Eco-Friendly Techniques to Synthesize Quantum Dots


Eco-Friendly Techniques to Synthesize Quantum Dots

Zeinab Fereshteh

Quantum dot defines as a nanoparticle with particle size smaller than its exciton Bohr radius. Due to the remarkable quantum effects such as optical and electronic properties, they have attracted a great deal of attention by researchers and industries. Therefore, quantum dots have become a major topic in nano-technology. Here, we describe the most recent eco-friendly techniques that have been used to synthesize quantum dots, including biogenic methods, such as plant-mediated, microorganisms-mediated methods, wet chemical and solid-state methods.

Quantum Dots, Synthesis Method, Environment-Friendly, Green Method, Biogenic Methods, Wet Chemical Methods

Published online 2/1/2020, 52 pages

Citation: Zeinab Fereshteh, Eco-Friendly Techniques to Synthesize Quantum Dots, Materials Research Foundations, Vol. 96, pp 1-52, 2021


Part of the book on Quantum Dots

[1] T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biological applications of quantum dots, Biomaterials 28 (2007) 4717-4732.
[2] W.C.W. Chan, D.J. Maxwell, X. Gao, R.E. Bailey, M. Han, S. Nie, Luminescent quantum dots for multiplexed biological detection and imaging, Curr. Opin. Biotechnol. 13 (2002) 40-46.
[3] J. Xue, X. Wang, J.H. Jeong, X. Yan, Fabrication, photoluminescence and applications of quantum dots embedded glass ceramics, Chem. Eng. J. 383 (2020) 123082.
[4] A. Manikandan, Y.-Z. Chen, C.-C. Shen, C.-W. Sher, H.-C. Kuo, Y.-L. Chueh, A critical review on two-dimensional quantum dots (2d qds): From synthesis toward applications in energy and optoelectronics, Progress in Quantum Electronics 68 (2019) 100226.
[5] V.G. Reshma, P.V. Mohanan, Quantum dots: Applications and safety consequences, J. Lumin. 205 (2019) 287-298.
[6] J. Yao, P. Li, L. Li, M. Yang, Biochemistry and biomedicine of quantum dots: From biodetection to bioimaging, drug discovery, diagnostics, and therapy, Acta Biomater. 74 (2018) 36-55.
[7] R.S. Pawar, P.G. Upadhaya, V.B. Patravale, Quantum dots, (2018) 621-637.
[8] E.M. Egorova, A.A. Revina, Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin, Colloids Surf. Physicochem. Eng. Aspects 168 (2000) 87-96.
[9] H. Uyama, M. Kuwabara, T. Tsujimoto, M. Nakano, A. Usuki, S. Kobayashi, Green nanocomposites from renewable resources: Plant oil−clay hybrid materials, Chem. Mater. 15 (2003) 2492-2494.
[10] J.G. Parsons, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Use of plants in biotechnology: Synthesis of metal nanoparticles by inactivated plant tissues, plant extracts, and living plants, 5 (2007) 463-485.
[11] P. Kuppusamy, M.M. Yusoff, G.P. Maniam, N. Govindan, Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications – an updated report, Saudi Pharm. J. 24 (2016) 473-484.
[12] A.K. Jha, K. Prasad, K. Prasad, A.R. Kulkarni, Plant system: Nature’s nanofactory, Colloids Surf. B. Biointerfaces 73 (2009) 219-223.
[13] R. Zeiser, Advances in understanding the pathogenesis of graft-versus-host disease, British journal of haematology 187 (2019) 563-572. 10.1111/bjh.16190
[14] A. Altemimi, N. Lakhssassi, A. Baharlouei, D.G. Watson, D.A. Lightfoot, Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts, Plants (Basel) 6 (2017). 10.3390/plants6040042
[15] M. Rai, A. Yadav, A. Gade, Current [corrected] trends in phytosynthesis of metal nanoparticles, Crit. Rev. Biotechnol. 28 (2008) 277-284.
[16] S. Rajeshkumar, L.V. Bharath, Mechanism of plant-mediated synthesis of silver nanoparticles – a review on biomolecules involved, characterisation and antibacterial activity, Chem. Biol. Interact. 273 (2017) 219-227.
[17] P.K. Gautam, A. Singh, K. Misra, A.K. Sahoo, S.K. Samanta, Synthesis and applications of biogenic nanomaterials in drinking and wastewater treatment, J. Environ. Manage. 231 (2019) 734-748.
[18] M. Klekotko, K. Brach, J. Olesiak-Banska, M. Samoc, K. Matczyszyn, Popcorn-shaped gold nanoparticles: Plant extract-mediated synthesis, characterization and multiphoton-excited luminescence properties, Mater. Chem. Phys. 229 (2019) 56-60.
[19] G.A. Islan, S. Das, M.L. Cacicedo, A. Halder, A. Mukherjee, M.L. Cuestas, P. Roy, G.R. Castro, A. Mukherjee, Silybin-conjugated gold nanoparticles for antimicrobial chemotherapy against gram-negative bacteria, J. Drug Deliv. Sci. Technol. (2019) 101181.
[20] I. Kumar, M. Mondal, V. Meyappan, N. Sakthivel, Green one-pot synthesis of gold nanoparticles using sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants, Mater. Res. Bull. 117 (2019) 18-27.
[21] N. Thangamani, N. Bhuvaneshwari, Green synthesis of gold nanoparticles using simarouba glauca leaf extract and their biological activity of micro-organism, Chem. Phys. Lett. (2019).
[22] A. Boldeiu, M. Simion, I. Mihalache, A. Radoi, M. Banu, P. Varasteanu, P. Nadejde, E. Vasile, A. Acasandrei, R.C. Popescu, D. Savu, M. Kusko, Comparative analysis of honey and citrate stabilized gold nanoparticles: In vitro interaction with proteins and toxicity studies, J Photochem Photobiol B 197 (2019) 111519.
[23] M.K. Satheeshkumar, E.R. Kumar, C. Srinivas, N. Suriyanarayanan, M. Deepty, C.L. Prajapat, T.V.C. Rao, D.L. Sastry, Study of structural, morphological and magnetic properties of ag substituted cobalt ferrite nanoparticles prepared by honey assisted combustion method and evaluation of their antibacterial activity, J. Magn. Magn. Mater. 469 (2019) 691-697.
[24] M.F. Zayed, W.H. Eisa, S.M. El-Kousy, W.K. Mleha, N. Kamal, Ficus retusa-stabilized gold and silver nanoparticles: Controlled synthesis, spectroscopic characterization, and sensing properties, Spectrochim. Acta A Mol. Biomol. Spectros. 214 (2019) 496-512.
[25] M. Vinosha, S. Palanisamy, R. Muthukrishnan, S. Selvam, E. Kannapiran, S. You, N.M. Prabhu, Biogenic synthesis of gold nanoparticles from halymenia dilatata for pharmaceutical applications: Antioxidant, anti-cancer and antibacterial activities, Process Biochem. (2019).
[26] P.M. Anjana, M.R. Bindhu, R.B. Rakhi, Green synthesized gold nanoparticle dispersed porous carbon composites for electrochemical energy storage, Materials Science for Energy Technologies 2 (2019) 389-395.
[27] I. Mohammad, Gold nanoparticle: An efficient carrier for mcp i of carica papaya seeds extract as an innovative male contraceptive in albino rats, J. Drug Deliv. Sci. Technol. 52 (2019) 942-956.
[28] S. Onitsuka, T. Hamada, H. Okamura, Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts, Colloids Surf. B. Biointerfaces 173 (2019) 242-248.
[29] Q. Zhou, M. Zhou, Q. Li, R. Wang, Y. Fu, T. Jiao, Facile biosynthesis and grown mechanism of gold nanoparticles in pueraria lobata extract, Colloids Surf. Physicochem. Eng. Aspects 567 (2019) 69-75.
[30] G.M. Asnag, A.H. Oraby, A.M. Abdelghany, Green synthesis of gold nanoparticles and its effect on the optical, thermal and electrical properties of carboxymethyl cellulose, Composites Part B: Engineering 172 (2019) 436-446.
[31] A.I. Usman, A.A. Aziz, O.A. Noqta, Green sonochemical synthesis of gold nanoparticles using palm oil leaves extracts, Materials Today: Proceedings 7 (2019) 803-807.
[32] M.P. Patil, E. Bayaraa, P. Subedi, L.L.A. Piad, N.H. Tarte, G.-D. Kim, Biogenic synthesis, characterization of gold nanoparticles using lonicera japonica and their anticancer activity on hela cells, J. Drug Deliv. Sci. Technol. 51 (2019) 83-90.
[33] P. Boomi, R.M. Ganesan, G. Poorani, H. Gurumallesh Prabu, S. Ravikumar, J. Jeyakanthan, Biological synergy of greener gold nanoparticles by using coleus aromaticus leaf extract, Mater. Sci. Eng. C Mater. Biol. Appl. 99 (2019) 202-210.
[34] S.K. Vemuri, R.R. Banala, S. Mukherjee, P. Uppula, S. Gpv, V.G. A, M. T, Novel biosynthesized gold nanoparticles as anti-cancer agents against breast cancer: Synthesis, biological evaluation, molecular modelling studies, Mater. Sci. Eng. C Mater. Biol. Appl. 99 (2019) 417-429.
[35] V. Sunderam, D. Thiyagarajan, A.V. Lawrence, S.S.S. Mohammed, A. Selvaraj, In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using anacardium occidentale leaves extract, Saudi J. Biol. Sci. 26 (2019) 455-459.
[36] T.S.K. Sharma, K. Selvakumar, K.Y. Hwa, P. Sami, M. Kumaresan, Biogenic fabrication of gold nanoparticles using camellia japonica l. Leaf extract and its biological evaluation, Journal of Materials Research and Technology 8 (2019) 1412-1418.
[37] S.E. Celik, B. Bekdeser, R. Apak, A novel colorimetric sensor for measuring hydroperoxide content and peroxyl radical scavenging activity using starch-stabilized gold nanoparticles, Talanta 196 (2019) 32-38.
[38] M. Khoshnamvand, S. Ashtiani, C. Huo, S.P. Saeb, J. Liu, Use of alcea rosea leaf extract for biomimetic synthesis of gold nanoparticles with innate free radical scavenging and catalytic activities, J. Mol. Struct. 1179 (2019) 749-755.
[39] R.A. Zayadi, F. Abu Bakar, M.K. Ahmad, Elucidation of synergistic effect of eucalyptus globulus honey and zingiber officinale in the synthesis of colloidal biogenic gold nanoparticles with antioxidant and catalytic properties, Sustainable Chemistry and Pharmacy 13 (2019) 100156.
[40] S. Rashid, M. Azeem, S.A. Khan, M.M. Shah, R. Ahmad, Characterization and synergistic antibacterial potential of green synthesized silver nanoparticles using aqueous root extracts of important medicinal plants of pakistan, Colloids Surf. B. Biointerfaces 179 (2019) 317-325.
[41] S.S. Dakshayani, M.B. Marulasiddeshwara, M.N.S. Kumar, R. Golla, R.P. Kumar, S. Devaraja, R. Hosamani, Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using selaginella (sanjeevini) plant extract, Int. J. Biol. Macromol. 131 (2019) 787-797.
[42] S.H. Mohd Taib, K. Shameli, P. Moozarm Nia, M. Etesami, M. Miyake, R. Rasit Ali, E. Abouzari-Lotf, Z. Izadiyan, Electrooxidation of nitrite based on green synthesis of gold nanoparticles using hibiscus sabdariffa leaves, Journal of the Taiwan Institute of Chemical Engineers 95 (2019) 616-626.
[43] D. Tripathi, A. Modi, G. Narayan, S.P. Rai, Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant withania coagulans and their potential biomedical properties, Mater. Sci. Eng. C Mater. Biol. Appl. 100 (2019) 152-164.
[44] S. Francis, K.M. Nair, N. Paul, E.P. Koshy, B. Mathew, Green synthesized metal nanoparticles as a selective inhibitor of human osteosarcoma and pathogenic microorganisms, Materials Today Chemistry 13 (2019) 128-138.
[45] P.M. Anjana, M.R. Bindhu, M. Umadevi, R.B. Rakhi, Antibacterial and electrochemical activities of silver, gold, and palladium nanoparticles dispersed amorphous carbon composites, Appl. Surf. Sci. 479 (2019) 96-104.
[46] Z. Vaseghi, A. Nematollahzadeh, O. Tavakoli, Plant-mediated cu/cr/ni nanoparticle formation strategy for simultaneously separation of the mixed ions from aqueous solution, Journal of the Taiwan Institute of Chemical Engineers 96 (2019) 148-159.
[47] E.Y. Ahn, H. Jin, Y. Park, Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts, Mater. Sci. Eng. C Mater. Biol. Appl. 101 (2019) 204-216.
[48] N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R. Mehta, A. Fatma, Rapid synthesis of silver nanoparticles using dried medicinal plant of basil, Colloids Surf. B. Biointerfaces 81 (2010) 81-86.
[49] D. Sharma, M.I. Sabela, S. Kanchi, P.S. Mdluli, G. Singh, T.A. Stenstrom, K. Bisetty, Biosynthesis of zno nanoparticles using jacaranda mimosifolia flowers extract: Synergistic antibacterial activity and molecular simulated facet specific adsorption studies, J. Photochem. Photobiol. B 162 (2016) 199-207.
[50] R. Dobrucka, J. Dlugaszewska, Biosynthesis and antibacterial activity of zno nanoparticles using trifolium pratense flower extract, Saudi J. Biol. Sci. 23 (2016) 517-523.
[51] R. Yuvakkumar, J. Suresh, A.J. Nathanael, M. Sundrarajan, S.I. Hong, Novel green synthetic strategy to prepare zno nanocrystals using rambutan (nephelium lappaceum l.) peel extract and its antibacterial applications, Mater. Sci. Eng. C Mater. Biol. Appl. 41 (2014) 17-27.
[52] D. Wang, H. Liu, Y. Ma, J. Qu, J. Guan, N. Lu, Y. Lu, X. Yuan, Recycling of hyper-accumulator: Synthesis of zno nanoparticles and photocatalytic degradation for dichlorophenol, J. Alloys Compd. 680 (2016) 500-505.
[53] J. Fowsiya, G. Madhumitha, N.A. Al-Dhabi, M.V. Arasu, Photocatalytic degradation of congo red using carissa edulis extract capped zinc oxide nanoparticles, J. Photochem. Photobiol. B 162 (2016) 395-401.
[54] N. Matinise, X.G. Fuku, K. Kaviyarasu, N. Mayedwa, M. Maaza, Zno nanoparticles via moringa oleifera green synthesis: Physical properties & mechanism of formation, Appl. Surf. Sci. 406 (2017) 339-347.
[55] N. Mayedwa, N. Mongwaketsi, S. Khamlich, K. Kaviyarasu, N. Matinise, M. Maaza, Green synthesis of nickel oxide, palladium and palladium oxide synthesized via aspalathus linearis natural extracts: Physical properties & mechanism of formation, Appl. Surf. Sci. 446 (2018) 266-272.
[56] T. Rasheed, F. Nabeel, M. Bilal, H.M.N. Iqbal, Biogenic synthesis and characterization of cobalt oxide nanoparticles for catalytic reduction of direct yellow-142 and methyl orange dyes, Biocatalysis and Agricultural Biotechnology 19 (2019) 101154.
[57] S. Vasantharaj, S. Sathiyavimal, M. Saravanan, P. Senthilkumar, K. Gnanasekaran, M. Shanmugavel, E. Manikandan, A. Pugazhendhi, Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential, J. Photochem. Photobiol. B 191 (2019) 143-149.
[58] A.P. Angeline Mary, A. Thaminum Ansari, R. Subramanian, Sugarcane juice mediated synthesis of copper oxide nanoparticles, characterization and their antibacterial activity, Journal of King Saud University – Science (2019).
[59] S. Rajeshkumar, S. Menon, S. Venkat Kumar, M.M. Tambuwala, H.A. Bakshi, M. Mehta, S. Satija, G. Gupta, D.K. Chellappan, L. Thangavelu, K. Dua, Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through cissus arnotiana plant extract, J. Photochem. Photobiol. B 197 (2019) 111531.
[60] N. Sripriya, S. Vasantharaj, U. Mani, M. Shanmugavel, R. Jayasree, A. Gnanamani, Encapsulated enhanced silver nanoparticles biosynthesis by modified new route for nano-biocatalytic activity, Biocatalysis and Agricultural Biotechnology 18 (2019) 101045.
[61] K. Ranoszek-Soliwoda, E. Tomaszewska, K. Malek, G. Celichowski, P. Orlowski, M. Krzyzowska, J. Grobelny, The synthesis of monodisperse silver nanoparticles with plant extracts, Colloids Surf. B. Biointerfaces 177 (2019) 19-24.
[62] M. Chokkalingam, P. Singh, Y. Huo, V. Soshnikova, S. Ahn, J. Kang, R. Mathiyalagan, Y.J. Kim, D.C. Yang, Facile synthesis of au and ag nanoparticles using fruit extract of lycium chinense and their anticancer activity, J. Drug Deliv. Sci. Technol. 49 (2019) 308-315.
[63] S. Vasantharaj, S. Sathiyavimal, P. Senthilkumar, F. LewisOscar, A. Pugazhendhi, Biosynthesis of iron oxide nanoparticles using leaf extract of ruellia tuberosa: Antimicrobial properties and their applications in photocatalytic degradation, J. Photochem. Photobiol. B 192 (2019) 74-82.
[64] D. Aksu Demirezen, Y.S. Yildiz, S. Yilmaz, D. Demirezen Yilmaz, Green synthesis and characterization of iron oxide nanoparticles using ficus carica (common fig) dried fruit extract, J. Biosci. Bioeng. 127 (2019) 241-245.
[65] L. Katata-Seru, T. Moremedi, O.S. Aremu, I. Bahadur, Green synthesis of iron nanoparticles using moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against escherichia coli, J. Mol. Liq. 256 (2018) 296-304.
[66] S.N.A. Mohamad Sukri, K. Shameli, M. Mei-Theng Wong, S.-Y. Teow, J. Chew, N.A. Ismail, Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (zno) nanoparticles using punica granatum (pomegranate) fruit peels extract, J. Mol. Struct. 1189 (2019) 57-65.
[67] N. Shobha, N. Nanda, A.S. Giresha, P. Manjappa, S. P, K.K. Dharmappa, B.M. Nagabhushana, Synthesis and characterization of zinc oxide nanoparticles utilizing seed source of ricinus communis and study of its antioxidant, antifungal and anticancer activity, Mater. Sci. Eng. C Mater. Biol. Appl. 97 (2019) 842-850.
[68] A. Thirumurugan, P. Aswitha, C. Kiruthika, S. Nagarajan, A.N. Christy, Green synthesis of platinum nanoparticles using azadirachta indica – an eco-friendly approach, Mater. Lett. 170 (2016) 175-178.
[69] G. Sharma, R. Soni, N.D. Jasuja, Phytoassisted synthesis of magnesium oxide nanoparticles with swertia chirayaita, Journal of Taibah University for Science 11 (2018) 471-477.
[70] J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong, Green synthesis and characterization of hexagonal shaped mgo nanoparticles using insulin plant ( costus pictus d. Don) leave extract and its antimicrobial as well as anticancer activity, Adv. Powder Technol. 29 (2018) 1685-1694.
[71] M.S. Al-Ruqeishi, T. Mohiuddin, L.K. Al-Saadi, Green synthesis of iron oxide nanorods from deciduous omani mango tree leaves for heavy oil viscosity treatment, Arabian Journal of Chemistry (2016).
[72] S.S.U. Rahman, M.T. Qureshi, K. Sultana, W. Rehman, M.Y. Khan, M.H. Asif, M. Farooq, N. Sultana, Single step growth of iron oxide nanoparticles and their use as glucose biosensor, Results in Physics 7 (2017) 4451-4456.
[73] P. Rajiv, B. Bavadharani, M.N. Kumar, P. Vanathi, Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities, Biocatalysis and Agricultural Biotechnology 12 (2017) 45-49.
[74] Z. Izadiyan, K. Shameli, M. Miyake, H. Hara, S.E.B. Mohamad, K. Kalantari, S.H.M. Taib, E. Rasouli, Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using juglans regia green husk extract, Arabian Journal of Chemistry (2018).
[75] Z. Izadiyan, K. Shameli, M. Miyake, S.Y. Teow, S.C. Peh, S.E. Mohamad, S.H.M. Taib, Green fabrication of biologically active magnetic core-shell fe3o4/au nanoparticles and their potential anticancer effect, Mater. Sci. Eng. C Mater. Biol. Appl. 96 (2019) 51-57.
[76] G.W. Duan, J. Zhang, Y.M. Xu, Y.C. Zhang, Y.Z. Fu, Synthesis and characterization of Pt3Co@Pt nanocomposites using banana peel extract as novel surfactants, Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 45 (2014) 203-209.
[77] G.J. Zhou, S.H. Li, Y.C. Zhang, Y.Z. Fu, Biosynthesis of cds nanoparticles in banana peel extract, J Nanosci Nanotechnol 14 (2014) 4437-4442. 10.1166/jnn.2014.8259
[78] O.J. Nava, C.A. Soto-Robles, C.M. Gómez-Gutiérrez, A.R. Vilchis-Nestor, A. Castro-Beltrán, A. Olivas, P.A. Luque, Fruit peel extract mediated green synthesis of zinc oxide nanoparticles, J. Mol. Struct. 1147 (2017) 1-6.
[79] S. Sangar, S. Sharma, V.K. Vats, S.K. Mehta, K. Singh, Biosynthesis of silver nanocrystals, their kinetic profile from nucleation to growth and optical sensing of mercuric ions, Journal of Cleaner Production 228 (2019) 294-302.
[80] N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 114 (2014) 7610-7630.
[81] P. Kuppusamy, S. Ilavenil, S. Srigopalram, G.P. Maniam, M.M. Yusoff, N. Govindan, K.C. Choi, Treating of palm oil mill effluent using commelina nudiflora mediated copper nanoparticles as a novel bio-control agent, Journal of Cleaner Production 141 (2017) 1023-1029.
[82] M. Sathishkumar, K. Sneha, I.S. Kwak, J. Mao, S.J. Tripathy, Y.S. Yun, Phyto-crystallization of palladium through reduction process using cinnamom zeylanicum bark extract, J. Hazard. Mater. 171 (2009) 400-404.
[83] H.Y. El-Kassas, M.M. El-Sheekh, Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed corallina officinalis on the mcf-7 human breast cancer cell line, Asian Pac J Cancer Prev 15 (2014) 4311-4317. 10.7314/apjcp.2014.15.10.4311
[84] A. Cassidy, C. Kay, Phytochemicals: Classification and occurrence, (2013) 39-46.
[85] K. Heneman, S. Zidenberg-Cherr, Nutrition and health info sheet: Phytochemicals, 8313 (2008).
[86] N. Sahu, D. Soni, B. Chandrashekhar, D.B. Satpute, S. Saravanadevi, B.K. Sarangi, R.A. Pandey, Synthesis of silver nanoparticles using flavonoids: Hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity, International Nano Letters 6 (2016) 173-181.
[87] S. Fahimirad, F. Ajalloueian, M. Ghorbanpour, Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts, Ecotoxicol. Environ. Saf. 168 (2019) 260-278.
[88] S. C.G. Kiruba Daniel, K. Nehru, M. Sivakumar, Rapid biosynthesis of silver nanoparticles using eichornia crassipes and its antibacterial activity, Current Nanoscience 8 (2012) 125-129. 10.2174/1573413711208010125
[89] S. Mukherjee, C.R. Patra, Biologically synthesized metal nanoparticles: Recent advancement and future perspectives in cancer theranostics, Future Sci OA 3 (2017) FSO203. 10.4155/fsoa-2017-0035
[90] M.S. Akhtar, J. Panwar, Y.-S. Yun, Biogenic synthesis of metallic nanoparticles by plant extracts, ACS Sustainable Chemistry & Engineering 1 (2013) 591-602.
[91] M.I. Din, A.G. Nabi, A. Rani, A. Aihetasham, M. Mukhtar, Single step green synthesis of stable nickel and nickel oxide nanoparticles from calotropis gigantea : Catalytic and antimicrobial potentials, Environmental Nanotechnology, Monitoring & Management 9 (2018) 29-36.
[92] J. Saikia, N.g.B. Allou, S. Sarmah, P. Bordoloi, C. Gogoi, R.L. Goswamee, Reductant free synthesis of silver-carbon nanocomposite using low temperature carbonized ipomoea carnea stem carbon and study of its antibacterial property, Journal of Environmental Chemical Engineering 6 (2018) 4226-4235.
[93] L. Castro, M.L. Blázquez, J.A. Muñoz, F. González, C. García-Balboa, A. Ballester, Biosynthesis of gold nanowires using sugar beet pulp, Process Biochem. 46 (2011) 1076-1082.
[94] M.P. Desai, G.M. Sangaokar, K.D. Pawar, Kokum fruit mediated biogenic gold nanoparticles with photoluminescent, photocatalytic and antioxidant activities, Process Biochem. 70 (2018) 188-197.
[95] A.K. Singh, O.N. Srivastava, One-step green synthesis of gold nanoparticles using black cardamom and effect of ph on its synthesis, Nanoscale Res Lett 10 (2015) 1055. 10.1186/s11671-015-1055-4
[96] V. Kumar, S.C. Yadav, S.K. Yadav, Syzygium cumini leaf and seed extract mediated biosynthesis of silver nanoparticles and their characterization, Journal of Chemical Technology & Biotechnology 85 (2010) 1301-1309.
[97] N.A. Bouqellah, M.M. Mohamed, Y. Ibrahim, Synthesis of eco-friendly silver nanoparticles using allium sp . And their antimicrobial potential on selected vaginal bacteria, Saudi Journal of Biological Sciences (2018).
[98] M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor, J. Alloys Compd. 494 (2010) 410-414.
[99] Z. Fereshteh, M. Salavati-Niasari, Effect of ligand on particle size and morphology of nanostructures synthesized by thermal decomposition of coordination compounds, Adv. Colloid Interface Sci. 243 (2017) 86-104.
[100] E. Ismail, M. Khenfouch, M. Dhlamini, S. Dube, M. Maaza, Green palladium and palladium oxide nanoparticles synthesized via aspalathus linearis natural extract, J. Alloys Compd. 695 (2017) 3632-3638.
[101] V. Helan, J.J. Prince, N.A. Al-Dhabi, M.V. Arasu, A. Ayeshamariam, G. Madhumitha, S.M. Roopan, M. Jayachandran, Neem leaves mediated preparation of nio nanoparticles and its magnetization, coercivity and antibacterial analysis, Results in Physics 6 (2016) 712-718.
[102] P. Anbu, S.C.B. Gopinath, H.S. Yun, C.-G. Lee, Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential, J. Mol. Struct. 1177 (2019) 302-309.
[103] R. Prasad, R. Pandey, I. Barman, Engineering tailored nanoparticles with microbes: Quo vadis?, Wiley Interdiscip Rev Nanomed Nanobiotechnol 8 (2016) 316-330.
[104] X. Xiao, W.-W. Zhu, H. Yuan, W.-W. Li, Q. Li, H.-Q. Yu, Biosynthesis of fes nanoparticles from contaminant degradation in one single system, Biochem. Eng. J. 105 (2016) 214-219.
[105] D.H. Kim, R.A. Kanaly, H.G. Hur, Biological accumulation of tellurium nanorod structures via reduction of tellurite by shewanella oneidensis mr-1, Bioresour. Technol. 125 (2012) 127-131.
[106] S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, N. Gu, Biosynthesis of gold nanoparticles using the bacteria rhodopseudomonas capsulata, Mater. Lett. 61 (2007) 3984-3987.
[107] M. Lengke, G. Southam, Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(i)-thiosulfate complex, Geochim. Cosmochim. Acta 70 (2006) 3646-3661.
[108] Y. Konishi, T. Tsukiyama, T. Tachimi, N. Saitoh, T. Nomura, S. Nagamine, Microbial deposition of gold nanoparticles by the metal-reducing bacterium shewanella algae, Electrochim. Acta 53 (2007) 186-192.
[109] P. Manivasagan, K.H. Kang, D.G. Kim, S.K. Kim, Production of polysaccharide-based bioflocculant for the synthesis of silver nanoparticles by streptomyces sp, Int. J. Biol. Macromol. 77 (2015) 159-167.
[110] N. Faghri Zonooz, M. Salouti, Extracellular biosynthesis of silver nanoparticles using cell filtrate of streptomyces sp. Eri-3, Sci. Iranica 18 (2011) 1631-1635.
[111] C. Saravanan, R. Rajesh, T. Kaviarasan, K. Muthukumar, D. Kavitake, P.H. Shetty, Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes, Biotechnol Rep (Amst) 15 (2017) 33-40.
[112] D.A. Bazylinski, R.B. Frankel, H.W. Jannasch, Anaerobic magnetite production by a marine, magnetotactic bacterium, Nature 334 (1988) 518-519.
[113] R.Y. Sweeney, C. Mao, X. Gao, J.L. Burt, A.M. Belcher, G. Georgiou, B.L. Iverson, Bacterial biosynthesis of cadmium sulfide nanocrystals, Chem. Biol. 11 (2004) 1553-1559.
[114] L. Wang, S. Chen, Y. Ding, Q. Zhu, N. Zhang, S. Yu, Biofabrication of morphology improved cadmium sulfide nanoparticles using shewanella oneidensis bacterial cells and ionic liquid: For toxicity against brain cancer cell lines, J. Photochem. Photobiol. B 178 (2018) 424-427.
[115] X. Xiao, X.B. Ma, H. Yuan, P.C. Liu, Y.B. Lei, H. Xu, D.L. Du, J.F. Sun, Y.J. Feng, Photocatalytic properties of zinc sulfide nanocrystals biofabricated by metal-reducing bacterium shewanella oneidensis mr-1, J. Hazard. Mater. 288 (2015) 134-139.
[116] X. Xiao, Q.-Y. Liu, X.-R. Lu, T.-T. Li, X.-L. Feng, Q. Li, Z.-Y. Liu, Y.-J. Feng, Self-assembly of complex hollow cus nano/micro shell by an electrochemically active bacterium shewanella oneidensis mr-1, Int. Biodeterior. Biodegrad. 116 (2017) 10-16.
[117] L. Xiong, J.-J. Chen, Y.-X. Huang, W.-W. Li, J.-F. Xie, H.-Q. Yu, An oxygen reduction catalyst derived from a robust pd-reducing bacterium, Nano Energy 12 (2015) 33-42.
[118] Y.F. Guan, B.C. Huang, C. Qian, L.F. Wang, H.Q. Yu, Improved pvdf membrane performance by doping extracellular polymeric substances of activated sludge, Water Res. 113 (2017) 89-96.
[119] N.Q. Zhou, L.J. Tian, Y.C. Wang, D.B. Li, P.P. Li, X. Zhang, H.Q. Yu, Extracellular biosynthesis of copper sulfide nanoparticles by shewanella oneidensis mr-1 as a photothermal agent, Enzyme Microb. Technol. 95 (2016) 230-235.
[120] Z.Y. Yan, Q.Q. Du, J. Qian, D.Y. Wan, S.M. Wu, Eco-friendly intracellular biosynthesis of cds quantum dots without changing escherichia coli’s antibiotic resistance, Enzyme Microb. Technol. 96 (2017) 96-102.
[121] A.K. Suresh, M.J. Doktycz, W. Wang, J.W. Moon, B. Gu, H.M. Meyer, 3rd, D.K. Hensley, D.P. Allison, T.J. Phelps, D.A. Pelletier, Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the gamma-proteobacterium, shewanella oneidensis, Acta Biomater. 7 (2011) 4253-4258.
[122] Y.C. Huo, W.W. Li, C.B. Chen, C.X. Li, R. Zeng, T.C. Lau, T.Y. Huang, Biogenic fes accelerates reductive dechlorination of carbon tetrachloride by shewanella putrefaciens cn32, Enzyme Microb. Technol. 95 (2016) 236-241.
[123] Y. Roh, R.J. Lauf, A.D. McMillan, C. Zhang, C.J. Rawn, J. Bai, T.J. Phelps, Microbial synthesis and the characterization of metal-substituted magnetites, Solid State Commun. 118 (2001) 529-534.
[124] G. Liu, H. Yu, N. Wang, R. Jin, J. Wang, J. Zhou, Microbial reduction of ferrihydrite in the presence of reduced graphene oxide materials: Alteration of fe(iii) reduction rate, biomineralization product and settling behavior, Chem. Geol. 476 (2018) 272-279.
[125] N. Naimi-Shamel, P. Pourali, S. Dolatabadi, Green synthesis of gold nanoparticles using fusarium oxysporum and antibacterial activity of its tetracycline conjugant, J. Mycol. Med. 29 (2019) 7-13.
[126] J.H. Lee, D.W. Kennedy, A. Dohnalkova, D.A. Moore, P. Nachimuthu, S.B. Reed, J.K. Fredrickson, Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction, Environ. Microbiol. 13 (2011) 3275-3288. 10.1111/j.1462-2920.2011.02587.x
[127] M.J. Marshall, A.S. Beliaev, A.C. Dohnalkova, D.W. Kennedy, L. Shi, Z. Wang, M.I. Boyanov, B. Lai, K.M. Kemner, J.S. McLean, S.B. Reed, D.E. Culley, V.L. Bailey, C.J. Simonson, D.A. Saffarini, M.F. Romine, J.M. Zachara, J.K. Fredrickson, C-type cytochrome-dependent formation of u(iv) nanoparticles by shewanella oneidensis, PLoS Biol. 4 (2006) e268. 10.1371/journal.pbio.0040268
[128] V.S. Ramkumar, A. Pugazhendhi, K. Gopalakrishnan, P. Sivagurunathan, G.D. Saratale, T.N.B. Dung, E. Kannapiran, Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed enteromorpha compressa and its biomedical properties, Biotechnol Rep. (Amst) 14 (2017) 1-7.
[129] T.N.V.K.V. Prasad, V.S.R. Kambala, R. Naidu, Phyconanotechnology: Synthesis of silver nanoparticles using brown marine algae cystophora moniliformis and their characterisation, J. Appl. Phycol. 25 (2012) 177-182.
[130] A. Pugazhendhi, D. Prabakar, J.M. Jacob, I. Karuppusamy, R.G. Saratale, Synthesis and characterization of silver nanoparticles using gelidium amansii and its antimicrobial property against various pathogenic bacteria, Microb. Pathog. 114 (2018) 41-45.
[131] A.M. Awwad, N.M. Salem, A.O. Abdeen, Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity, Int. J. Ind. Chem. 4 (2013) 29. 10.1186/2228-5547-4-29
[132] M. Sharma, K. Behl, S. Nigam, M. Joshi, Tio2-go nanocomposite for photocatalysis and environmental applications: A green synthesis approach, Vacuum 156 (2018) 434-439.
[133] C.K. Patil, H.D. Jirimali, J.S. Paradeshi, B.L. Chaudhari, V.V. Gite, Functional antimicrobial and anticorrosive polyurethane composite coatings from algae oil and silver doped egg shell hydroxyapatite for sustainable development, Prog. Org. Coat. 128 (2019) 127-136.
[134] D.M.S.A. Salem, M.M. Ismail, M.A. Aly-Eldeen, Biogenic synthesis and antimicrobial potency of iron oxide (fe3o4) nanoparticles using algae harvested from the mediterranean sea, egypt, The Egyptian Journal of Aquatic Research (2019).
[135] H.M. El-Rafie, M.H. El-Rafie, M.K. Zahran, Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae, Carbohydr. Polym. 96 (2013) 403-410.
[136] A. Pugazhendhi, R. Prabhu, K. Muruganantham, R. Shanmuganathan, S. Natarajan, Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (mgonps) using aqueous extract of sargassum wightii, J. Photochem. Photobiol. B 190 (2019) 86-97.
[137] N. Gonzalez-Ballesteros, M.C. Rodriguez-Arguelles, S. Prado-Lopez, M. Lastra, M. Grimaldi, A. Cavazza, L. Nasi, G. Salviati, F. Bigi, Macroalgae to nanoparticles: Study of ulva lactuca l. Role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines, Mater. Sci. Eng. C Mater. Biol. Appl. 97 (2019) 498-509.
[138] C. Chellapandian, B. Ramkumar, P. Puja, R. Shanmuganathan, A. Pugazhendhi, P. Kumar, Gold nanoparticles using red seaweed gracilaria verrucosa: Green synthesis, characterization and biocompatibility studies, Process Biochem. 80 (2019) 58-63.
[139] A.K. Singh, R. Tiwari, V.K. Singh, P. Singh, S.R. Khadim, U. Singh, Laxmi, V. Srivastava, S.H. Hasan, R.K. Asthana, Green synthesis of gold nanoparticles from dunaliella salina, its characterization and in vitro anticancer activity on breast cancer cell line, J. Drug Deliv. Sci. Technol. 51 (2019) 164-176.
[140] J.A. Colin, I.E. Pech-Pech, M. Oviedo, S.A. Águila, J.M. Romo-Herrera, O.E. Contreras, Gold nanoparticles synthesis assisted by marine algae extract: Biomolecules shells from a green chemistry approach, Chem. Phys. Lett. 708 (2018) 210-215.
[141] M. Yousefzadi, Z. Rahimi, V. Ghafori, The green synthesis, characterization and antimicrobial activities of silver nanoparticles synthesized from green alga enteromorpha flexuosa (wulfen) j. Agardh, Mater. Lett. 137 (2014) 1-4.
[142] A.P. de Aragão, T.M. de Oliveira, P.V. Quelemes, M.L.G. Perfeito, M.C. Araújo, J.d.A.S. Santiago, V.S. Cardoso, P. Quaresma, J.R. de Souza de Almeida Leite, D.A. da Silva, Green synthesis of silver nanoparticles using the seaweed gracilaria birdiae and their antibacterial activity, Arabian Journal of Chemistry (2016).
[143] R. Ishwarya, B. Vaseeharan, S. Kalyani, B. Banumathi, M. Govindarajan, N.S. Alharbi, S. Kadaikunnan, M.N. Al-Anbr, J.M. Khaled, G. Benelli, Facile green synthesis of zinc oxide nanoparticles using ulva lactuca seaweed extract and evaluation of their photocatalytic, antibiofilm and insecticidal activity, J. Photochem. Photobiol. B 178 (2018) 249-258.
[144] P.L. Kashyap, S. Kumar, A.K. Srivastava, A.K. Sharma, Myconanotechnology in agriculture: A perspective, World J. Microbiol. Biotechnol. 29 (2013) 191-207.
[145] A. Gade, A. Ingle, C. Whiteley, M. Rai, Mycogenic metal nanoparticles: Progress and applications, Biotechnol. Lett. 32 (2010) 593-600.
[146] M.H. Hanafy, Myconanotechnology in veterinary sector: Status quo and future perspectives, Int J Vet Sci Med 6 (2018) 270-273.
[147] K. Kalishwaralal, V. Deepak, S. Ramkumarpandian, H. Nellaiah, G. Sangiliyandi, Extracellular biosynthesis of silver nanoparticles by the culture supernatant of bacillus licheniformis, Mater. Lett. 62 (2008) 4411-4413.
[148] K. AbdelRahim, S.Y. Mahmoud, A.M. Ali, K.S. Almaary, A.E. Mustafa, S.M. Husseiny, Extracellular biosynthesis of silver nanoparticles using rhizopus stolonifer, Saudi J. Biol. Sci. 24 (2017) 208-216.
[149] A.K. Jha, K. Prasad, A.R. Kulkarni, Synthesis of tio2 nanoparticles using microorganisms, Colloids Surf. B. Biointerfaces 71 (2009) 226-229.
[150] M. Hulikere, Manjunath, C.G. Joshi, A. Danagoudar, J. Poyya, A.K. Kudva, D. Bl, Biogenic synthesis of gold nanoparticles by marine endophytic fungus-cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties, Process Biochem. 63 (2017) 137-144.
[151] M. Manjunath Hulikere, C.G. Joshi, Characterization, antioxidant and antimicrobial activity of silver nanoparticles synthesized using marine endophytic fungus- cladosporium cladosporioides, Process Biochem. 82 (2019) 199-204.
[152] T. Singh, K. Jyoti, A. Patnaik, A. Singh, R. Chauhan, S.S. Chandel, Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of raphanus sativus, J. Genet. Eng. Biotechnol. 15 (2017) 31-39.
[153] L.S. Devi, S.R. Joshi, Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi, J. Microsc. Ultrastruct. 3 (2015) 29-37.
[154] J. Li, G. Ma, H. Liu, H. Liu, Yeast cells carrying metal nanoparticles, Mater. Chem. Phys. 207 (2018) 373-379.
[155] G. Yamal, P. Sharmila, K.S. Rao, P. Pardha-Saradhi, Yeast extract mannitol medium and its constituents promote synthesis of au nanoparticles, Process Biochem. 48 (2013) 532-538.
[156] S. Gupta, K. Sharma, R. Sharma, Myconanotechnology and application of nanoparticles in biology, Recent Research in Science and Technology 4 (2012) 36-38
[157] S. Menon, R. S, V.K. S, A review on biogenic synthesis of gold nanoparticles, characterization, and its applications, Resource-Efficient Technologies 3 (2017) 516-527.
[158] A.V. Nikam, B.L.V. Prasad, A.A. Kulkarni, Wet chemical synthesis of metal oxide nanoparticles: A review, CrystEngComm 20 (2018) 5091-5107.
[159] T. Graham, XXXV.—on the properties of silicic acid and other analogous colloidal substances, J. Chem. Soc. 17 (1864) 318-327.
[160] G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C.-M. Han, C. Mahapatra, H.-W. Kim, J.C. Knowles, Sol–gel based materials for biomedical applications, Prog. Mater Sci. 77 (2016) 1-79.
[161] F. Bensebaa, Wet production methods, 19 (2013) 85-146.
[162] M. Farhadi-Khouzani, Z. Fereshteh, M.R. Loghman-Estarki, R.S. Razavi, Different morphologies of zno nanostructures via polymeric complex sol–gel method: Synthesis and characterization, J. Sol-Gel Sci. Technol. 64 (2012) 193-199.
[163] L. Dimesso, Pechini processes: An alternate approach of the sol–gel method, preparation, properties, and applications, (2016) 1-22.
[164] M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor.
[165] Z. Fereshteh, R. Rojaee, A. Sharifnabi, Effect of different polymers on morphology and particle size of silver nanoparticles synthesized by modified polyol method, Superlattices Microstruct. 98 (2016) 267-275.
[166] J. Eastoe, M.J. Hollamby, L. Hudson, Recent advances in nanoparticle synthesis with reversed micelles, Adv. Colloid Interface Sci. 128-130 (2006) 5-15.
[167] A.S. Deshmukh, P.N. Chauhan, M.N. Noolvi, K. Chaturvedi, K. Ganguly, S.S. Shukla, M.N. Nadagouda, T.M. Aminabhavi, Polymeric micelles: Basic research to clinical practice, Int. J. Pharm. 532 (2017) 249-268.
[168] S. Asgari, A.H. Saberi, D.J. McClements, M. Lin, Microemulsions as nanoreactors for synthesis of biopolymer nanoparticles, Trends Food Sci. Technol. 86 (2019) 118-130.
[169] F. Davar, Z. Fereshteh, M. Salavati-Niasari, Nanoparticles ni and nio: Synthesis, characterization and magnetic properties, J. Alloys Compd. 476 (2009) 797-801.
[170] Z. Fereshteh, M. Salavati-Niasari, K. Saberyan, S.M. Hosseinpour-Mashkani, F. Tavakoli, Synthesis of nickel oxide nanoparticles from thermal decomposition of a new precursor, J. Cluster Sci. 23 (2012) 577-583.
[171] M. Salavati-Niasari, Z. Fereshteh, F. Davar, Synthesis of cobalt nanoparticles from [bis(2-hydroxyacetophenato)cobalt(ii)] by thermal decomposition, Polyhedron 28 (2009) 1065-1068.
[172] M. Salavati-Niasari, F. Davar, Z. Fereshteh, Synthesis and characterization of zno nanocrystals from thermolysis of new precursor, Chem. Eng. J. 146 (2009) 498-502.
[173] M. Salavati-Niasari, Z. Fereshteh, F. Davar, Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor, Polyhedron 28 (2009) 126-130.
[174] F. Davar, M. Salavati-Niasari, Z. Fereshteh, Synthesis and characterization of sno2 nanoparticles by thermal decomposition of new inorganic precursor, J. Alloys Compd. 496 (2010) 638-643.
[175] C. Qiu, Y. Hu, Z. Jin, D.J. McClements, Y. Qin, X. Xu, J. Wang, A review of green techniques for the synthesis of size-controlled starch-based nanoparticles and their applications as nanodelivery systems, Trends Food Sci. Technol. 92 (2019) 138-151.
[176] P.G. Jamkhande, N.W. Ghule, A.H. Bamer, M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J. Drug Deliv. Sci. Technol. 53 (2019) 101174.
[177] S.A. Arote, A.S. Pathan, Y.V. Hase, P.P. Bardapurkar, D.L. Gapale, B.M. Palve, Investigations on synthesis, characterization and humidity sensing properties of zno and zno-zro2 composite nanoparticles prepared by ultrasonic assisted wet chemical method, Ultrason. Sonochem. 55 (2019) 313-321.
[178] D.E. Fouad, C. Zhang, T.D. Mekuria, C. Bi, A.A. Zaidi, A.H. Shah, Effects of sono-assisted modified precipitation on the crystallinity, size, morphology, and catalytic applications of hematite (α-fe2o3) nanoparticles: A comparative study, Ultrason. Sonochem. 59 (2019) 104713.
[179] H. Jian-feng, Z. Xie-rong, C. Li-yun, X. Xin-bo, Preparation of y2bacuo5 nanoparticles by a co-precipitation process with the aid of ultrasonic irradiation, J. Mater. Process. Technol. 209 (2009) 2963-2966.
[180] V. Mohanraj, R. Jayaprakash, R. Robert, J. Balavijayalakshmi, S. Gopi, Effect of particle size on optical and electrical properties in mixed cds and nis nanoparticles synthesis by ultrasonic wave irradiation method, Mater. Sci. Semicond. Process. 56 (2016) 394-402.
[181] B. Pohl, R. Jamshidi, G. Brenner, U.A. Peuker, Experimental study of continuous ultrasonic reactors for mixing and precipitation of nanoparticles, Chem. Eng. Sci. 69 (2012) 365-372.
[182] D. Gopi, J. Indira, L. Kavitha, M. Sekar, U.K. Mudali, Synthesis of hydroxyapatite nanoparticles by a novel ultrasonic assisted with mixed hollow sphere template method, Spectrochim. Acta A Mol. Biomol. Spectrosc. 93 (2012) 131-134.
[183] S. Guru, A.K. Bajpai, S.S. Amritphale, Influence of nature of surfactant and precursor salt anion on the microwave assisted synthesis of barium carbonate nanoparticles, Mater. Chem. Phys. 241 (2020) 122377.
[184] D. MubarakAli, Microwave irradiation mediated synthesis of needle-shaped hydroxyapatite nanoparticles as a flocculant for chlorella vulgaris, Biocatalysis and Agricultural Biotechnology 17 (2019) 203-206.
[185] H.N. Deepak, K.S. Choudhari, S.A. Shivashankar, C. Santhosh, S.D. Kulkarni, Facile microwave-assisted synthesis of cr2o3 nanoparticles with high near-infrared reflection for roof-top cooling applications, J. Alloys Compd. 785 (2019) 747-753.
[186] D.S. Chauhan, C.S.A. Gopal, D. Kumar, N. Mahato, M.A. Quraishi, M.H. Cho, Microwave induced facile synthesis and characterization of zno nanoparticles as efficient antibacterial agents, Materials Discovery 11 (2018) 19-25.
[187] O. Reyes, M. Pal, J. Escorcia-García, R. Sánchez-Albores, P.J. Sebastian, Microwave-assisted chemical synthesis of Zn2SnO4 nanoparticles, Mater. Sci. Semicond. Process. 108 (2020) 104878.
[188] B.A. Roberts, C.R. Strauss, Toward rapid, “green”, predictable microwave-assisted synthesis, Acc. Chem. Res. 38 (2005) 653-661.
[189] X.H. Zhu, Q.M. Hang, Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products, Micron 44 (2013) 21-44.
[190] A. Mirzaei, G. Neri, Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: A review, Sensor. Actuator. B Chem. 237 (2016) 749-775.
[191] M. Hujjatul Islam, M.T.Y. Paul, O.S. Burheim, B.G. Pollet, Recent developments in the sonoelectrochemical synthesis of nanomaterials, Ultrason. Sonochem. 59 (2019) 104711.
[192] S. Rahemi Ardekani, A. Sabour Rouh Aghdam, M. Nazari, A. Bayat, E. Yazdani, E. Saievar-Iranizad, A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter, J. Anal. Appl. Pyrolysis 141 (2019) 104631.
[193] N.N. Huy, V.T. Thanh Thuy, N.H. Thang, N.T. Thuy, L.T. Quynh, T.T. Khoi, D. Van Thanh, Facile one-step synthesis of zinc oxide nanoparticles by ultrasonic-assisted precipitation method and its application for H2S adsorption in air, J. Phys. Chem. Solids 132 (2019) 99-103.
[194] L.S.K. Achary, P.S. Nayak, B. Barik, A. Kumar, P. Dash, Ultrasonic-assisted green synthesis of β-amino carbonyl compounds by copper oxide nanoparticles decorated phosphate functionalized graphene oxide via mannich reaction, Catal. Today (2019).
[195] J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metallurgical Transactions 1 (1970) 2943–2951.
[196] M.S. El-Eskandarany, Introduction, (2001) 1-21.
[197] A.R. Jones, Mechanical alloying, (2001) 1-5.
[198] G.A. Marcelo, C. Lodeiro, J.L. Capelo, J. Lorenzo, E. Oliveira, Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems, Mater. Sci. Eng. C Mater. Biol. Appl. 106 (2020) 110104.
[199] C. Dhand, N. Dwivedi, X.J. Loh, A.N. Jie Ying, N.K. Verma, R.W. Beuerman, R. Lakshminarayanan, S. Ramakrishna, Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview, RSC Adv. 5 (2015) 105003-105037.
[200] Z. Fereshteh, M. Fathi, R. Mozaffarinia, Synthesis and characterization of fluorapatite nanoparticles via a mechanochemical method, J. Cluster Sci. 26 (2014) 1041-1053.