Applications of Poly-3-Hydroxybutyrate Based Composite


Applications of Poly-3-Hydroxybutyrate Based Composite

Ranjna Sirohi, Jai Prakash Pandey, Ayon Tarafdar, Raveendran Sindhu, Parameswaran Binod and Ashok Pandey

Increase in global population lead to the increase in the usage of non-biodegradable plastics and this excess usage lead to societal as well as environmental concerns. Several attempts are reported for the disposal of these via recycling, burning or land filling. None of these strategies provide an ideal solution. Hence, an alternative strategy is usage of biodegradable polymers. Poly-3-hydroxybutyrate represents bioplastics synthesized by bacteria which serves as energy and carbon storage compound which can be mobilized and used when there is a limitation of carbon. Microbes produce these polymers when supplemented with excess carbon source and limitations of nutrients like nitrogen or phosphorous. This chapter discusses the importance and applications of poly-3-hydroxybutyrate based composites in diverse fields like agriculture, food packaging, medicine, industry, nanotechnology, other miscellaneous applications as well as conclusion and future perspectives.

Polyhydroxybutyrate, Biopolymer, Composite, Applications, Biodegradable

Published online 2/15/2020, 15 pages

Citation: Ranjna Sirohi, Jai Prakash Pandey, Ayon Tarafdar, Raveendran Sindhu, Parameswaran Binod and Ashok Pandey, Applications of Poly-3-Hydroxybutyrate Based Composite, Materials Research Foundations, Vol. 68, pp 45-59, 2020


Part of the book on Advanced Applications of Bio-degradable Green Composites

[1] L.L. Madison, G. W. Huisman, Metabolic engineering of poly (3-hydroxyalkanoates): from DNA to plastic, Microbiol. Mol. Biol. Rev. 63 (1999) 21-53.
[2] K. Sudesh, H. Abe, Y. Doi, Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters, Prog. Polym. Sci. 25 (2000) 1503.
[3] H. Tsuji, Y. Ikada, Crystallization from the melt of poly (lactide)s with different optical purities and their blends, Macromol. Chem. Phys. 197 (1996) 3483.
[4] T. Freier, C. Kunze, C. Nischan, S. Kramer, K. Sternberg, M. Sass, U.T. Hopt, K.P. Schmitz, In vitro and in vivo degradation studies for development of a biodegradable patch based on poly (3-hydroxybutyrate), Biomaterial. 23 (2002) 2649-57.
[5] A.P. Bonartsev, V.L. Myshkina, D.A. Nikolaeva, E.K. Furina, T.A. Makhina, V.A. Livshits, A.P. Boskhomdzhiev, E.A. Ivanov, A.L. Iordanskii, G.A. Bonartseva, Biosynthesis, biodegradation, and application of poly(3-hydroxybutyrate) and its copolymers- natural polyesters produced by diazotrophic bacteria, Communicating Current Research and Educational Topics and Trends in Applied Microbiology A. Mendez-Vilas (Ed.) (2007).
[6] P.R. Patnaik, “Intelligent” descriptions of microbial kinetics in finitely dispersed bioreactors: neural and cybernetic models for PHB biosynthesis by Ralstonia eutropha, Microb. Cell Fact. 6 (2007) 23-25.
[7] Y. Chaudhari, B. Pathak, M.H. Fulekar, PHA- Production, application and its bioremediation in environment, I. Res. J. Environment Sci. 1 (2012) 46-52.
[8] G.Q. Chen, Q. Wu, The application of polyhydroxyalkanoates as tissue engineering materials, Biomaterials. 26 (2005) 6565-6578.
[9] A.P. Bonartsev, G.A. Bonartseva, T.K. Makhina, V.L. Mashkina, E.S. Luchinina, V.A. Livshits, A.P. Boskhomdzhiev, V.S. Markin, A.L. Iordanskii, New poly-(3-hydroxybutyrate)-based systems for controlled release of dipyridamole and indomethacin, Prikl. Biokhim. Mikrobiol. 42 (2006) 710-715.
[10] A.L. Iordanskii , Impact of structure and morphology upon water transport in polymers with moderate hydrophilicity. From traditional to novel environmentally friendly polymers, in: Water Transport in Synthetic Polymers. A.L. Iordanskii, O.V. Startsev, G.E. Zaikov (Eds.). Nova Science Publishers Inc., New York, 2004, pp. 1-13.
[11] A.L. Iordanskii, A.N. Schegolikhin, A.P. Bonartsev, G.A. Bonartseva, V.L. Myshkina, T.K. Makhina, S.P. Novikova. Proceedings of the 4th Moscow international congress “Biotechnology: state of the art and prospects of development”. Moscow, Russia, 12-16 March 2007, part 2, p. 248.
[12] L. Zhang, X. Deng, S. Zhao, Z. Huang, Biodegradable polymer blends of poly(3-hydroxybutyrate) and poly(DL-lactide)-co-poly (ethylene glycol), J. Appl. Polym. Sci. 65 (1997) 1849–1856.<1849::AID-APP1>3.0.CO;2-F
[13] P.L.B. Araujo, C.R.P.C. Ferreira, E.S. Araujo. Biodegradable conductive composites of poly(3-hydroxybutyrate) and polyaniline nanofibers: Preparation, characterization and radiolytic effects, Express Polym. Lett. 5 (2011) 12–22.
[14] J. Rodrigues, D. Parra, A. Lugao, Crystallization on films of PHB/PEG blends evaluation by DSC, J. Therm. Anal. Calorim. 79 (2005) 379–381.
[15] T. Ikejima, K. Yagi, Y. Inoue, Thermal properties and crystallization behavior of poly (3-hydroxybutyric acid) in blends with chitin and chitosan, Macromol. Chem. Phys. 200 (1999) 413-421.<413::AID-MACP413>3.0.CO;2-Q
[16] S. Godbole, S. Gote, M. Latkar, T. Chakrabarti, Preparation and characterization of biodegradable poly-3-hydroxybutyrate starch blend films, Bioresour. Technol. 86 (2003) 33-37.
[17] L. Wei, S. Liang, A.G. McDonald. Thermo physical properties and biodegradation behavior of green composites made from polyhydroxybutyrate and potato peel waste fermentation residue, Ind. Crops. Prod. 69 (2015) 91-103.
[18] J. Lee, H. Lim, J. Hong. Application of non-singular transformation to on-line optimal control of poly-hydroxybutyrate fermentation, J. Biotechnol. 55 (1997) 135–150.
[19] S.J. Yaradoddi, S. Hugar, N.R. Banapurmath, A.M. Hunashyal, M.B Sulochana, A.S. Shettar, S.V. Ganachari, Alternative and Renewable Bio-based and Biodegradable Plastics. Publisher: Springer International Publishing AG L.M.T. Martinez et al. (eds.), Handbook of Ecomaterials, 2018.
[20] Bioplastics, Brochure of the FNR., 2005 (accessed 23 August 2019).
[21] S. Kasirajan, M. Ngouajio, Polyethylene and biodegradable mulches for agricultural applications: a review, Agron. Sustain. Dev. 32 (2012) 501–529.
[22] D. Kamravamanesh, P. Stefan, K. Tamas, D. Irina, K. Paul, M. Lackner, C. Herwig, Increased poly-beta-hydroxybutyrate production from CO2 in randomly mutated cells of cyanobacterial strain Synechocystis sp. PCC 6714: mutant generation and characterization, Bioresour. Technol. 266 (2018) 34-44.
[23] D.Z. Bucci, L.B.B. Tavares, I. Sell, Biodegradation and physical evaluation of PHB packaging, Polym. Test. 26 (2007) 908-915.
[24] F. Masood, Polyhydroxyalkanoates in the food packaging industry, Nanotechnology Applications in Food. (2007)153-177.
[25] P.S.D.O. Patricio, F.V. Pereira, M.C. dos Santos, P.P. de Souza, J.P.B. Roa, R.L. Orefice, Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties, J. Appl. Polym. Sci. 127 (2013) 3613–3621.
[26] European Bioplastics. Available online: (accessed on June 2017).
[27] V. Levkane, B.S. Muizniece, L. Dukalska, Pasteurization effect to quality of salad with meat and mayonnaise, Foodbalt. (2008) 69-73.
[28] D.Z. Bucci, L.B.B. Tavares, I. Sell, PHB packaging for the storage of food products, Polym. Test. 24 (2005) 564–571.
[29] K. Khosravi-Darani, D.Z. Bucci, Application of poly(hydroxyalkanoate) in food packaging: Improvements by nanotechnology, Chem. Biochem. Eng. 29 (2015) 275–285.
[30] K. Haugaard, B. Danielsen, G. Bertelsen, Impact of polylactate and poly(hydroxybutyrate) on food quality, Eur. Food Res. Technol. 216 (2003) 233-240.
[31] B. Muizniece, L. Dukalska, Impact of biodegradable PHB packaging composite materials on dairy product quality, Proceedings of the Latvia University of Agriculture. 16 (2006) 79-87.
[32] M.J. Fabra, A. Lopez-Rubio, J.M. Lagaron, Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters, J. Food Eng. 127 (2014)1–9.
[33] L. Galbraikh, M. Fedorov, G. Vikhoreva, N. Kildeeva, A. Maslikova, G. Bonartseva, Modeling of surface modification of sewing thread, Fibre Chem. 37 (2005) 441.
[34] A.V. Rebrov, V.A. Dubinsky, Y.P. Nekrasov, G.A. Bonartseva, M. Stamm, E.M. Antipov, Vysokomol. Soedin. 44 (2002) 347-351 (in Russian).
[35] N.R. Kil’deeva, G.A. Vikhoreva, L.S. Gal’braikh, A.V. Mironov, G.A. Bonartseva, P.A. Perminov, A.N. Romashova. Preparation of porous films for use as wound coverings Romashova, Prikl. Biokhim. Mikrobiol. 42 (2006) 716.
[36] S.K. Misra, S.P. Valappil, I. Roy, A.R. Boccaccini. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications, Biomacromolecules. 7 (2006) 2249-58.
[37] R. Sodian, J.S. Sperling, D.P. Martin, U. Stock, J.E. Mayer, J.P. Vacanti. Tissue engineering of trileaflet heart valve early in vitro experiences with a combined polymer, Tissue Eng. 5 (1999) 489-94.
[38] T. Freier, C. Kunze, C. Nischan C, S. Kramer, K. Sternberg, M. Sass, U.T. Hopt, K.P. Schmitz. In vitro and in vivo degradation studies for development of a biodegradable patch based on poly(3-hydroxybutyrate), Biomaterials. 23 (2002) 2649-57.
[39] K.W. Fu Y, Drug release kinetics and transport mechanisms of nondegradable and degradable polymeric delivery systems, Polym. Test. 7 (2010) 429-444.
[40] M. Michalak, A.A. Marek, J. Zawadiak, M. Kawalec, P. Kurcok. Synthesis of PHB-based carrier for drug delivery systems with pH-controlled release, Eur. Polym. J. 49 (2013) 4149–4156.
[41] L.C. Lins, G.C. Bazzo, P.L.M. Barreto, A.T.N. Pires. Composite PHB/Chitosan microparticles obtained by spray drying: effect of chitosan concentration and crosslinking agents on drug relesase, J. Braz. Chem. Soc. 25 (2014) 1462-1471.
[42] N. Gangrade, J.C. Price, Poly (hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties, J. Microencapsul. 8 (1991) 185–202.
[43] X.Y. Lu, E. Ciraolo, R. Stefenia, G.Q. Chen, Y. Zhang, E. Hirsch, “Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines, Appl. Microbiol. Biotechnol. 89 (2011) 1423-1433.
[44] Y.L. Wu, H. Wang, Y.K. Qiu, S. S. Liow, Z. Li, X. J. Loh, PHB-based gels as delivery agents of chemotherapeutics for the effective shrinkage of tumors, Adv. Healthcare Mater. 5 (2016) 2679–2685.
[45] Z.A. Raza, S. Abid, I.M. Banat. Polyhydroxyalkanoates: Characteristics, production, recent development and applications, Int. Bioterior. Biodegrad. 126 (2018) 45-56.
[46] A. des Rieux, V. Fievez, M. Garinot, Y.J. Schneider, V. Preat. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach, J. Control. Release. 116 (2006) 1–27.
[47] M. Zohri. Polymeric NanoParticles: Production, applications and advantage, Internet. J. Nanotechnol. 3 (2009) 1-14.
[48] S.K. Srivastava, A.D. Tripathi. Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation, Biotech. 3 (2013) 389–397.
[49] X.Y. Xu, X.T. Li, S.W. Peng, J.F. Xiao, C. Liu, G. Fang, Chen, K.C. Chen, The behaviour of neural stem cells on polyhydroxyalkanoate nanofiber scaffolds, Biomaterials. 31 (2010) 3967–3975.
[50] C. Lee, B. Song, J. Jegal, Y. Kimura, Cell adhesion and surface chemistry of biodegradable aliphatic polyesters: discovery of particularly low cell adhesion behavior on poly (3-[RS]-hydroxybutyrate), Macromol. Res. 21 (2013) 305–1313.
[51] T. Defoirdt, D. Halet, H. Vervaeren, N. Boon, T.V. deWiele, P. Sorgeloos, P. Bossier,W. Verstraete, The bacterial storage compound poly-β-hydroxybutyrate protects Artemia franciscana from pathogenic Vibrio campbellii, Environ. Microbiol. 9 (2007) 445–452.
[52] G. Kavitha, R. Rengasamy, D. Inbakandan. Polyhydroxybutyrate production from marine source and its application, Int. J. Biol. Macromol. 111 (2018) 102-108.
[53] J.A. Lewis, Marine biofouling and its prevention on underwater surfaces, Mater. Forum. 22 (1998) 41–61.
[54] S.Y. Chan, B.Q. Y. Chan, Z. Liu, B.H. Parikh, K. Zhang, Q. Lin, X. Su, D. Kai, W.S. Choo, D.J. Young, X.J. Loh. Electrospun pectin-polyhydroxybutyrate nanofibers for retinal tissue engineering, ACS Omega. 2 (2017) 8959-8968.
[55] G.X. Cheng, Z.J. Cai, L. Wang, Biocompatibility and biodegradability of poly (hydroxybutyrate)/poly(ethylene glycol) films, J. Mater. Sci. Mater. Med. 14 (2003) 1073–1078.
[56] C. Doyle, E.T. Tanner, W. Bonfield, In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforce with hydroxyapatite, Biomat. 12 (1991) 841–847.