Enzymes Involved in Plastic Degradation


Enzymes Involved in Plastic Degradation

S.Z.Z. Cobongela

The global increase in production of plastic and accumulation in the environment is becoming a major concern especially to the aquatic life. This is due to the natural resistance of plastic to both physical and chemical degradation. Lack of biodegradability of plastic polymers is linked to, amongst other factors, the mobility of the polymers in the crystalline part of the polyesters as they are responsible for enzyme interaction. There are significantly few catabolic enzymes that are active in breaking down polyesters which are the constituents of plastic. The synthetic polymers widely used in petroleum-based plastics include polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polyurethane (PUR), polystyrene (PS), polyamide (PA) and polyethylene terephthalate (PET) being the ones used mostly. Polymers with heteroatomic backbone such as PET and PUR are easier to degrade than the straight carbon-carbon backbone polymers such as PE, PP, PS and PVC.

Polymers, Lipase, Cutinase, Esterase, Polyethylene Terephthalate, Polyurethane, Active Site, Protease, Enzymatic Degradation

Published online 4/1/2021, 17 pages

Citation: S.Z.Z. Cobongela, Enzymes Involved in Plastic Degradation, Materials Research Foundations, Vol. 99, pp 95-110, 2021

DOI: https://doi.org/10.21741/9781644901335-4

Part of the book on Degradation of Plastics

[1] M. Alisch-Mark, A. Herrmann, W. Zimmermann, Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi, Biotechnol Lett. 28 (2006) 681–685. https://doi.org/10.1007/s10529-006-9041-7
[2] Z. Liu, Y. Gosser, P.J. Baker, Y. Ravee, Z. Lu, G. Alemu, H. Li, G.L. Butterfoss, X.-P. Kong, R. Gross, J.K. Montclare, Structural and functional studies of A. oryzae Cutinase: enhanced thermostability and hydrolytic activity of synthetic ester and polyester degradation, J. Am. Chem. Soc. 131 (2009) 15711–15716. https://doi.org/10.1021/ja9046697
[3] A.M. Ronkvist, W. Xie, W. Lu, R.A. Gross, Cutinase-catalyzed hydrolysis of poly(ethylene terephthalate), Macromolecules. 42 (2009) 5128–5138. https://doi.org/10.1021/ma9005318
[4] A.J. Doig, D.H. Williams, Is the hydrophobic effect stabilizing or destabilizing in proteins? The contribution of disulphide bonds to protein stability, J. Mol. Biol. 217 (1991) 389–398. https://doi.org/10.1016/0022-2836(91)90551-g
[5] I.S. Chin, A.M.A. Murad, N.M. Mahadi, S. Nathan, F.D.A. Bakar, Thermal stability engineering of Glomerella cingulata cutinase, Protein. Eng. Des. Sel. 26 (2013) 369–375. https://doi.org/10.1093/protein/gzt007
[6] S. Billig, T. Oeser, C. Birkemeyer, W. Zimmermann, Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3, Applied Microbiology and Biotechnology. 87 (2010) 1753–1764. https://doi.org/10.1007/s00253-010-2635-y
[7] U.T. Bornscheuer, Microbial carboxyl esterases: classification, properties and application in biocatalysis, FEMS Microbiology Reviews. 26 (2002) 73–81. https://doi.org/10.1016/S0168-6445(01)00075-4
[8] S. Amin, M. Amin, Thermoplastic elastomeric (TPE) materials and their use in outdoor electrical insulation, Rev. Adv. Mater. Sci.29 (2011) 15-30.
[9] B. Demi̇Rel, A. Yara, H. Elç, Crystallization behavior of PET Materials, BAÜ Fen Bil. Enst. Dergisi Cilt 13(1) (2011)26-35.
[10] R. Wei, W. Zimmermann, Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?, Microb Biotechnol. 10 (2017) 1308–1322. https://doi.org/10.1111/1751-7915.12710
[11] S. Heumann, A. Eberl, H. Pobeheim, S. Liebminger, G. Fischer-Colbrie, E. Almansa, A. Cavaco-Paulo, G. Guebitz, New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres, Journal of Biochemical and Biophysical Methods. 69 (2006) 89–99. https://doi.org/10.1016/j.jbbm.2006.02.005
[12] E. Herrero Acero, D. Ribitsch, G. Steinkellner, K. Gruber, K. Greimel, I. Eiteljoerg, E. Trotscha, R. Wei, W. Zimmermann, M. Zinn, A. Cavaco-Paulo, G. Freddi, H. Schwab, G. Guebitz, Enzymatic surface hydrolysis of PET: Effect of structural diversity on kinetic properties of cutinases from Thermobifida, Macromolecules. 44 (2011) 4632–4640. https://doi.org/10.1021/ma200949p
[13] R. Wei, T. Oeser, J. Then, N. Kühn, M. Barth, J. Schmidt, W. Zimmermann, Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata, AMB Express. 4 (2014) 44. https://doi.org/10.1186/s13568-014-0044-9
[14] D.L. Ollis, E.Cheah, M.Cygler, B. Dijkstra, F. Frolow, S.M. Franken, M. Harel, S. Jamse-Remington, I. Silman, J. Schrag, J.L. Sussman, K.H.G. Verschueren, A. Goldman,The alpha/beta hydrolase fold. Protein Eng. 5 (1992) 197-211. https://doi.org10.1093/protein/5.3.197
[15] S. Yoshida, K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto, Y. Kimura, K. Oda, A bacterium that degrades and assimilates poly(ethylene terephthalate), Science. 351 (2016) 1196–1199. https://doi.org/10.1126/science.aad6359
[16] J.T. Ranz-Korpecka, S. Heumann, G. Gübitz, S. Billig, W. Zimmermann, M. Zinn, J. Ihssen, A. Cavaco-Paulo, Cutinase activity of PET-hydrolases., Macromolecular Symposia. 296 (2010) 342–346.
[17] T. Brueckner, A. Eberl, S. Heumann, M. Rabe, G.M. Guebitz, Enzymatic and chemical hydrolysis of poly(ethylene terephthalate) fabrics, Journal of Polymer Science Part A: Polymer Chemistry. 46 (2008) 6435–6443. https://doi.org/10.1002/pola.22952
[18] I. Kleeberg, C. Hetz, R.M. Kroppenstedt, R.-J. Müller, W.D. Deckwer, Biodegradation of aliphatic-aromatic copolyesters by Thermomonospora fusca and other thermophilic compost isolates, Appl Environ Microbiol. 64 (1998) 1731–1735.
[19] A. Eberl, S. Heumann, T. Brückner, R. Araujo, A. Cavaco-Paulo, F. Kaufmann, W. Kroutil, G.M. Guebitz, Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules, J. Biotechnol. 143 (2009) 207–212. https://doi.org/10.1016/j.jbiotec.2009.07.008
[20] S. Liebminger, A. Eberl, F. Sousa, S. Heumann, G. Fischer-Colbrie, A. Cavaco-Paulo, G.M. Guebitz, Hydrolysis of PET and bis-(benzoyloxyethyl) terephthalate with a new polyesterase from Penicillium citrinum, Biocatalysis and Biotransformation. 25 (2007) 171–177. https://doi.org/10.1080/10242420701379734
[21] D. Ribitsch, E.H. Acero, K. Greimel, I. Eiteljoerg, E. Trotscha, G. Freddi, H. Schwab, G.M. Guebitz, Characterization of a new cutinase from Thermobifida alba for PET-surface hydrolysis, Biocatalysis and Biotransformation. 30 (2012) 2–9. https://doi.org/10.3109/10242422.2012.644435
[22] M. Alisch, A. Feuerhack, H. Müller, B. Mensak, J. Andreaus, W. Zimmermann, Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates, Biocatalysis and Biotransformation. 22 (2004) 347–351. https://doi.org/10.1080/10242420400025877
[23] A. O’Neill, R. Araújo, M. Casal, G. Guebitz, A. Cavaco-Paulo, Effect of the agitation on the adsorption and hydrolytic efficiency of cutinases on polyethylene terephthalate fibres, Enzyme and Microbial Technology. 40 (2007) 1801–1805. https://doi.org/10.1016/j.enzmictec.2007.02.012
[24] F. Kawai, T. Kawase, T. Shiono, H. Urakawa, S. Sukigara, C. Tu, M. Yamamoto, Enzymatic hydrophilization of polyester fabrics using a recombinant cutinase Cut 190 and their surface characterization, Journal of Fiber Science and Technology. 73 (2017) 8–18. https://doi.org/10.2115/fiberst.fiberst.2017-0002
[25] J. Hooker, D. Hinks, G. Montero, M. Icherenska, Enzyme-catalyzed hydrolysis of poly(ethylene terephthalate) cyclic trimer, J. App. Polymer Sci. 89 (2003) 2545–2552. https://doi.org/10.1002/app.11963
[26] F. Kawai, M. Oda, T. Tamashiro, T. Waku, N. Tanaka, M. Yamamoto, H. Mizushima, T. Miyakawa, M. Tanokura, A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190, Applied Microbiology and Biotechnology. 98 (2014) 10053–10064. https://doi.org/10.1007/s00253-014-5860-y
[27] M.A.M.E. Vertommen, V.A. Nierstrasz, M. van der Veer, M.M.C.G. Warmoeskerken, Enzymatic surface modification of poly(ethylene terephthalate), Journal of Biotechnology. 120 (2005) 376–386. https://doi.org/10.1016/j.jbiotec.2005.06.015
[28] C.W. Lee, J.D. Chung, Synthesis and Biodegradation behavior of poly(ethylene terephthalate) oligomers, Polymer Korea. 33 (2009)198-202.
[29] A. Nechwatal, A. Blokesch, M. Nicolai, M. Krieg, A. Kolbe, M. Wolf, M. Gerhardt, A contribution to the investigation of enzyme-catalysed hydrolysis of poly(ethylene terephthalate) oligomers, Macromol. Mater. Eng. 291 (2006) 1486–1494. https://doi.org/10.1002/mame.200600204
[30] D. Ribitsch, E. Herrero Acero, K. Greimel, A. Dellacher, S. Zitzenbacher, A. Marold, R.D. Rodriguez, G. Steinkellner, K. Gruber, H. Schwab, G.M. Guebitz, A new esterase from thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA), Polymers. 4 (2012) 617–629. https://doi.org/10.3390/polym4010617
[31] H.R. Kim, W.S. Song, Optimization of papain treatment for improving the hydrophilicity of polyester fabrics, Fibers and Polymers. 11 (2010) 67–71. https://doi.org/10.1007/s12221-010-0067-z
[32] J. Schmidt, R. Wei, T. Oeser, L.A. Dedavid e Silva, D. Breite, A. Schulze, W. Zimmermann, degradation of polyester polyurethane by bacterial polyester hydrolases, Polymers. 9 (2) (2017) 65. https://doi.org/10.3390/polym9020065
[33] J.P. Santerre, R.S. Labow, D.G. Duguay, D. Erfle, G.A. Adams, Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes, J. Biomed. Mater. Res. 28 (1994) 1187–1199. https://doi.org/10.1002/jbm.820281009
[34] RE Vega, T. Main, G.T. Howard, Cloning and expression in Escherichia coli of a polyurethane!degrading enzyme from Pseudomonas ~uorescens, International Biodeterioration & Biodegradation. 43 (1999) 49–55.
[35] R.V. Stern, G.T. Howard, The polyester polyurethanase gene (pueA) from Pseudomonas chlororaphis encodes a lipase, FEMS Microbiol. Lett. 185 (2000) 163–168. https://doi.org/10.1111/j.1574-6968.2000.tb09056.x
[36] Y. Akutsu, T. Nakajima-Kambe, N. Nomura, T. Nakahara, Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35, Appl Environ Microbiol. 64 (1998) 62–67.
[37] T. Nakajima-Kambe, F. Onuma, N. Kimpara, T. Nakahara, Isolation and characterization of a bacterium which utilizes polyester polyurethane as a sole carbon and nitrogen source, FEMS Microbiol. Lett. 129 (1995) 39–42. https://doi.org/10.1016/0378-1097(95)00131-N
[38] J.R. Russell, J. Huang, P. Anand, K. Kucera, A.G. Sandoval, K.W. Dantzler, D. Hickman, J. Jee, F.M. Kimovec, D. Koppstein, D.H. Marks, P.A. Mittermiller, S.J. Núñez, M. Santiago, M.A. Townes, M. Vishnevetsky, N.E. Williams, M.P.N. Vargas, L.-A. Boulanger, C. Bascom-Slack, S.A. Strobel, Biodegradation of polyester polyurethane by endophytic fungi▿, Appl. Environ. Microbiol. 77 (2011) 6076–6084. https://doi.org/10.1128/AEM.00521-11
[39] J. Knowles, P. Lehtovaara, T. Teeri, Cellulase families and their genes, Trends Biotechnol. 5 (1987) 255–261. https://doi.org/10.1016/0167-7799(87)90102-8
[40] C. Ruiz, T. Main, N.P. Hilliard, G.T. Howard, Purification and characterization of twopolyurethanase enzymes from Pseudomonas chlororaphis, International Biodeterioration & Biodegradation. 43 (1999) 43–47. https://doi.org/10.1016/S0964-8305(98)00067-5
[41] G.T. Howard, B. Crother, J. Vicknair, Cloning, nucleotide sequencing and characterization of a polyurethanase gene (pueB) from Pseudomonas chlororaphis, International Biodeterioration & Biodegradation. 47 (2001) 141–149. https://doi.org/10.1016/S0964-8305(01)00042-7
[42] J.R. Crabbe, J.R. Campbell, L. Thompson, S.L. Walz, W.W. Schultz, Biodegradation of a colloidal ester-based polyurethane by soil fungi, International Biodeterioration & Biodegradation. 33 (1994) 103–113. https://doi.org/10.1016/0964-8305(94)90030-2
[43] G.T. Howard, R.C. Blake, Growth of Pseudomonas fluorescens on a polyester–polyurethane and the purification and characterization of a polyurethanase–protease enzyme, International Biodeterioration & Biodegradation. 42 (1998) 213–220. https://doi.org/10.1016/S0964-8305(98)00051-1
[44] Suhas, P.J.M. Carrott, M.M.L. Ribeiro Carrott, Lignin – from natural adsorbent to activated carbon: A review, Bioresource Technology. 98 (2007) 2301–2312. https://doi.org/10.1016/j.biortech.2006.08.008
[45] J.-M. Restrepo-Flórez, A. Bassi, M.R. Thompson, Microbial degradation and deterioration of polyethylene – A review, International Biodeterioration & Biodegradation. 88 (2014) 83–90. https://doi.org/10.1016/j.ibiod.2013.12.014
[46] M.C. Krueger, H. Harms, D. Schlosser, Prospects for microbiological solutions to environmental pollution with plastics, Appl. Microbiol. Biotechnol. 99 (2015) 8857–8874. https://doi.org/10.1007/s00253-015-6879-4
[47] M. Santo, R. Weitsman, A. Sivan, The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber, International Biodeterioration & Biodegradation. 84 (2013) 204–210. https://doi.org/10.1016/j.ibiod.2012.03.001
[48] M. Fujisawa, H. Hirai, T. Nishida, Degradation of polyethylene and Nylon-66 by the Laccase-Mediator System, 9 (2001) 103-108.
[49] S. Kim, S.C. Chmely, M.R. Nimlos, Y.J. Bomble, T.D. Foust, R.S. Paton, G.T. Beckham, Computational Study of Bond Dissociation Enthalpies for a Large Range of Native and Modified Lignins, J. Phys. Chem. Lett. 2 (2011) 2846–2852. https://doi.org/10.1021/jz201182w
[50] K. Ehara, Y. Iiyoshi, Y. Tsutsumi, T. Nishida, Polyethylene degradation by manganese peroxidase in the absence of hydrogen peroxide, J. Wood Sci. 46 (2000) 180–183. https://doi.org/10.1007/BF00777369
[51] M.A. Moen, K.E. Hammel, Lipid peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the Intact Fungus, Appl. Environ. Microbiol. 60 (1994) 1956–1961. https://doi.org/10.1128/AEM.60.6.1956-1961.1994
[52] M.G. Yoon, H.J. Jeon, M.N. Kim, Biodegradation of Polyethylene by a soil bacterium and AlkB Cloned Recombinant Cell, Journal of Bioremediation & Biodegradation. 03 (2012) undefined-undefined.
[53] J. Zhao, Z. Guo, X. Ma, G. Liang, J. Wang, Novel surface modification of high-density polyethylene films by using enzymatic catalysis, Journal of Applied Polymer Science. 91 (2004) 3673–3678. https://doi.org/10.1002/app.13619
[54] C. Ndahebwa Muhonja, G. Magoma, M. Imbuga, H.M. Makonde, Molecular Characterization of low-density polyethene (LDPE) degrading bacteria and fungi from Dandora Dumpsite, Nairobi, Kenya, Int. J .Microbiol. 2018 (2018) 1-10. https://doi.org/10.1155/2018/4167845
[55] A. Belhaj, N. Desnoues, C. Elmerich, Alkane biodegradation in Pseudomonas aeruginosa strains isolated from a polluted zone: identification of alkB and alkB-related genes, Res. Microbiol. 153 (2002) 339–344. https://doi.org/10.1016/S0923-2508(02)01333-5
[56] K. Nakamiya, G. Sakasita, T. Ooi, S. Kinoshita, Enzymatic degradation of polystyrene by hydroquinone peroxidase of Azotobacter beijerinckii HM121, J. Ferment. Bioeng. 84 (1997) 480–482. https://doi.org/10.1016/S0922-338X(97)82013-2
[57] Y. Yang, J. Yang, W.M. Wu, J. Zhao, Y. Song, L. Gao, R. Yang, L. Jiang, Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 1. chemical and physical characterization and isotopic tests, Environ. Sci. Technol. 49 (2015) 12080–12086. https://doi.org/10.1021/acs.est.5b02661
[58] Y. Yang, J. Yang, W.-M. Wu, J. Zhao, Y. Song, L. Gao, R. Yang, L. Jiang, Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms, Environ. Sci. Technol. 49 (2015) 12087–12093. https://doi.org/10.1021/acs.est.5b02663
[59] A.A. Shah, F. Hasan, A. Hameed, S. Ahmed, Biological degradation of plastics: A comprehensive review, Biotechnol. Adv. 26 (2008) 246–265. https://doi.org/10.1016/j.biotechadv.2007.12.005
[60] M.I. Ali, S. Ahmed, I. Javed, N. Ali, N. Atiq, A. Hameed, G. Robson, Biodegradation of starch blended polyvinyl chloride films by isolated Phanerochaete chrysosporium PV1, Int. J. Environ. Sci. Technol. 11 (2014) 339–348. https://doi.org/10.1007/s13762-013-0220-5
[61] M.I. Ali, S. Ahmed, G. Robson, I. Javed, N. Ali, N. Atiq, A. Hameed, Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates, J. Basic Microbiol. 54 (2014) 18–27. https://doi.org/10.1002/jobm.201200496
[62] T. Sumathi, B. Viswanath, A. Sri Lakshmi, D.V.R. SaiGopal, Production of Laccase by Cochliobolus sp. isolated from plastic dumped soils and their ability to degrade low molecular weight PVC, Biochem Res Int. 2016 (2016). https://doi.org/10.1155/2016/9519527
[63] I.D. Prijambada, S. Negoro, T. Yomo, I. Urabe, Emergence of nylon oligomer degradation enzymes in Pseudomonas aeruginosa PAO through experimental evolution., Appl. Environ. Microbiol. 61 (1995) 2020–2022.
[64] T. Deguchi, M. Kakezawa, T. Nishida, Nylon biodegradation by lignin-degrading fungi, Appl. Environ. Microbiol. 63 (1997) 329–331.
[65] I. Jordanov, D.L. Stevens, A. Tarbuk, E. Magovac, S. Bischof, J.C. Grunlan, Enzymatic Modification of Polyamide for Improving the Conductivity of water-based multilayer nanocoatings, ACS Omega. 4 (2019) 12028–12035. https://doi.org/10.1021/acsomega.9b01052
[66] A. Kiumarsi, M. Parvinzadeh, Enzymatic hydrolysis of nylon 6 fiber using lipolytic enzyme, J. Appl. Polym. Sci. 116 (2010) 3140–3147. https://doi.org/10.1002/app.31756