Biodegradable Plastics from Cyanobacteria


Biodegradable Plastics from Cyanobacteria

R.B. Sartori, I.A. Severo, A.M. Santos, L.Q. Zepka, E. Jacob-Lopes

High accumulation of generated plastic waste is a growing concern. Alternatively, scientific efforts are underway to drive industrial demand to replace these products with superior quality, adequate biodegradable resources. Cyanobacteria are a versatile group of phototrophic prokaryotes capable of producing polyhydroxyalkanoates (PHAs) using sunlight and carbon dioxide (CO2) as a form of carbon and energy reserve. PHAs are appealing alternatives for traditional chemical plastics because these have to resemble characteristics, biocompatibility, and complete biodegradability. In this sense, this chapter aims to address the potential of cyanobacteria as a biodegradable alternative solution.

Bioplastics, Biopolymers, Sustainability, Polyhydroxyalkanoates, Polyhydroxybutyrate

Published online 4/1/2021, 21 pages

Citation: R.B. Sartori, I.A. Severo, A.M. Santos, L.Q. Zepka, E. Jacob-Lopes, Biodegradable Plastics from Cyanobacteria, Materials Research Foundations, Vol. 99, pp 269-289, 2021


Part of the book on Degradation of Plastics

[1] G.J.M. De Koning, Prospects of bacterial Poly[(R)-3-(Hydroxyalkanoates), Technische Universiteit Eindhoven, The Netherlands (1993).
[2] R. Bhati, Biodegradable plastics production by cyanobacteria, in: M. Khoobchandani, A. Saxena (Eds), Biotechnology products in everyday life, EcoProduction, Springer, Cham, 2019, pp. 131-143
[3] M. Lackner, Bioplastics – Biobased plastics as renewable and/or biodegradable alternatives to petroplastics, in: K. Othmer (Ed), Encyclopedia of Chemical Technology, Wiley, 2015, pp. 1-41
[4] CIEL (Center for International Environmental Law), Fossils, plastics, & petrochemical feedstocks, in: Fueling Plastics, Center for International Environment Law, 2017, pp. 1-5
[5] R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made. Sci. Adv. 3 (2017) e1700782. 10.1126/sciadv.1700782
[6] D. Kamravamanesh, M. Lackner, C. Herwig, Bioprocess engineering aspects of sustainable polyhydroxyalkanoate production in cyanobacter, Bioengineering 5 (2018) 111.
[7] H. Karan, C. Funk, M. Grabert, M. Oey, B. Hankamer, Green bioplastics as part of a circular bioeconomy, Trends Plant Sci. 3 (2019) 237-241. 10.1016/j.tplants.2018.11.010
[8] C. Troschl, K. Meixner, B. Drosg. Cyanobacterial PHA production – review of recent advances and a summary of three years’ working experience running a pilot plant, Bioengineering 4 (2017) 1-19.
[9] G.Q. Chen, A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 38 (2009) 2434–2446.
[10] M. Koller, L. Maršálek, M.M. de Sousa Dias, G. Braunegg, G, Producing microbial polyhydroxyalkanoate (PHA) biopolyesters in a sustainable manner. New Biotechnol. 37 (2017) 24-38.
[11] P.M. Halami, Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06, World J.Microbiol. Biotechnol. 24 (2008) 805–812.
[12] S. Balaji, K. Gopi, B. Muthuvelan, A review on production of poly βhydroxybutyrates from cyanobacteria for the production of bio plastics, Algal Res. 2 (2013) 278–285.
[13] A.S. Luyt, S.S. Malik, Can biodegradable plastics solve plastic solid waste accumulation, in: S.M. Al-Salem (Ed), Plastics to energy, fuel, chemicals, and sustainability implications, Elsevier, 2019, pp. 403-423
[14] G.F. Brito, P. Agrawal, E.M. Araújo, T.J.A. Mélo, Biopolímeros, Polímeros Biodegradáveis e Polímeros Verdes, Revista Eletrônica de Materiais e Processos 6 (2011) 127-139.ISSN:1809-8797
[15] S. Khanna, A.K. Srivastava, Recent advances in microbial polyhydroxyalkanoates, Process. Biochem. 40 (2005) 607–619. 10.1016/j.procbio.2004.01.053
[16] L. Avérous, Polylactic Acid: Synthesis, properties and applications. In: M.N.Belgacem, A.Gandini (Eds), Monomers, polymers and composites from renewable resources, Elsevier, Oxford, 2008
[17] M.G. Bastos Lima, Toward multipurpose agriculture: food, fuels, flex crops, and prospects for a bioeconomy, Global Environ. Politics 18 (2018) 143–150.
[18] C. Zhang, P.L. Show, S.H. Ho, Progress and perspective on algal plastics – A critical review, Bioresour. Technol. 289 (2019) 121700.
[19] D.M. Arias, J. García, E. Uggetti, Production of polymers by cyanobacteria grown in wastewater: Current status, challenges and future perspectives, New Biotechnol. 55 (2020) 46–57.
[20] B. Drosg, I. Fritz, F. Gattermayer, L. Silvestrini, Photo-autotrophic production of poly(hydroxyalkanoates) in cyanobacteria, Chem. Biochem. Eng. Q. 29 (2015) 145–156.
[21] V. Mendhulkar, L. Shetye, Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen- and phosphate-mediated stress conditions, Ind. Biotechnol. 13 (2017) 85–88.
[22] W. Hauf, M. Schlebusch, J. Hüge, J. Kopka, M. Hagemann, K. Forchhammer, Metabolic changes in Synechocystis PCC6803 upon Nitrogen-Starvation: Excess NADPH sustains polyhydroxybutyrate accumulation. Metabolites 3 (2013) 101–118.
[23] Y. Nakaya, H. Iijima, J. Takanobu, A. Watanabe, M.Y. Hirai, T. Osanai, One day of nitrogen starvation reveals the effect of sigE and rre37 overexpression on the expression of genes related to carbon and nitrogen metabolism in Synechocystis sp. PCC 6803. J. Biosci. Bioeng. (2015) 1–7.
[24] A.K. Singh, N. Mallick, Advances in cyanobacterial polyhydroxyalkanoates production, FEMS Microbiology Letters 364 (2017) 1-13.
[25] E. Markl, H. Grünbichler, M. Lackner, Cyanobacteria for PHB bioplastics production: A review. Y.K. Wong (Ed), Algae, IntechOpen, 2018.
[26] T. Heidorn, D. Camsund, H.H. Huang, P. Lindberg, P. Oliveira, K. Stensjo, et al., Synthetic biology in cyanobacteria engineering and analyzing novel functions, Methods Enzymol. 497 (2011) 539-579.
[27] Kaewbai-ngam, A. Incharoensakdi, T. Monshupanee, Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrixscytonemicola TISTR 8095, Bioresour. Technol. 212 (2016) 342–347.
[28] R.B. Derner, S. Ohse, M. Villela, S.M.F.R. Carvalho, Microalgas, produtos e aplicações, Cienc. Rural 36 (2006) 1959–1967.
[29] R.A. Soni, K. Sudhakar, R.S. Rana, Spirulina – from growth to nutritional product: a review, Trends Food Sci. Technol. 69 (2017) 157–171. 10.1016/j.tifs.2017.09.010
[30] M. Schlebusch, K. Forchhammer, Requirement of the nitrogen starvation-induced protein s110783 for polyhydroxybutyrate accumulation in Synechocystissp. strain PCC 6803, Appl. Environ. Microbiol 76 (2010) 6101–6107.
[31] B. Panda, L. Sharma, N. Mallick, Poly-hydroxybutyrate accumulation in Nostocmuscorum and Spirulinaplatensis under phosphate limitation. J. Plant Physiol. 162 (2005) 1376–1379.
[32] D. Kamravamanesh, S. Pflugl, W. Nischkauer, A. Limbeck, A. Lackner, C. Herwig, Phtosynthetic poly-β-hydroxybutyrate accumulation in unicellular cyanobacterium, Synechocystis sp. PCC 6714. AMB Express 7 (2017) 143. 10.1186 / s13568-017-0443-9
[33] R. Bhati, N. Mallick, Production and characterization of poly 3-hydroxybutyrate-co-3-hydroxyvalerate co-polymer by a N2-fixing cyanobacterium Nostocmuscorum Agardh, J. Chem. Technol. Biot. 87 (2012) 505-512.
[34] M. Koller, Chemical and biochemical engineering approaches in manufacturing polyhydroxyalkanoate (PHA) biopolyesters of tailored structure with focus on the diversity of building blocks, Chem. Biochem. Eng. Q. 32 (2018) 413-438.
[35] K. Gopi, S. Balaji, B. Muthuvelan, Isolation purification and screening of biodegradable polymer PHB producing cyanobacteria from marine and freshwater resources, Iran. J. Energy Environ. 5 (2014) 94–100. 10.5829/idosi.ijee.2014.05.01.14
[36] J. Campbell, S.E. Stevens, D.L. Balkwill, Accumulation of poly-beta-hydroxybutyrate in Spirulina platensis, J. Bacteriol. 149 (1982 )361–363
[37] M. Vincenzini, C. Sili, R. de Philippis, A. Ena, R. Materassi, Occurrence of poly-beta-hydroxybutyrate in Spirulina species, J. Bacteriol. 172 (1990) 2791–2792. / jb.172.5.2791-2792.1990
[38] A. Shrivastav, S.K. Mishra, S. Mishra, Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India, Int. J. Biol. Macromol. 46 (2010) 255–260. 10.1016/j.ijbiomac.2010.01.001
[39] S. Samantaray, N. Mallick, Production and characterization of poly-hydroxybutyrate (PHB) polymer from Aulosirafertilissima, J. Appl. Phycol. 24 (2012) 803–814.
[40] L. Sharma, N. Mallick, Accumulation of poly-hydroxybutyrate in Nostocmuscorum: Regulation by pH, light-dark cycles, N and P status and carbon sources, Bioresour. Technol. 96 (2005) 1304–1310.
[41] R. Bhati, N. Mallick, Carbon dioxide and poultry waste utilization for production of polyhydroxyalkanoate biopolymers by Nostocmuscorum Agardh: A sustainable approach, J. Appl. Phycol. 28 (2016) 161–168. 10.1007/s10811-015-0573-x
[42] A. Kaewbai-Ngam, A. Incharoensakdi, T. Monshupanee, Increased accumulation of polyhydroxybutyrate in divergent cyanobacteria under nutrient-deprived photoautotrophy: An efficient conversion of solar energy and carbon dioxide to polyhydroxybutyrate by Calothrixscytonemicola TISTR 8095, Bioresour. Technol. 212 (2016) 342–347.
[43] V. Mendhulkar, L. Shetye, Synthesis of biodegradable polymer polyhydroxyalkanoate (PHA) in cyanobacteria Synechococcus elongates under mixotrophic nitrogen and phosphate mediated stress conditions, Ind. Biotechnol.13 (2017) 85–88.
[44] R. Carpine, G. Olivieri, K. Hellingwerf, A. Pollio, G. Pinto, A. Marzocchella, Poly-hydroxybutyrate (PHB) production by cyanobacteria, New Biotechnology (2016) S19–S20.
[45] G.F. Wu, Q.Y. Wu, Z.Y. Shen, Accumulation of poly-beta-hydroxybutyrate in cyanobacterium Synechocystis sp. PCC6803, Bioresour. Technol. 76 (2001) 85–90.
[46] B.B. Panda, P. Jain, L. Sharma, N. Mallick, Optimization of cultural and nutritional conditions for accumulation of poly-b-hydroxybutyrate in Synechocystis sp. PCC 6803, Bioresour. Technol. 97 (2006) 1296–1301.
[47] B. Panda, N. Mallick, N, Enhanced poly-hydroxybutyrate accumulation in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. Lett. Appl. Microbiol. 44 (2007) 194–198.
[48] M.M. El-Sheekh, A.E. El-Gamal, A. Bastawess, A. El-Bokhomy, Production and characterization of biodiesel from the unicellular green alga Scenedesmus obliquus, Energ. sources, Part A: Recovery. Utilization and Environmental Effects 39 (2017) 783-793.
[49] B. Chen, C. Wan, M.A. Mehmood, J. Chang, F. Bai, X. Zhao, Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products – a review, Bioresour. Technol. 244 (2017) 1198–1206.
[50] L. Winter, I.T.D. Cabanelas, A.N. Órfão, E. Vaessen, D.E. Martens, R.H. Wijffels, M.J. Barbosa, The influence of day length on circadian rhythms of Neochloriso leoabundans, Algal Researc. 22 (2017) 31–38.
[51] X.Y. Wu, T.S. Song, X.J. Zhu, P. Wei, C.C. Zhou,). Construction and operation of microbial fuel cell with Chlorella vulgari sbiocathode for electricity generation, Appl. Biochem. Biotechnol. 171 (2013) 2082-2092.
[52] J.C.W. Lan, K. Raman, C.M. Huang, C. M. Chang, C. M. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonasreinhardtii transformation F5 as biocatalyst, Biochem. Eng. J. 78, (2013) 39-43.
[53] A.L. Gonçalves, J.C.M. Pires, M. Simões, A review on the use of microalgal consortia for wastewater treatment, Algal Res. 24 (2017) 403–415.
[54] L. Xia, J. Rong, H. Yang, Q. He, D. Zhang, C. Hu, NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmusabundans, Bioresour. Technol. 161 (2014) 402–409.
[55] V.C. Coelho, C.K. da Silva, A.L. Terra, M.G. de Morais, Polyhydroxybutyrate production by Spirulina sp. LEB 18 grown under different nutrient concentrations, Afr. J. Microbiol. Res. 9 (2015) 1586–1594.
[56] J.O. Eberly, R.L. Ely, Photosynthetic accumulation of carbon storage compounds under CO2 enrichment by the thermophilic cyanobacterium Thermosynechococcus elongates, J. Ind. Microbiol. Biotechnol. 39 (2012) 843–850.
[57] D. Kamravamanesh, C. Slouka, A. Limbeck, M. Lackner, C. Herwig, Increased carbohydrate production from carbon dioxide in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: Bioprocess understanding and evaluation of productivities, Bioresour. Technol. 273 (2019) 277–287. 10.1016/j.biortech.2018.11.025
[58] B. Drosg, Photo-autotrophic production of Poly(hydroxyalkanoates) in Cyanobacteria. Chem. Biochem. Eng. Q. 29 (2015) 145–156.
[59] L. Christenson, R. Sims, Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts, Biotechnol, Adv., 29 (2011) 686-702.
[60] S. Samantaray, J.K. Nayak, N. Mallick, Wastewater Utilization for Poly-β-Hydroxybutyrate production by the cyanobacterium Aulosirafertilissima in a recirculatory aquaculture system, Appl. Environ. Microbiol. 77 (2011) 8735–8743.
[61] D. Noreña-Caro, M.G. Benton, Cyanobacteria as photoautotrophic biofactories of high-value chemicals, J. CO2 Util. 28 (2018) 335-366.
[62] S. Khanra, Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review, Food Bioprod. Process., 110 (2018) 60-84.
[63] B. Delattre, Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv., 34 (2016) 1159-1179.
[64] W. Vermaas, Production of bioplastics and other biomaterials from the cyanobacterium Synechocystis. -of-bioplastics-and-other-biomaterials-from-the-cyanoba, 2019 (accessed 2 December 2019)
[65] K. Meixner, Cyanobacteria for bioplastic production. Conference: Erasmus International Week at Hochschule Darmstadt, DEC 4-8, 2017. At: Hochschule Darmstadt (GER) Affiliation: University of Natural Resources and Life Sciences, Vienna; Institute of Environmental Biotechnology, 2017
[66] Markets & Markets, Polyhydroxyalkanoate (PHA) Market. https:// /Market-Reports/pha-market-395.html, 2019 (accessed 9 November 2019).
[67] P. Singh, R. Kumar, Radiation physics and chemistry of polymeric materials, in: V. Kumar, B. Chaudhary, V. Sharma, K. Verma (Eds.) Radiation effects in polymeric materials, Springer, pp 35-68
[68] B.E. DiGregorio, Biobased performance bioplastic: Mirel, Chem. Biol. Innovat., 16 (2009) 1-2.