Magnetic Nanomaterials for Supercapacitors


Magnetic Nanomaterials for Supercapacitors

K. Srinivas, K. Chandra Babu Naidu, G. Balakrishna, B. Venkata Shiva Reddy, N. Suresh Kumar, S. Ramesh, Prasun Banerjee, D. Baba Basha

Attractive ferrite nanoparticles have gained enthusiasm in recent years owing to their uncommon synthetic and physical properties with promising applications in ferro fluids, concoction sensors, impetuses etc. Notwithstanding these applications, there is similarly an expanding enthusiasm for vitality stockpiling research dependent on the quickly developing business sector for electronic gadgets which are being intended to be littler, lighter, and generally less expensive. Hence, an across the board gadget requires productive vitality stockpiling parts which will fit into such structure plan with improved vitality execution. In this part we have completely researched different attractive material put together supercapacitor and their performances with respect to different doping elements. The basic examination of the incorporated iron oxide (Fe3O4) nanocrystals uncovers the magnetite period of Fe3O4. Moreover, these Fe3O4 crystals indicated bi-practical superparamagnetic and ferromagnetic conduct beneath or more the impending temperature, individually. The utilization of the above said nanocrystals as a negative electrode (anode) for supercapacitor was examined by investigating the cyclic voltametry (CV) and galvanostatic charge– release tests of Fe3O4, the uniform nano size of Fe3O4 causes the high explicit capacitance. This chapter concentrates on an extreme simple strategy to incorporate nanostructured Fe3O4 for the application in cutting edge vitality stockpiling materials. Electrochemical properties of the undoped and aluminum-doped nickel copper ferrite supercapacitor anodes examined by CV and galvanostatic charge/release estimations in 1M KOH. A particular capacitance of 412.5 Fg-1 was seen with Al0.2Ni0.4Cu0.4Fe2O4 at a present thickness of 1 Ag-1 with vitality thickness of 57.3 WhKg-1. The vitality densities of the nanocomposite (magnetite/polypyrrole) capacitors having diverse substance nano magnetite particles accomplish an expansion of in excess of multiple times at a present thickness of 10.0 A/g, contrasted with the partners without an attractive field.

Nanomaterials, Supercapacitors, Capacitance, Ferrite Composites

Published online 1/30/2020, 17 pages

Citation: K. Srinivas, K. Chandra Babu Naidu, G. Balakrishna, B. Venkata Shiva Reddy, N. Suresh Kumar, S. Ramesh, Prasun Banerjee, D. Baba Basha, Magnetic Nanomaterials for Supercapacitors, Materials Research Proceedings, Vol. 66, pp 259-275, 2020


Part of the book on Magnetochemistry

[1] R. Koetz and M. Carlen, Principles and applications of electrochemical capacitors, Electrochim. Acta, 45 (2000) 2483–2498.
[2] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy, 34 (2009) 4889–4899.
[3] A. Burke, R&D considerations for the performance and application of electrochemical capacitors, Electrochim. Acta 53 (2007) 1083–1091.
[4] H.R. Ghenaatian, M.F. Mousavi, M.S. Rahmanifar, High performance battery-supercapacitor hybrid energy storage system based on self-doped polyaniline nanofibers, Synth. Met. 161 (2011) 2017–2023.
[5] B.E. Conway, V. Birss, J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, J. Power Sources 66 (1997) 1–14.
[6] A. Burke, Ultracapacitors: why, how, and where is the technology, J. Power Sources 91 (2000) 37–50.
[7] C. Ashtiani, R. Wright, G. Hunt, Ultracapacitors for automotive applications, J. Power Sources 154 (2006) 561–566.
[8] A. Chu, P. Braatz, Comparison of commercial supercapacitors and high-power lithium-ion batteries for power assist applications in hybrid electric vehicles: I. Initial characterization, J. Power Sources 112 (2002) 236–246.
[9] A. Burke, M. Miller, The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications, J. Power Sources 196 (2011) 514–522.
[10] V. Subramanian, S.C. Hall, P. H. Smith, B. Rambabu, Mesoporous anhydrous RuO2 as a supercapacitor electrode material, Solid State Ionics 175 (2004) 511–515.
[11] U.M. Patil, S.B. Kulkarni, V.S. Jamadade, C.D. Lokhande, Chemically synthesized hydrous RuO2 thin films for supercapacitor application, J. Alloys Compd. 509 (2011) 1677–1682.
[12] T. Liu, W.G. Pell, B.E. Conway, Self-discharge and potential recovery phenomena at thermally and electrochemically prepared RuO2 supercapacitor electrodes, Electrochim. Acta 42 (1997) 3541–3552.
[13] Y.F. Yuan, X.H. Xia, J.B. Wu, X.H. Huang, Y.B. Pei, J.L. Yang, S.Y. Guo, Hierarchically porous Co3O4 film with mesoporous walls prepared via liquid crystalline template for supercapacitor application, Electrochem. Commun. 13 (2011) 1123–1126.
[14] C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, A reduced graphene oxide/Co3O4 composite for supercapacitor electrode, J. Power Sources 226 (2013) 65–70.
[15] J.H. Kwak, Y.W. Lee, J. H. Bang, Supercapacitor electrode with an ultrahigh Co3O4 loading for a high areal capacitance, Mater. Lett., 110 (2013) 237–240.
[16] G. He, J. Li, H. Chen, J. Shi, X. Sun, S. Chen, X. Wang, Hydrothermal preparation of Co3O4@graphene nanocomposite for supercapacitor with enhanced capacitive performance, Mater. Lett., 82 (2012) 61–63.
[17] J. Zhu, J. Jiang, J. Liu, R. Ding, H. Ding, Y. Feng, G. Wei and X. Huang, Direct synthesis of porous NiO nanowall arrays on conductive substrates for supercapacitor application, J. Solid State Chem. 184 (2011) 578–583.
[18] X. Yan, X. Tong, J. Wang, C. Gong, M. Zhang, L. Liang, Synthesis of mesoporous NiO nanoflake array and its enhanced electrochemical performance for supercapacitor application, J. Alloys Compd. 593 (2014) 184–189.
[19] H. Gao, H. Zhang, G.-P. Cao, M.F. Han, Y.S. Yang, Spherical porous VN and NiOx as electrode materials for asymmetric supercapacitor, Electrochim. Acta 87 (2013) 375–380.
[20] B.J. Lokhande, R.C. Ambare, S.R. Bharadwaj, Thermal optimization and supercapacitive application of electrodeposited Fe2O3 thin films, Measurement 47 (2014) 427–432.
[21] P.M. Kulal, D.P. Dubal, C.D. Lokhande, V.J. Fulari, Chemical synthesis of Fe2O3 thin films for supercapacitor application, J. Alloys Compd. 509 (2011) 2567–2571.
[22] Q. Wang, L. Jiao, H. Du, Y. Wang, H. Yuan, Fe3O4 nanoparticles grown on graphene as advanced electrode materials for supercapacitors, J. Power Sources 245 (2014) 101–106.
[23] Y. H. Kim, S.J. Park, Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes, Curr. Appl. Phys. 11 (2011) 462–466.
[24] J. Chen, K. Huang, S. Liu, Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor, Electrochim. Acta 55 (2009) 1–5.
[25] X. Zhang, P. Yu, H. Zhang, D. Zhang, X. Sun, Y. Ma, Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications, Electrochim. Acta 89 (2013) 523–529.
[26] H. Jin, G.T. Cao, J.Y. Sun, Hybrid supercapacitor based on MnO2 and columned FeOOH using Li2SO4 electrolyte solution, J. Power Sources 175 (2008) 686–691.
[27] W.J. Ge, H.B. Yao, W. Hu, X.F. Yu, Y.X. Yan, L.B. Mao, H.H. Li, S.S. Li, S.H. Yu, Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes, Nano Energy, 2 (2013) 505–513.
[28] B. Bhujun, A.S. Shanmugam, M.T.T. Tan, Aluminium-doped nickel copper ferrites for high-performance supercapacitors, Int. J. Res. Chem. Metallurgical Civil Engg. (IJRCMCE) 3 (2016) 37-41.
[29] H. Wei, H. Gu, J. Guo, D. Cui, X. Yan, J. Liu, D. Cao, X. Wang, S. Wei, Z. Guo, Significantly enhanced energy density of magnetite/polypyrrole nanocomposite capacitors at high rates by low magnetic fields, Adv. Compos. Hybrid Mater. 1 (2018) 127-134.
[30] H. Kennaz, A. Harat, O. Guellati, D.Y. Momodu, F. Barzegar, J.K. Dangbegnon, N. Manyala, M. Guerioune, Synthesis and electrochemical investigation of spinel cobalt ferrite magnetic nanoparticles for supercapacitor application, J. Solid State Electrochem. 22 (2018) 835-847.
[31] S.C.N. Tang, I.M.C. Lo, Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Research 47 (2013) 2613-2632.
[32] Y.K. Gun’ko, D.F. Brougham, Magnetic nanomaterials as MRI contrast agents: In Magnetic Nanomaterials, Ed. Kumar, S.R. John Wiley & Sons, Inc. (2009).
[33] A.H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46 (2007) 1222–1244.
[34] Y. Hu, Y. Du, J. Yang, J.F. Kennedy, X. Wang, L. Wang, Synthesis, characterization and antibacterial activity of guanidinylated chitosan, Carbohydrate Polym. 67 (2007) 66-72.
[35] Z.Z. Guo, H.H. Liu, X.X. Chen, X.X. Ji, P.P. Li, Hydroxyl radicals scavenging activity of N-substituted chitosan and quaternized chitosan, Bioorg. Med. Chem. Lett. 16 (2006) 6348-6350.
[36] G.D.L. Tran, X.P. Nguyen, D.H. Vu, N.T. Nguyen, V.H. Tran, T.T.T. Mai, N.T. Nguyen, Q.D. Le, T.N. Nguyen, T.C. Ba, Some biomedical applications of chitosan-based hybrid nanomaterials. Adv. Natural Sci. Nanosci. Nanotechnol. 2 (2011) 1-6.
[37] M. Boutonnet, S. Lögdberg, E.E. Svensson, Recent developments in the application of nanoparticles prepared from w/o microemulsions in heterogeneous catalysis, Curr. Opinion Colloid Interf. Sci. 13 (2008) 270-286.
[38] M.S. Dominguez, M. Boutonnet, C. Solans, A novel approach to metal and metal oxide nanoparticle synthesis: the oil-in-water microemulsion reaction method, J. Nanoparticle Res. 11 (2009) 1823–1829.
[39] M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications, J. Iranian Chem. Soc. 7 (2010) 1-37.
[40] N.R. Jana, Y. Chen, X. Peng, Size-and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem. Mater. 16 (2004) 3931-3935.
[41] S.A. Samia, K.K. Hyzer, J.A.J. Schlueter, C.J.C. Qin, J.S.J. Jiang, S.D.S. Bader, X.M.X. Lin, Ligand effect on the growth and the digestion of Co nanocrystals. J. Am. Chem. Soc.127 (2005) 4126–4127.
[42] X. Wang, J. Zhuang, Q. Peng, Y. Li, A general stratergies for nanocrystal synthesis, Nature 437 (2005) 121-124.
[43] Y. Hu, Y. Li, R. Liu, W. Tan, G. Li, Magnetic molecularly imprinted polymer beads prepared by microwave heating for selective enrichment of ß-agonists in pork and pigliver samples, Talanta 84 (2011) 462–470.
[44] L. Zhang, H.Y. Niu, S.X. Zhang, Y.Q. Cai, Preparation of a chitosan-coated C18-functionalized magnetite nanoparticle sorbent for extraction of phthalate ester compounds from environmental water samples, Anal. Bioanal. Chem. 397 (2010) 791-798.
[45] A.F. Ngomsik, A. Bee, M. Draye, G. Cote, V. Cabuil, Magnetic nano- and microparticles for metal removal and environmental applications: A review. Comptes Rendus Chimie 8 (2005) 963–970.
[46] L. Nuñez, B.A. Buchholz, M. Kaminski, S.B. Aase, N.R. Brown, G.F. Vandegrift, Actinide Separation of High-level waste using solvent extractants on magnetic microparticles, Sep. Sci. Technol. 31 (1996) 1393–1407.
[47] M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications, J. Iranian Chem. Soc. 7 (2010) 1-37.
[48] R. Lakshmanan, C. Okoli, M. Boutonnet, S. Järås, G.K. Rajarao, Effect of magnetic iron oxide nanoparticles in surface water treatment: Trace minerals and microbes, Bioresource Technol. 129 (2013) 612-615.
[49] C. Okoli, M. Boutonnet, S. Järås, G.K. Rajarao, Protein-functionalized magnetic iron oxide nanoparticles: time efficient potential-water treatment. J. Nanoparticle Res. 14 (2012) 1194-1199.
[50] S. Singh, K.C. Barick, D. Bahadur, Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens, J. Hazardous Mater. 192 (2011) 1539-1547.
[51] B. Schrick, J.L. Blough, D.A. Jones, T.E. Mallouk, Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles, Chem. Mater. 14 (2002) 5140-5147.
[52] A.B. Cundy, L. Hopkinson, R.L.D. Whit, Use of iron-based technologies in contaminated land and groundwater remediation, A review, Sci. Total Environ. 400 (2008) 42–51.
[53] R.D. Ambashta, M. Sillanpaa, Water purification using magnetic assistance, a review, J. Hazardous Mater. 180 (2010) 38–49.
[54] M. Baalousha, Aggregation and disaggregation of iron oxide nanoparticles, influence of particle concentration, pH and natural organic matter, Sci. Total Environ. 407 (2009) 2093–2101.
[55] M. Aghazadeha, I. Karimzadehb, M.G. Maragheha, M. Rez, Ganjali, Enhancing the supercapacitive and superparamagnetic performances of iron oxide nanoparticles through yttrium cations electrochemical doping, Mater. Res. 21 (2018) 1-10.
[56] X. Wu, L. Meng, Q. Wang, W. Zhang, Y. Wang, A novel inorganic-conductive polymer core-sheath nanowire arrays as bendable electrode for advanced electrochemical energy storage, Chem. Eng. J. 358 (2019) 1464–1470.
[57] H. Pang, C. Wei, X. Li, G. Li, Y. Ma, S. Li, J. Chen, J. Zhang, Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocatalytic enhancing photocatalytic H2 production, Sci. Rep. 4 (2014) 3577.