Ameliorating Physical Properties of Co1-xCaxFe2O4 Nano Ferrites for Technological Applications

$30.00

Ameliorating Physical Properties of Co1-xCaxFe2O4 Nano Ferrites for Technological Applications

Ebtesam E. Ateia and M. Farag Shokry

In the present chapter, we report physical properties of Co1-xCaxFe2O4 (0.0  x  1.0) nano ferrites, prepared by a citrate auto combustion method for technological applications. The evaluation of XRD patterns and HRTEM images indicated fine particle nature. The prepared calcium sample showed orthorhombic phase structure, while the other investigated samples showed cubic spinel structure. The magnetic hysteresis loops at different temperatures (77, 100, and 300 K) were recorded using a vibrating sample magnetometer. The obtained data shows that, the shape of investigated nano ferrite particles can be used as a powerful tool for adapting magnetic properties.

Keywords
Spinel Ferrite, Orthorhombic, Magnetic Moment, Physical Properties, Maximum Energy Density

Published online 8/25/2020, 23 pages

Citation: Ebtesam E. Ateia and M. Farag Shokry, Ameliorating Physical Properties of Co1-xCaxFe2O4 Nano Ferrites for Technological Applications, Materials Research Foundations, Vol. 83, pp 157-179, 2020

DOI: https://doi.org/10.21741/9781644900970-7

Part of the book on Magnetic Oxides and Composites II

References
[1] Carter, C. Barry; Norton, M. Grant Ceramic Materials: Science and Engineering. Springer. (2007) pp. 212–15. ISBN 0-387-46270-8.
[2] M Vadivel, R Ramesh Babu, M. Arivanandhan, K Ramamurthi. Structural, spectral, morphological, dielectric, magnetic,and optical properties of La-Ni ions co-substituted CoFe2O4 nanoparticles, Journal of Superconductivity Novel Magnetism, 30 (2) (2017) 441-453. https://doi.org/10.1007/s10948-016-3760-3
[3] A. T. Raghavender, R. G. Kulkarni, and K. M. Jadhav, Magnetic properties of mixed Cobalt-Aluminum ferrite nanoparticles, Chinese Journal of physics, 48 (4) (2012) 512-522.
[4] L. Smart, E. Moore, Solid state Chemistry: an Introduction, 3rd ed. Boca Raton: CRC Press, 2005.
[5] Lawrence Kumar, Pawan Kumar, Manoranjan Kar, Influence of Mn substitution on crystal structure and magnetocrystalline anisotropy of nanocrystalline Co1−xMnxFe2−2xMn2xO4,Applied Nano sciences, 3 (2013)75-82. https://doi.org/10.1007/s13204-012-0071-2
[6] R. Valenzuela, Magnetic Ceramics, Cambridge University Press, New York (NY), USA, (1994).
[7] A. Goldman, U K. Modern Ferrite Technology, Springer, New York, (2006).
[8] U. Yenial, F Pagnenelli, Calcium ferrite nanoparticle production from mining wastes marble dust and pyrite ash. Conference paper, https://www. researchgate.net/publication/ 324485362 , (2017) 587-594 .
[9] Sobhi Hcini, Aref Omri, Michel Boudard, Microstructural, magnetic and electrical properties of Zn0.4M0.3Co0.3Fe2O4 (M = Ni and Cu) ferrites synthesized by sol–gel method, Journal of Materials Science: Materials in Electronics, 29(8) (2018) 6879-6891. https://doi.org/10.1007/s10854-018-8674-3
[10] H.F. Abosheiasha, S.T. Assar, Effects of sintering process on the structural, magnetic and thermal properties of Ni0.92Ca0.08Fe2O4 nanoferrite, Journal of Magnetism Magnetic Materials, 370 (2014) 54–61. https://doi.org/10.1016/j.jmmm.2014.06.054
[11] E Ebtesam Ateia, S. Fatma Soliman, Modification of Co/Cu nanoferrites properties via Gd3+Er3+doping. Applied physics A, Materials science processing, 123 (2017) 312. https://doi.org/10.1007/s00339-017-0948-8
[12] Ebtesam Ateia, Asmaa A. H., El-Bassuony, Fascinating improvement in physical properties of Cd/Co nanoferrites using different rare earth ions, Journal of Materials Science: Materials in Electronics, 28 (2017) 11482–11490. https://doi.org/10.1007/s10854-017-6944-0
[13] Ebtesam E. Ateia, Galila Abdelatif, Fatma S. Soliman, Optimizing the physical properties of calcium nanoferrites to be suitable in many applications, 28 (2017) 5846 –5851. https://doi.org/10.1007/s10854-016-6256-9
[14] D. H. Kim, D. E. Nikles, D. T. Johnson and C. S. Brazel, Heat generation of aqueously dispersed CoFeO4 nanoparticles as heating agent for magnetically activated drug delivery and hyperthermia, Journal of Magnetism and Magnetic Materials, 320 (2008) 2390–2396. https://doi.org/10.1016/j.jmmm.2008.05.023
[15] M. Veverka, P. Veverka, Z. Jirák, O. Kaman, K. Knížek, M. Maryško, E. Pollert and K. Závěta, Synthesis and magnetic properties of Co1−xZnxFe2O4+γ nanoparticles as materials for magnetic fluid hyperthermia, Journal of Magnetism and Magnetic Materials, 322 (2010) 2386–2389. https://doi.org/10.1016/j.jmmm.2010.02.042
[16] L. Jiang, J. Guo, H. Liu, M. Zhu, X. Zhou, P. Wu, C. Li, Prediction of lattice constant in cubic perovskites, Journal of Physics and Chemistry of Solids, 67 (2006)1531-1536. https://doi.org/10.1016/j.jpcs.2006.02.004
[17] A. Bokov, Z.-G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure, in: Frontiers of Ferroelectricity, Springer, 2006, pp. 31-52. https://doi.org/10.1007/978-0-387-38039-1_4
[18] Parkin, editors-in-chief, Helmut Kronmller, Stuart; Mats Johnsson; Peter Lemmens Handbook of magnetism and advanced magnetic materials . Hoboken, NJ: John Wiley & Sons. ISBN 978-0-470-02217-7. Retrieved 2012.
[19] V. Pillai, D.O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions, Journal of Magnetism and Magnetic Materials 163 (1996) 243–248. https://doi.org/10.1016/S0304-8853(96)00280-6
[20] K. Maaz, Arif Mumtaz, S.K. Hasanain, Abdullah Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route, Journal of Magnetism and Magnetic Materials 308 (2007) 289–295. https://doi.org/10.1016/j.jmmm.2006.06.003
[21] E. Ebtesam Ateia, M. K. Abdelamksoud, M. A. Rizk, Improvement of the physical properties of novel (1−x)CoFe2O4+(x)LaFeO3 nanocomposites for technological applications journal of Materials Science Materials in Electronics 28(2017)16547–16553. https://doi.org/10.1007/s10854-017-7567-1
[22] M Sagrario. L. A.Montemayor, Garcı´a-Cerda, J.R. Torres-Lubia´n, Preparation and characterization of cobalt ferrite by the polymerized complex method, Materials Letters, 59 (2005) 1056– 1060. https://doi.org/10.1016/j.matlet.2004.12.004
[23] Periodic Table, SARGENT-WELCH, Scientific Company, 7300 Linder Avenue, Skokie, Illinois 60076, Catalog Number 5-18806.
[24] R. D. Shannon, Acta Crystallographica, 32A (1976) 751–767. https://doi.org/10.1107/S0567739476001551
[25] B. D. Cullity, Elements of X-ray Diffraction, Adison-Wesley Publ. Co., London (1967).
[26] R.D. Waldron , Infrared Spectra of Ferrites. Physical Review 99 (1955)1727–1735. https://doi.org/10.1103/PhysRev.99.1727
[27] http://scholar.lib.vt.edu/theses/available/etd-04262006-181958/unrestricted/ Appendix A. pdf.
[28] L. Khanna, N.K. Verma, Size-dependent magnetic properties of calcium ferrite nanoparticles, Journal of Magnetism and Magnetic Materials, 336(2013) 1–7. https://doi.org/10.1016/j.jmmm.2013.02.016
[29] S. Manouchehrei, S.T.M. Benehi, M.H. Yousefi, Effect of aluminum doping on the structural and magnetic properties of Mg-Mn ferrite nanoparticles prepared by coprecipitation method, Journal of Superconductivity and Novel Magnism 29 (2016) 2179–2188. https://doi.org/10.1007/s10948-016-3546-7
[30] A. M. El-Sayed, Influence of zinc content on some properties of Ni–Zn ferrites Ceramics International, 28 (4) (2002) 363–367. https://doi.org/10.1016/S0272-8842(01)00103-1
[31] Ahmad Monshi, Mohammad Reza Foroughi, Mohammad Reza Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD, World Journal of Nano Science and Engineering , 2 (3) (2012) 2161–4954. https://doi.org/10.4236/wjnse.2012.23020
[32] Ebtesam E. Ateia, Amira T. Mohamed, M. Morsy, Humidity sensor applications based on mesopores LaCoO3 Journal of Materials Science: Materials in Electronics 30 (21) (2019) 19254–19261. https://doi.org/10.1007/s10854-019-02284-y
[33] S.A. Saafan, S.T Assar, S.F. Mansour, Magnetic and electrical properties of Co1-xCax Fe2O4 nanoparticles synthesized by the auto combustion method, Journal of Alloys and Compounds 542 (2012) 192–198. https://doi.org/10.1016/j.jallcom.2012.07.050
[34] O scar Iglesias, Amilcar Labarta , Role of surface disorder on the magnetic properties and hysteresis of nanoparticles, Physica B 343 (2004) 286–292. https://doi.org/10.1016/j.physb.2003.08.109
[35] E. Ebtesam Ateia, A. Asmaa El-Bassuony, Galila Abdelatif, S. Fatma Soliman, Novelty characterization and enhancement of magnetic properties of Co and Cu nanoferrites, journal of materials science Materials in Electronics 28 (2017) 241–249. https://doi.org/10.1007/s10854-016-5517-y
[36] S.T. Assar, H.F. Abosheiasha, S.A. Saafan, M.K. EL Nimr, Preparation, characterization and magnetization of nano and bulk Ni0.5Co0.5–2xFe2+xO4 samples, J. Molecular Structure 1084 (2015) 128–134. https://doi.org/10.1016/j.molstruc.2014.12.031
[37] Saulo Gregory Carneiro Fonsecaa, Laédna Souto Neivab, Maria Aparecida Ribeiro Bonifácioc Tunable magnetic and electrical properties of cobalt and zinc ferrites Co1-xZnxFe2O4 Synthesized by Combustion Route, Materials Research, 21(3) (2018) e20170861. https://doi.org/10.1590/1980-5373-mr-2017-0861
[38] A.Berger, Y.H.Xu, B. Lengsfield, Y.Ikeda, and E.E.Fullerton, spl Delta/H(M,/spl Delta/M) method for the determination of intrinsic switching field distributions in perpendicular media, IEEE Transations on Magnetics, 41(2005) 3178. https://doi.org/10.1109/TMAG.2005.855285
[39] A. Berger,B. Lengsfield, andY. Ikeda, Determination of intrinsic switching field distributions in perpendicular recording media Journal Applied Physics, 99 (2006) 08E705. https://doi.org/10.1063/1.2164416
[40] J.C.Lodder, Handbook of Magnetic Materials , chapter 2, Magnetic recording hard disk thin film media, in Handbook of Magnetic Materials, 11(1998) 291-405. https://doi.org/10.1016/S1567-2719(98)11006-5
[41] A. Berger and H. Hopster, Magnetization reversal properties near the reorientation phase transition of ultrathin Fe/Ag(100) films J. Applied Physics 79 (1996) 5619. https://doi.org/10.1063/1.362261