Bone Char as a Support Material to Build a Microbial Biocapacitor


Bone Char as a Support Material to Build a Microbial Biocapacitor

E.D. Isaacs-Páez, B. Cercado

Waste biomass can be exploited as an alternative material for carbon-based capacitors. Bone char has intrinsic properties such as surface area, porosity and capacitance, which are suitable for building capacitive electrodes. These properties also favor the development of biofilms to prepare capacitive bioelectrodes. A capacitive bioanode has been constructed with a compost leachate-based biofilm developed on a packed electrode of bone char. The bioanode showed a capacitance of 16.07 µFs(a-1)/cm2 (a = 0.8), a pseudocapacitance of 23.6 µF/cm2 and was able to discharge 32,800 C/m2 in a period of 110 h.

Biochar, Bioelectrodes, Biofilm, Capacitance, Charge, Green Energy

Published online 6/20/2020, 20 pages

Citation: E.D. Isaacs-Páez, B. Cercado, Bone Char as a Support Material to Build a Microbial Biocapacitor, Materials Research Foundations, Vol. 78, pp 1-20, 2020


Part of the book on Biomass Based Energy Storage Materials

[1] J.P. Zheng, Theoretical energy density for electrochemical capacitors with intercalation electrodes, J. Electrochem. Soc. 152 (2005) A1864-A1869.
[2] B.E. Conway, Electrochemical Supercapacitors, Kluwer Academic, New York, 1999.
[3] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845-854.
[4] A. Ghosh, Y.H. Lee, Carbon-based electrochemical capacitors, ChemSusChem 5 (2012) 480-499.
[5] P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, G.O. Shitta-Bey, G. Wilson, A. Cruden, R. Carter, Energy storage in electrochemical capacitors: designing functional materials to improve performance, Energy Environ. Sci. 3 (2010) 1238-1251.
[6] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gunko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, J.N. Coleman, High-yield production of graphene by liquid-phase exfoliation of graphite, Nat. Nanotechnol. 3 (2008) 563-568.
[7] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520-2531.
[8] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11-27.
[9] Y. Sun, Q. Wu, G. Shi, Graphene based new energy materials, Energy Environ. Sci. 4 (2011) 1113-1132.
[10] D.N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nat. Mater. 5 (2006) 987-994.
[11] S. Li, C. Cheng, A. Thomas, Carbon-based microbial-fuel-cell electrodes: From conductive supports to active catalysts, Adv. Mater. 29 (2017) 1602547.
[12] Y. Chen, Y.C. Zhu, Z.C. Wang, Y. Li, L.L. Wang, L.L. Ding, X.Y. Gao, Y.J. Ma, Y.P. Guo, Application studies of activated carbon derived from rice husks produced by chemical-thermal process-a review, Adv. Colloid Interface Sci. 163 (2011) 39-52.
[13] T. Taya, S. Ucar, S. Karagöz, Preparation and characterization of activated carbon from waste biomass, J. Hazard. Mater. 165 (2009) 481-485.
[14] S. Nanda, A.K. Dalai, F. Berruti, J.A. Kozinski, Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials, Waste Biomass Valor. 7 (2016) 201-235.
[15] D. Angın, T.E. Köse, U. Selengil, Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff, Appl. Surface Sci. 280 (2013) 705-710.
[16] M.B Ahmed, J.L. Zhou, H.H. Ngo, W. Guo, Insight into biochar properties and its cost analysis, Biomass Bioenergy 84 (2016) 76-86.
[17] J.H. Park, Y.S. Ok, S.H. Kim, J.S. Cho, J.S. Heo, R.D. Delaune, D.C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions, Chemosphere 142 (2016) 77-83.
[18] G.N Paranavithana, K. Kawamoto, Y. Inoue, T. Saito, M. Vithanage, C.S. Kalpage, G.B.B. Herath, Adsorption of Cd2+ and Pb2+ onto coconut shell biochar and biochar-mixed soil. Environ. Earth Sci. 75 (2016) 1-12.
[19] K.R. Reddy, T., Xie, S. Dastgheibi, Evaluation of biochar as a potential filter media for the removal of mixed pollutants from urban water runoff, J. Environ. Eng. 140 (2014) 04014043.
[20] P. Regmi, J.L Garcia Moscoso, S. Kumar, X.Y. Cao, J.D. Mao, G. Schafran, Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process, J. Environ. Manage. 109 (2012) 61-69.
[21] L. Beesley, E.M. Jiménez, J.L.G. Eyles, Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil, Environ. Poll. 158 (2010) 2282-2287.
[22] Y.C. Li, J.G. Shao, X.H. Wang, Y. Deng, H.P. Yang, H.P. Chen, Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption, Energy Fuels 28 (2014) 5119-5127.
[23] C. Jung, L.K. Boateng, J.R. Flora, J. Oh, M.C. Braswell, A. Son, Y. Yoon, Competitive adsorption of selected non-steroidal anti-inflammatory drugs on activated biochars: Experimental and molecular modeling study, Chem. Eng. J. 264 (2015) 1-9.
[24] T. Xu, L. Lou, L. Luo, R. Cao, D. Duan, Y. Chen, Effect of bamboo biochar on pentachlorophenol leachability and bioavailability in agricultural soil, Sci. Total Environ. 414 (2012) 727-731.
[25] D. Angın, T.E. Köse, U. Selengil, Production and characterization of activated carbon prepared from safflower seed cake biochar and its ability to absorb reactive dyestuff, Appl. Surf. Sci. 280 (2013) 705-710.
[26] M.L. Frankel, T.I. Bhuiyan, A. Veksha, M.A. Demeter, D.B. Layzell, R.J. Helleur, J.M. Hill, R.J. Turner, Removal and biodegradation of naphthenic acids by biochar and attached environmental biofilms in the presence of co-contaminating metals. Bioresour. Technol. 216 (2016) 352-361.
[27] C. Toro-Molina, R. Rivera-Tinoco, C. Bouallou, Hybrid adaptive random search and genetic method for reaction kinetics modelling: CO2 absorption systems, J. Clean. Prod. 34 (2012) 110-115.
[28] X. Zhang, S.H. Zhang, H.P. Yang, Y. Feng, Y.Q. Chen, X.H. Wang, H.P. Chen, Nitrogen enriched biochar modified by high temperature CO2–ammonia treatment: Characterization and adsorption of CO2, Chem. Eng. J. 257 (2014) 20-27.
[29] A.M. Dehkhoda, E. Gyenge, N. Ellis, A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage, Biomass Bioenergy 87 (2016) 107-121.
[30] M. Hermansson, The DLVO theory in microbial adhesion, Colloids Surf. B 14(1-4) (1999) 105-119.
[31] T.R. Garrett, M. Bhakoo, Z.B. Zhang, Bacterial adhesion and biofilms on surfaces, Prog. Nat. Sci. Mater. Int. 18 (2008) 1049-1056.
[32] D.R. Lovley, F.H. Chapelle, Deep subsurface microbial processes, Rev. Geophys. 33 (1995) 365-381.
[33] C.D. Dube, S.R. Guiot, Direct interspecies electron transfer in anaerobic digestion: A review, Biogas Sci. Technol. 151 (2015) 101-115.
[34] L. Shi, H.L. Dong, G. Reguera, H. Beyenal, A.H. Lu, J. Liu, H.Q. Yu, J.K. Fredrickson, Extracellular electron transfer mechanisms between microorganisms and minerals, Nat. Rev. Microbiol. 14 (2016) 651-662.
[35] P.S. Bonanni, G.D. Schrott, L. Robuschi, J.P. Busalmen, Charge accumulation and electron transfer kinetics in Geobacter sulfurreducens biofilms, Energy Environ. Sci. 5 (2012) 6188-6195.
[36] A. Esteve-Nunez, J. Sosnik, P. Visconti, D.R. Lovley, Fluorescent properties of c-type cytochromes reveal their potential role as an extracytoplasmic electron sink in Geobacter sulfurreducens, Environ. Microbiol. 10 (2008) 497-505.
[37] F. Kracke, I. Vassilev, J.O. Kromer, Microbial electron transport and energy conservation – the foundation for optimizing bioelectrochemical systems, Frontiers Microbiol. 6 (2015).
[38] C.I. Torres, A.K. Marcus, H.S. Lee, P. Parameswaran, R. Krajmalnik-Brown, B.E. Rittmann, A kinetic perspective on extracellular electron transfer by anode-respiring bacteria, Fems Microbiol. Rev. 34 (2010) 3-17.
[39] N.S. Malvankar, T. Mester, M.T. Tuominen, D.R. Lovley, Supercapacitors based on c-type cytochromes using conductive nanostructured networks of living bacteria, ChemPhysChem 13 (2012) 463-468.
[40] R. Karthikeyan, B. Wang, J. Xuan, J.W.C. Wong, P.K.H. Lee, M.K.H. Leung, Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell, Electrochim. Acta 157 (2015) 314-323.
[41] H.T. Xu, J.S. Wu, L.J. Qi, Y. Chen, Q. Wen, T.G. Duan, Y.Y. Wang, Preparation and microbial fuel cell application of sponge-structured hierarchical polyaniline-texture bioanode with an integration of electricity generation and energy storage, J. Appl. Electrochem. 48(11) (2018) 1285-1295.
[42] A. ter Heijne, D.D. Liu, M. Sulonen, T. Sleutels, F. Fabregat-Santiago, Quantification of bio-anode capacitance in bioelectrochemical systems using electrochemical impedance spectroscopy, J. Power Sources 400 (2018) 533-538.
[43] T. Kim, J. Kang, J.H. Lee, J. Yoon, Influence of attached bacteria and biofilm on double-layer capacitance during biofilm monitoring by electrochemical impedance spectroscopy, Water Res. 45 (2011) 4615-4622.
[44] R. Mauricio, C.J. Dias, F. Santana, Monitoring biofilm thickness using a non-destructive, on-line, electrical capacitance technique, Environ. Monitoring Assess. 119 (2006) 599-607.
[45] N. Uria, X.M. Berbel, O. Sanchez, F.X. Munoz, J. Mas, Transient storage of electrical charge in biofilms of Shewanella oneidensis MR-1 growing in a microbial fuel cell, Environ. Sci. Technol. 45 (2011) 10250-10256.
[46] A. Deeke, T. Sleutels, H.V.M. Hamelers, C.J.N. Buisman, Capacitive bioanodes enable renewable energy storage in microbial fuel cells, Environ. Sci. Technol. 46 (2012) 3554-3560.
[47] I.B. Initiative, Standardized product definition and product testing guidelines for biochar that is used in Soil. IBI Biochar Standards 2012.
[48] M.B. Ahmad, A.U. Rajapaksha, J.E. Lim, M. Zhang, N. Bolan, D. Mohan, Y.S. Ok, Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere 99 (2014) 19-33.
[49] A. Mukherjee, A.R. Zimmerman, W. Harris, Surface chemistry variations among a series of laboratory-produced biochars, Geoderma 163 (2011) 247-255.
[50] S.C. Peterson, M.A. Jackson, S. Kim, D.E. Palmquist, Increasing biochar surface area: Optimization of ball milling parameters, Powder Technol. 228 (2012) 115-120.
[51] A.U. Rajapaksha, S.S. Chen, D.C.W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N.S. Bolan, Y.S. Ok, Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification, Chemosphere 148 (2016) 276-291.
[52] N.A. Medellín-Castillo, R. Leyva-Ramos, R. Ocampo-Perez, R.F. García de la Cruz, A. Aragón-Piña, J.M. Rosales-Martinez, R.M. Guerrero-Coronado, L. Fuentes-Rubio, Adsorption of fluoride from water solution on bone char, Ind. Eng. Chem. Res. 46 (2007) 9205-9212.
[53] C.W. Cheung, J.F. Porter, G. McKay, Removal of Cu(II) and Zn(II) ions by sorption onto bone char using batch agitation, Langmuir 18(2002) 650-656.
[54] K.W. Jung, M.J. Hwang, K.H. Ahn, Y.S. Ok, Kinetic study on phosphate removal from aqueous solution by biochar derived from peanut shell as renewable adsorptive media, Int. J. Environ. Sci. Technol. 12 (2015) 3363-3372.
[55] Z.S. Wu, Y. Sun, Y.Z. Tan, S. Yang, X. Feng, K. Müllen, Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134 (2012) 19532-19535.
[56] B.H. Cheng, R.J. Zeng, H. Jiang, Recent developments of post-modification of biochar for electrochemical energy storage, Bioresour. Technol. 246 (2017) 224-233.
[57] T.H. Han, S.Y. Sawant, S.J. Hwang, M.H. Cho, Three-dimensional, highly porous N-doped carbon foam as microorganism propitious, efficient anode for high performance microbial fuel cell, RSC Adv. 6 (2016) 25799-25807.
[58] X. Han, H. Jiang, Y. Zhou, W. Hong, Y. Zhou, P. Gao, R. Ding, E. Liu, A high performance nitrogen-doped porous activated carbon for supercapacitor derived from pueraria, J. Alloys Compd. 744 (2018) 544-551.
[59] G.D. Schrott, P.S. Bonanni, L. Robuschi, A. Esteve-Nunez, J.P. Busalmen, Electrochemical insight into the mechanism of electron transport in biofilms of Geobacter sulfurreducens, Electrochim. Acta 56 (2011) 10791-10795.
[60] P.G. Dennis, B. Virdis, I. Vanwonterghem, A. Hassan, P. Hugenholtz, G.W. Tyson, K. Rabaey, Anode potential influences the structure and function of anodic electrode and electrolyte-associated microbiomes, Sci. Rep. 6 (2016) 39114.
[61] S. Jung, Y.H. Ahn, S.E. Oh, J. Lee, K.T. Cho, Y. Kim, M.W. Kim, J. Shim, M. Kang, Impedance and thermodynamic analysis of bioanode, abiotic anode, and riboflavin-amended anode in microbial fuel cells, Bull. Korean Chem. Soc. 33 (2012) 3349-3354.
[62] Z.H. Lu, P. Girguis, P. Liang, H.F. Shi, G.T. Huang, L.K. Cai, L.H. Zhang, Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy, Bioprocess Biosyst. Eng. 38 (2015) 1325-1333.
[63] J. Paredes, S. Becerro, S. Arana, Comparison of real time impedance monitoring of bacterial biofilm cultures in different experimental setups mimicking real field environments, Sens. Actuators B 195 (2014) 667-676.