Fe1-xCoxO12-δ Intergrowth Aurivillius Compounds, Sci. Rep., 7 (2017) 43540.
[48] Y. Wu, T. Yao, Y. Lu, B. Zou, Magnetic, dielectric, and magnetodielectric properties of Bi-layered perovskite Bi4.25Gd0.75Fe0.5Co0.5Ti3O15, J. Mater. Sci., 52 (2017) 7360-7368.
[49] R. Tia, C. Wanga, H. Wua, Y. Xua, C. Zhangb, Study on the structural and magnetic properties of Fe/Co co-doped Bi4Ti3O12 ceramics, Ceram. Int., 45 (2019) 7480-7487.
[50] S. Kojima, and S. Shimada, Soft mode spectroscopy of bismuth titanate single crystals, Physica B Condens. Matter., 219-220 (1996) 617-619.
[51] S. Kojima, Raman spectroscopy of bismuth layer structured ferroelectrics, Ferroelectrics, 239 (2000) 55-62.
[52] J. Zhu, X. B. Chen, Z. P. Zhang, and J. C. Shen, Raman and X-ray photoelectron scattering study of lanthnum-doped strontium bismuth titanate, Acta Mater., 53 (2005) 3155-3162.
[53] Q. Y. Jiang, E. C. Subbarao, and L. E. Cross, Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics, J. Appl. Phys., 75 (1994) 7433.
[54]. W. Y. Yi, W. X. Hui, and L. L. Tu, Ferroelectric and dielectric properties of La/Mn co-doped Bi4Ti3O12 ceramics, Chin. Phys. B, 19 (2010) 037701.
[55]. J. M. D. Coey, A. P. Douvalis, C. B. Fitzgerald, and M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films, Appl. Phys. Lett., 84 (2004) 1332-1334.
[56] X. Chen, C. Wei, J. Xiao, Y. Yue, X. Zeng, F. Yang, P. Li, and Y. He, Room temperature multiferroic properties and magneto-capacitance effect of modified ferroelectric Bi4Ti3O12 ceramics, J Phys D: Appl Phys., 46 (2013) 425001.
[57] A. Singh, A. Gupta, and R. Chatterjee, Enhanced magnetoelectric coefficient in the modified BiFeO3-PbTiO3 system with large La substitution, Appl. Phys. Lett., 93 (2008) 022902.
[58] A. Srinivas, D. W. Kim, K. S. Hong, and S. V. Suryanarayan, Observation of ferroelectromagnetic nature in rare-earth-substituted bismuth iron titanate, Appl. Phys. Lett., 83 (2003) 2217-2219.
[59] R. Ti, F. Huang, W. Zhu, J. He, T. Xu, C. Yue, J. Zhao, X. Lu, J. Zhu, Multiferroic and dielectric properties of Bi4LaTi3FeO15 ceramics, Ceram. Int., 41 (2015) S453-S457.
[60] Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites, J. Mater Sci: Mater Electron 24 (2014) 1900-1904.
[61] C. Harnagea, L. Mitoseriu, V. Buscaglia, I. Pallecchi, P. Nanni, Magnetic and Ferroelectric Domain Structures in BaTiO3–(Ni0.5Zn0.5)Fe2O4 Multiferroic ceramics, J. Eur. Ceram. Soc. 27 (2007) 3947-3950.
[62] S. S. Chougule, B. K. Chougule, Response of dielectric behaviour on ferroelectric rich (y)Ni0.8Zn0.2Fe2O4 + (1 − y) PZT ME composites, Mater. Chem. Phys. 108 (2008) 408-412.
[63] S. G. Lu, Z. K. Xu, Y. P. Wang, S. S. Guo, Effect of CoFe2O4 content on the dielectric and magnetoelectric properties in Pb(ZrTi)O3/CoFe2O4 composite, J. Electro. Ceram. 21 (2008) 398-400.
[64] K. K. Patankar, S. A. Kanade, D. S. Padalkar, B. K. Chougule, Complex impedance analyses and magnetoelectric effect in ferrite–ferroelectric composite ceramics, Phys. Lett. A 361 (2007) 472-477.