Alloys for Sodium-Ion Batteries


Alloys for Sodium-Ion Batteries

Vaishali Tomar, Ankita Dhillon, Kritika S. Sharma and Dinesh Kumar

Sodium-ion batteries (SIBs) are developing as a substitution for lithium-ion batteries (LIBs). Sodium is in great abundance in the earth’s crust. By the used of selective carbon as an anode, the expansion of sodium ion batteries anode has been accomplished. Due to the contribution of the carbon-based materials, the sodium ion batteries anode has been improved. Moreover, more investigation is still required to get the appropriate carbon materials that specify anode qualities. Alloy materials have shown a high capacity anode with the combination of carbon-based or other carbon-based materials for the development of SIBs. This chapter highlights the expansion of carbon-based materials and their complexes with alloy materials as well as their challenges and problems for sodium-ion batteries anodes.

Sodium-Ion Batteries, Anode, Alloying, Electrolyte, Challenges

Published online 5/20/2020, 24 pages

Citation: Vaishali Tomar, Ankita Dhillon, Kritika S. Sharma and Dinesh Kumar, Alloys for Sodium-Ion Batteries, Materials Research Foundations, Vol. 76, pp 93-116, 2020


Part of the book on Sodium-Ion Batteries

[1] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (6861) (2001) 359-367.
[2] M.S. Balogun, C. Li, Y. Zeng, M. Yu, Q. Wu, M. Wu, Titanium dioxide@ titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries, J. Power Sources 272 (2014) 946-953.
[3] M.S. Balogun, W. Qiu, W. Wang, P. Fang, X. Lu, Y. Tong, Recent advances in metal nitrides as high-performance electrode materials for energy storage devices, J. Mater. Chem. A 3 (4) (2015) 1364-1387.
[4] M.S. Balogun, M. Yu, Y. Huang, C. Li, P. Fang, Y. Liu, Binder-free Fe2N nanoparticles on carbon textile with high power density as novel anode for high-performance flexible lithium-ion batteries, Nano Energy 11 (2015) 348-355.
[5] M.S. Balogun, M. Yu, C. Li, T. Zhai, Y. Liu, X. Lu, Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium-ion batteries, J. Mater. Chem. A 2 (28) (2014) 10825-10829.
[6] M.S. Balogun, W. Qiu, Y. Luo, Y. Huang, H. Yang, M. Li, Improving the lithium-storage properties of self-grown nickel oxide: A back up from TiO2 nanoparticles, ChemElectroChem 2 (9) (2015) 1243-1248.
[7] G.N. Zhu, Y.G. Wang, Y.Y. Xia, Ti-based compounds as anode materials for Li-ion batteries, Energy Environ. Sci. 5 (5) (2012) 6652-6667.
[8] M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Sodium-Ion Batteries, Adv. Funct. Mater. 23 (8) (2013) 947-958.
[9] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science 334 (6058) (2011) 928-935.
[10] V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems, Energy Environ. Sci. 5 (3) (2012) 5884-5901.
[11] C. Nithya, S. Gopukumar, Sodium ion batteries: a newer electrochemical storage, Wiley Interdiscip. Rev. Energy Environ. 4 (2014) 253-278.
[12] J. Molenda, C. Delmas, P. Hagenmuller, Electronic and electrochemical properties of NaxCoO2-y cathode, Solid State Ionics 9 (1983) 431-435.
[13] A.S. Nagelberg, W.L. Worrell, A thermodynamic study of sodium-intercalated TaS2 and TiS2, J. Solid State Chem. 29 (3) (1979) 345-354.
[14] J. Tarascon, G. Hull, Sodium intercalation into the layer oxides NaxMo2O4, Solid State Ionics 22 (1) (1986) 85-96.
[15] V. Chevrier, G. Ceder, Challenges for Na-ion negative electrodes, J. Electrochem. Soc. 158 (9) (2011) A1011-A1014.
[16] J. Qian, X. Wu, Y. Cao, X. Ai, H. Yang, High capacity and rate capability of amorphous phosphorus for sodium ion batteries, Angew. Chem. 125 (17) (2013) 4731-4734.
[17] M.S. Whittingham, Chemistry of intercalation compounds: metal guests in chalcogenide hosts, Prog. Solid State Chem. 12 (1) (1978) 41-99.
[18] J.S. Kim, H.J. Ahn, H.S. Ryu, D.J. Kim, G.B. Cho, K.W. Kim, The discharge properties of Na/Ni3S2 cell at ambient temperature, J. Power Sources 178 (2) (2008) 852-856.
[19] M. Reynaud, P. Barpanda, G. Rousse, J.-N. Chotard, B.C. Melot, N. Recham, et al., Synthesis and crystal chemistry of the NaMSO4F family (M¼ Mg, Fe, Co, Cu, Zn), Solid State Sci. 14 (1) (2012) 15-20.
[20] B. Ellis, W. Makahnouk, Y. Makimura, K. Toghill, L. Nazar, A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries, Nat. Mater. 6 (10) (2007) 749-753.
[21] K.T. Lee, T. Ramesh, F. Nan, G. Botton, L.F. Nazar, Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries, Chem. Mater. 23 (16) (2011) 3593-3600.
[22] Y. Yamada, T. Doi, I. Tanaka, S. Okada, J. Yamaki, Liquid-phase synthesis of highly dispersed NaFeF3 particles and their electrochemical properties for sodium-ion batteries, J. Power Sources 196 (10) (2011) 4837-4841.
[23] Y. Park, D.S. Shin, S.H. Woo, N.S. Choi, K.H. Shin, S.M. Oh, Sodium terephthalate as an organic anode material for sodium ion batteries, Adv. Mater. 24 (26) (2012) 3562-3567.
[24] H. Kim, I. Park, D.-H. Seo, S. Lee, S.-W. Kim, W.J. Kwon, New iron-based mixed-polyanion cathodes for lithium and sodium rechargeable batteries: combined first principles calculations and experimental study, J. Am. Chem. Soc. 134 (25) (2012) 10369-10372.
[25] R. Berthelot, D. Carlier, C. Delmas, Electrochemical investigation of the P2-NaxCoO2 phase diagram, Nat. Mater. 10 (1) (2011) 74-80.
[26] Y. Lu, L. Wang, J. Cheng, J.B. Goodenough, Prussian blue: A new framework of electrode materials for sodium batteries, Chem. Commun. 48 (52) (2012) 6544-6546.
[27] M. Zhou, L. Zhu, Y. Cao, R. Zhao, J. Qian, X. Ai, et al., Fe(CN)6 doped polypyrrole: A high-capacity and high-rate cathode material for sodium-ion batteries, RSC Adv. 2 (13) (2012) 5495-5498.
[28] M. Zhou, Y. Xiong, Y. Cao, X. Ai, H. Yang, Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries, J. Polym. Sci. Pol. Phys. 51 (2) (2013) 114-118.
[29] M.M. Doeff, S.J. Visco, M. Yanping, M. Peng, D. Lei, L.C. De Jonghe, Thin film solid state sodium batteries for electric vehicles, Electrochim. Acta 40 (13) (1995) 2205-2210.
[30] M.M. Doeff, Y. Ma, S.J. Visco, L.C. De Jonghe, Electrochemical insertion of sodium into carbon, J. Electrochem. Soc. 140 (12) (1993) L169-L170.
[31] H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, Amorphous TiO2 nanotube anode for rechargeable sodium-ion batteries, J. Phys. Chem. Lett. 2 (20) (2011) 2560-2565.
[32] Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, Transition metal oxides for high-performance sodium ion battery anodes, Nano Energy 5 (2014) 60-66.
[33] H. Yu, Y. Ren, D. Xiao, S. Guo, Y. Zhu, Y. Qian, An ultrastable anode for long-life room-temperature sodium-ion batteries, Angew. Chem. Int. Ed. 53 (34) (2014) 8963-8969.
[34] Y. Kim, Y. Park, A. Choi, N.S. Choi, J. Kim, J. Lee, An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries, Adv. Mater. 25 (22) (2013) 3045-3049.
[35] L. Wu, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries, Energy Environ. Sci. 7 (1) (2014) 323-328.
[36] P. Thomas, J. Ghanbaja, D. Billaud, Electrochemical insertion of sodium in pitch-based carbon fibers in comparison with graphite in NaClO4 ethylene carbonate electrolyte, Electrochim. Acta 45 (3) (1999) 423-430.
[37] B. Jache, P. Adelhelm, Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena, Angew. Chem. Int. Ed. 53 (38) (2014) 10169-10173.
[38] B.L. Ellis, L.F. Nazar, Sodium and sodium-ion energy storage batteries, Curr. Opin. Solid State Mater. Sci. 16 (4) (2012) 168-177.
[39] S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.-S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions vs. Li ions, Energy Environ. Sci. 6 (7) (2013) 2067-2081.
[40] V. Palomares, M. Casas-Cabanas, E. Castillo-Martinez, M.H. Han, T. Rojo, Update on Na-based battery materials. A growing research path, Energy Environ. Sci. 6 (8) (2013) 2312-2337.
[41] N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (23) (2014) 11636-11682.
[42] D. Kundu, E. Talaie, V. Duffort, L.F. Nazar, The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed. 54 (11) (2015) 3431-3448.
[43] L.P. Wang, L. Yu, X. Wang, M. Srinivasan, Z.J. Xu, Recent developments in electrode materials for sodium-ion batteries, J. Mater. Chem. A 3 (18) (2015) 9353-9378.
[44] C. Liang, S. Huang, W. Zhao, W. Liu, J. Chen, H. Liu, Polyhedral Fe3O4 nanoparticles for lithium-ion storage, New J. Chem. 39 (4) (2015) 2651-2656.
[45] C. Liang, T. Zhai, W. Wang, J. Chen, W. Zhao, X. Lu, Fe3O4/reduced graphene oxide with enhanced electrochemical performance towards lithium storage, J. Mater. Chem. A 2 (20) (2014) 7214-7220.
[46] Y. Luo, M.-S. Balogun, W. Qiu, R. Zhao, P. Liu, Y. Tong, Sulfurization of FeOOH nanorods on a carbon cloth and their conversion into Fe2O3/Fe3O4-S coreshell nanorods for lithium storage, Chem. Commun. 51 (2015) 13016-13019.
[47] J.-W. Wen, D.-W. Zhang, Y. Zang, X. Sun, B. Cheng, C.-X. Ding, Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries, Electrochim. Acta 132 (2014) 193-199.
[48] Z. Yan, L. Liu, J. Tan, Q. Zhou, Z. Huang, D. Xia, One-pot synthesis of bicrystalline titanium dioxide spheres with a coreeshell structure as anode materials for lithium and sodium ion batteries, J. Power Sources 269 (2014) 37-45.
[49] K.T. Kim, G. Ali, K.Y. Chung, C.S. Yoon, H. Yashiro, Y.K. Sun, Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries, Nano Lett. 14 (2) (2014) 416-422.
[50] J. Park, J.W. Park, J.H. Han, S.W. Lee, K.Y. Lee, H.S. Ryu, Charge-discharge properties of tin dioxide for sodium-ion battery, Mater. Res. Bull. 58 (2014) 186-189.
[51] G. Qin, X. Zhang, C. Wang, Design of nitrogen doped graphene grafted TiO2 hollow nanostructures with enhanced sodium storage performance, J. Mater. Chem. A 2 (2014) 12449-12458.
[52] P.R. Abel, M.G. Fields, A. Heller, C.B. Mullins, Tine germanium alloys as anode materials for sodium-ion batteries, ACS Appl. Mater. Interfaces 6 (18) (2014) 15860-15867.
[53] B. Farbod, K. Cui, W.P. Kalisvaart, M. Kupsta, B. Zahiri, A. Kohandehghan, et al., Anodes for sodium ion batteries based on TineGermaniumeAntimony alloys, ACS Nano 8 (5) (2014) 4415-4429.
[54] M. He, K. Kravchyk, M. Walter, M.V. Kovalenko, Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk, Nano Lett. 14 (3) (2014) 1255-1262.
[55] L. Wu, D. Bresser, D. Buchholz, G.A. Giffin, C.R. Castro, A. Ochel, et al., Unfolding the mechanism of sodium insertion in anatase TiO2 nanoparticles, Adv. Energy Mater. 5 (2) (2015) 1401142-1401146.
[56] J. Qian, Y. Xiong, Y. Cao, X. Ai, H. Yang, Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-Ion batteries, Nano Lett. 14 (4) (2014) 1865-1869.
[57] J. Ding, H. Wang, Z. Li, A. Kohandehghan, K. Cui, Z. Xu, et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes, ACS Nano 7 (12) (2013) 11004-11015.
[58] K. Tang, L. Fu, R.J. White, L. Yu, M.M. Titirici, M. Antonietti, Hollow carbon nanospheres with superior rate capability for sodium-based batteries, Adv. Energy Mater. 2 (7) (2012) 873-877.
[59] L. Jia, Y. Tian, Q. Liu, C. Xia, J. Yu, Z. Wang, et al., A direct carbon fuel cell with (molten carbonate)/(doped ceria) composite electrolyte, J. Power Sources 195 (17) (2010) 5581-5586.
[60] Z.Z. Jiang, Z.B. Wang, Y.-Y. Chu, D.M. Gu, G.P. Yin, Ultrahigh stable carbon riveted Pt/TiO2C catalyst prepared by in situ carbonized glucose for proton exchange membrane fuel cell, Energy Environ. Sci. 4 (3) (2011) 728-735.
[61] W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, et al., Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell, Carbon 40 (5) (2002) 791-794.
[62] J.E. Mink, J.P. Rojas, B.E. Logan, M.M. Hussain, Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 ml) microbial fuel cell, Nano Lett. 12 (2) (2012) 791-795.
[63] X. Xie, M. Ye, L. Hu, N. Liu, J.R. McDonough, W. Chen, Carbon nanotubecoated macroporous sponge for microbial fuel cell electrodes, Energy Environ. Sci. 5 (1) (2012) 5265-5270.
[64] J. Chmiola, C. Largeot, P.-L. Taberna, P. Simon, Y. Gogotsi, Monolithic carbidederived carbon films for micro-supercapacitors, Science 328 (5977) (2010) 480-483.
[65] Z. Fan, J. Yan, L. Zhi, Q. Zhang, T. Wei, J. Feng, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors, Adv. Mater. 22 (33) (2010) 3723-3728.
[66] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol. 5 (9) (2010) 651-654.
[67] G. Wang, H. Wang, X. Lu, Y. Ling, M. Yu, T. Zhai, Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability, Adv. Mater. 26 (17) (2014) 2676-2682.
[68] L. Yuan, X.-H. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure, Acs Nano 6 (1) (2011) 656-661.
[69] Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai, P.J. Ferreira, Carbon based supercapacitors produced by activation of graphene, Science 332 (6037) (2011) 1537-1541.
[70] M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita, Recent development of carbon materials for Li ion batteries, Carbon 38 (2) (2000) 183-197.
[71] S. Flandrois, B. Simon, Carbon materials for lithium-ion rechargeable batteries, Carbon 37 (2) (1999) 165-180.
[72] B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy Environ. Sci. 2 (6) (2009) 638-654.
[73] Q. Wang, H. Li, L. Chen, X. Huang, Novel spherical microporous carbon as anode material for Li-ion batteries, Solid State Ionics 152 (2002) 43-50.
[74] Y. Wu, E. Rahm, R. Holze, Carbon anode materials for lithium ion batteries, J. Power Sources 114 (2) (2003) 228-236.
[75] S. Talapatra, S. Kar, S. Pal, R. Vajtai, L. Ci, P. Victor, Direct growth of aligned carbon nanotubes on bulk metals, Nat. Nanotechnol. 1 (2) (2006) 112-116.
[76] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, J. Mater. Chem. 22 (3) (2012) 767-784.
[77] M.D. Levi, G. Salitra, N. Levy, D. Aurbach, J. Maier, Application of a quartzcrystal microbalance to measure ionic fluxes in microporous carbons for energy storage, Nat. Mater. 8 (11) (2009) 872-875.
[78] R. Alcantara, P. Lavela, G.F. Ortiz, J.L. Tirado, R. Menendez, R. Santamarı a, et al., Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries, Carbon 41 (15) (2003) 3003-3013.
[79] D. Stevens, J. Dahn, High capacity anode materials for rechargeable sodiumion batteries, J. Electrochem. Soc. 147 (4) (2000) 1271-1273.
[80] P. Thomas, D. Billaud, Electrochemical insertion of sodium into hard carbons, Electrochim. Acta 47 (20) (2002) 3303-3307.
[81] Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y.S. Hu, Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high-performance negative electrode material for sodium-ion batteries, J. Mater. Chem. A 3 (1) (2015) 71-77.
[82] S.J.R. Prabakar, J. Jeong, M. Pyo, Nanoporous hard carbon anodes for improved electrochemical performance in sodium ion batteries, Electrochim. Acta 161 (0) (2015) 23-31.
[83] W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent, ACS Appl. Mater. Interfaces 7 (4) (2015) 2626-2631.
[84] S.W. Kim, D.H. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithiumion batteries, Adv. Energy Mater. 2 (7) (2012) 710-721.
[85] R. Alcantara, J.M. Jimenez-Mateos, P. Lavela, J.L. Tirado, Carbon black: a promising electrode material for sodium-ion batteries, Electrochem. Commun. 3 (11) (2001) 639-642.
[86] A. Naji, P. Thomas, J. Ghanbaja, D. Billaud, Identification by TEM and EELS of the products formed at the surface of a carbon electrode during its reduction in MClO4eEC and MBF4-EC electrolytes (M= Li, Na), Micron 31 (4) (2000) 401-409.
[87] C. Bommier, W. Luo, W.-Y. Gao, A. Greaney, S. Ma, X. Ji, Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements, Carbon 76 (2014) 165-174.
[88] P. Thomas, D. Billaud, Effect of mechanical grinding of pitch-based carbon fibers and graphite on their electrochemical sodium insertion properties, Electrochim. Acta 46 (1) (2000) 39-47.
[89] P. Thomas, D. Billaud, Sodium electrochemical insertion mechanisms in various carbon fibres, Electrochim. Acta 46 (22) (2001) 3359-3366.
[90] X. Cao, Y. Li, X. Li, J. Zheng, J. Gao, Y. Gao, Novel phosphamide additive to improve thermal stability of solid electrolyte interphase on graphite anode in lithium-ion batteries, ACS Appl. Mater. Interfaces 5 (22) (2013) 11494-11497.
[91] S. Komaba, T. Itabashi, B. Kaplan, H. Groult, N. Kumagai, Enhancement of Li ion battery performance of graphite anode by sodium ion as an electrolyte additive, Electrochem. Commun. 5 (11) (2003) 962-966.
[92] R. Alcantara, P. Lavela, G.F. Ortiz, J.L. Tirado, Carbon microspheres obtained from resorcinol-formaldehyde as high-capacity electrodes for sodium-ion batteries, Electrochem. Solid-State Lett. 8 (4) (2005) A222-A225.
[93] S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, A. Ito, Y. Ohsawa, Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries, ACS Appl. Mater. Interfaces 3 (11) (2011) 4165-4168.
[94] Ponrouch, A. Go~Ni, M.R. Palacín, High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte, Electrochem. Commun. 27 (2013) 85-88.
[95] H. Kim, J. Hong, Y.-U. Park, J. Kim, I. Hwang, K. Kang, Sodium storage behavior in natural graphite using ether-based electrolyte systems, Adv. Funct. Mater. 25 (4) (2015) 534-541.
[96] S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, et al., Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries, Adv. Funct. Mater. 21 (20) (2011) 3859-3867.
[97] J. Zhao, L. Zhao, K. Chihara, S. Okada, J-i Yamaki, S. Matsumoto, et al., Electrochemical and thermal properties of hard carbon-type anodes for Na-ion batteries, J. Power Sources 244 (2013) 752-757.
[98] F. Yang, Z. Zhang, K. Du, X. Zhao, W. Chen, Y. Lai, Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries, Carbon 91 (2015) 88-95.
[99] V.G. Pol, E. Lee, D. Zhou, F. Dogan, J.M. Calderon-Moreno, C.S. Johnson, Spherical carbon as a new high-rate anode for sodium-ion batteries, Electrochim. Acta 127 (2014) 61-67.
[100] S. Wenzel, T. Hara, J. Janek, P. Adelhelm, Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies, Energy Environ. Sci. 4 (9) (2011) 3342-3345.
[101] A.S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater. 4 (5) (2005) 366-377.
[102] P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed. 47 (16) (2008) 2930-2946.
[103] Y.G. Guo, J.S. Hu, L.J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv. Mater. 20 (15) (2008) 2878-2887.
[104] B. Koo, H. Xiong, M.D. Slater, V.B. Prakapenka, M. Balasubramanian, P. Podsiadlo, et al., Hollow iron oxide nanoparticles for application in lithium ion batteries, Nano Lett. 12 (5) (2012) 2429-2435.
[105] W. Li, L. Zeng, Z. Yang, L. Gu, J. Wang, X. Liu, et al., Free-standing and binderfree sodium-ion electrodes with ultralong cycle life and high rate performance based on porous carbon nanofibers, Nanoscale 6 (2) (2014) 693-698.