Transition Metal-Based Electrocatalysts for Oxygen-Evolution Reaction beyond Ni, Co, Fe


Transition Metal-Based Electrocatalysts for Oxygen-Evolution Reaction beyond Ni, Co, Fe

H.L.S. Santos, J.A. Dias, M.A.S. Andrade Jr, L.H. Mascaro

Nickel, Cobalt, and iron-based electrocatalyst are the most widely used materials applied to highly efficient oxygen evolution reaction. This chapter focuses on the progress of transition metal based electrocatalysts other than Ni, Co, and Fe for this application, such as alloys, oxides, perovskite oxides, also the transition metal carbides, phosphides, and nitrides which present very competitive properties to these most exploited metal-based materials.

Transition Metal, Alloys, Oxides, Perovskites, Nitrides, Carbides, Phosphides

Published online 10/5/2019, 36 pages

Citation: H.L.S. Santos, J.A. Dias, M.A.S. Andrade Jr, L.H. Mascaro, Transition Metal-Based Electrocatalysts for Oxygen-Evolution Reaction beyond Ni, Co, Fe, Materials Research Foundations, Vol. 59, pp 1-36, 2019


Part of the book on Electrochemical Water Splitting

[1] C. Gebauer, P. Fischer, M. Wassner, T. Diemant, Z. Jusys, N. Hüsing, R.J. Behm, Performance of titanium oxynitrides in the electrocatalytic oxygen evolution reaction, Nano Energy. 29 (2016) 136–148.
[2] A.T.N. Nguyen, J.H. Shim, Facile one-step synthesis of Ir-Pd bimetallic alloy networks as efficient bifunctional catalysts for oxygen reduction and oxygen evolution reactions, J. Electroanal. Chem. 827 (2018) 120–127.
[3] T. Reier, M. Oezaslan, P. Strasser, Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials, ACS Catal. 2 (2012) 1765–1772.
[4] L. Trotochaud, J.K. Ranney, K.N. Williams, S.W. Boettcher, Solution-cast metal oxide thin film electrocatalysts for oxygen evolution, J. Am. Chem. Soc. 134 (2012) 17253–17261.
[5] S. Trasatti, Electrocatalysis by oxides – Attempt at a unifying approach, Electroanalysis. 111 (1980) 125–131.
[6] N.M. Alyami, A.P. Lagrow, K.S. Joya, J. Hwang, K. Katsiev, D.H. Anjum, Y. Losovyj, L. Sinatra, J.Y. Kim, O.M. Bakr, Tailoring ruthenium exposure to enhance the performance of fccplatinum@ruthenium core-shell electrocatalysts in the oxygen evolution reaction, Phys. Chem. Chem. Phys. 18 (2016) 16169–16178.
[7] Y.W. Zhang, T. Zhang, S.C. Li, W. Zhu, Z.P. Zhang, J. Gu, Shape-tunable Pt-Ir alloy nanocatalysts with high performance in oxygen electrode reactions, Nanoscale. 9 (2017) 1154–1165.
[8] K.C. Neyerlin, G. Bugosh, R. Forgie, Z. Liu, P. Strasser, Combinatorial study of high-surface-area binary and ternary electrocatalysts for the oxygen evolution reaction, J. Electrochem. Soc. 156 (2009) B363.
[9 ]F. Wang, K. Kusada, D. Wu, T. Yamamoto, T. Toriyama, S. Matsumura, Y. Nanba, M. Koyama, H. Kitagawa, Solid-solution alloy nanoparticles of the immiscible iridium-copper system with a wide composition range for enhanced electrocatalytic applications, Angew. Chem. Int. Ed. 57 (2018) 4505–4509.
[10] J. Pei, J. Mao, X. Liang, C. Chen, Q. Peng, D. Wang, Y. Li, Ir-Cu nanoframes: One-pot synthesis and efficient electrocatalysts for oxygen evolution reaction, Chem. Commun. 52 (2016) 3793–3796.
[11] H. Lv, D. Li, D. Strmcnik, A.P. Paulikas, N.M. Markovic, V.R. Stamenkovic, Recent advances in the design of tailored nanomaterials for efficient oxygen reduction reaction, Nano Energy. 29 (2016) 149–165.
[12] J. Ding, X. Zhu, L. Bu, J. Yao, J. Guo, S. Guo, X. Huang, Highly open rhombic dodecahedral PtCu nanoframes, Chem. Commun. 51 (2015) 9722–9725.
[13] H.L. Jiang, Q. Xu, Recent progress in synergistic catalysis over heterometallic nanoparticles, J. Mater. Chem. 21 (2011) 13705–13725.
[14] A. Groß, Reactivity of bimetallic systems studied from first principles, Top. Catal. 37 (2006) 29–39.
[15] C. Wang, Y. Sui, G. Xiao, X. Yang, Y. Wei, G. Zou, B. Zou, Synthesis of Cu-Ir nanocages with enhanced electrocatalytic activity for the oxygen evolution reaction, J. Mater. Chem. A. 3 (2015) 19669–19673.
[16] Y. Pi, J. Guo, Q. Shao, X. Huang, Highly efficient acidic oxygen evolution electrocatalysis enabled by porous Ir–Cu nanocrystals with three-dimensional electrocatalytic surfaces, Chem. Mater. 30 (2018) 8571–8578.
[17] C. Spöri, J.T.H. Kwan, A. Bonakdarpour, D.P. Wilkinson, P. Strasser, The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation, Angew. Chemie – Int. Ed. 56 (2017) 5994–6021.
[18] T. Zhang, S. Liao, L. Dai, J. Yu, W. Zhu, Y. Zhang, Ir-pd nanoalloys with enhanced surface-microstructure-sensitive catalytic activity for oxygen evolution reaction in acidic and alkaline media, Sci. China-Materials. 61 (2018) 926–938.
[19] H. Jin, Y. Hong, J. Yoon, A. Oh, N.K. Chaudhari, H. Baik, Lanthanide metal-assisted synthesis of rhombic dodecahedral MNi (M = Ir and Pt) nanoframes toward efficient oxygen evolution catalysis, Nano Energy. 42 (2017) 17–25.
[20] J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G.C. Wang, S. Guo, Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis, Adv. Mater. 29 (2017) 1–8.
[21] L. Fu, P. Cai, G. Cheng, W. Luo, Colloidal synthesis of iridium-iron nanoparticles for electrocatalytic oxygen evolution, Sustain. Energy Fuels. 1 (2017).
[22] F. Lv, J. Feng, K. Wang, Z. Dou, W. Zhang, J. Zhou, C. Yang, M. Luo, Y. Yang, Y. Li, P. Gao, S. Guo, Iridium-tungsten alloy nanodendrites as pH-universal water-splitting electrocatalysts, ACS Cent. Sci. 4 (2018) 1244–1252.
[23] J.E. Manders, L.T. Lam, R. De Marco, J.D. Douglas, R. Pillig, D.A.J. Rand, Battery performance enhancement with additions of bismuth, J. Power Sources. 48 (1994) 113–128.
[24] B. Monahov, D. Pavlov, D. Petrov, Influence of Ag as alloy additive on the oxygen evolution reaction on Pb/PbO2 electrode, J. Power Sources. 85 (2000) 59–62.
[25] W.S. Li, H.Y. Chen, X.M. Long, F.H. Wu, Y.M. Wu, J.H. Yan, C.R. Zhang, Oxygen evolution reaction on lead-bismuth alloys in sulfuric acid solution, J. Power Sources. 158 (2006) 902–907.
[26] Y. Matsumoto, E. Sato, Electrocatalytic properties of transition metal for oxygen evolution reaction, Mater. Chem. Phys. 14 (1986) 397–426.
[27] S. Park, Y. Shao, J. Liu, Y. Wang, Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: Status and perspective, Energy Environ. Sci. 5 (2012) 9331–9344.
[28] F. Song, L. Bai, A. Moysiadou, S. Lee, C. Hu, L. Liardet, X. Hu, Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance, J. Am. Chem. Soc. 140 (2018) 7748–7759.
[29] Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W. Bin Cai, Z. Yang, G. Zheng, Reduced mesoporous Co3O4 nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes, Adv. Energy Mater. 4 (2014) 1–7.
[30] J. Yang, J.K. Cooper, F.M. Toma, K.A. Walczak, M. Favaro, J.W. Beeman, L.H. Hess, C. Wang, C. Zhu, S. Gul, J. Yano, C. Kisielowski, A. Schwartzberg, I.D. Sharp, A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes, Nat. Mater. 16 (2017) 335–341.
[31] K. Fominykh, J.M. Feckl, J. Sicklinger, M. Döblinger, S. Böcklein, J. Ziegler, L. Peter, J. Rathousky, E.W. Scheidt, T. Bein, D. Fattakhova-Rohlfing, Ultrasmall dispersible crystalline nickel oxide nanoparticles as high-performance catalysts for electrochemical water splitting, Adv. Funct. Mater. 24 (2014) 3123–3129.
[32] M. Chen, Y. Wu, Y. Han, X. Lin, J. Sun, W. Zhang, R. Cao, An iron-based film for highly efficient electrocatalytic oxygen evolution from neutral aqueous solution, ACS Appl. Mater. Interfaces. 7 (2015) 21852–21859.
[33] C.G. Morales-Guio, L. Liardet, X. Hu, Oxidatively electrodeposited thin-film transition metal (oxy)hydroxides as oxygen evolution catalysts, J. Am. Chem. Soc. 138 (2016) 8946–8957.
[34] J. Du, F. Li, Y. Wang, Y. Zhu, L. Sun, Cu3P/CuO core-shell nanorod arrays as high-performance electrocatalysts for water oxidation, Chem. Electro. Chem. 5 (2018) 2064–2068.
[35] Z. Ye, T. Li, G. Ma, Y. Dong, X. Zhou, Metal-ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction, Adv. Funct. Mater. 27 (2017) 1–8.
[36] C. Hao, H. Lv, C. Mi, Y. Song, J. Ma, Investigation of mesoporous niobium-doped TiO2 as an oxygen evolution catalyst support in an SPE water electrolyzer, ACS Sustain. Chem. Eng. 4 (2016) 746–756.
[37] M.M. Najafpour, R. Mostafalu, M. Hołyńska, F. Ebrahimi, B. Kaboudin, Nano-sized Mn3O4 and β-MnOOH from the decomposition of β-cyclodextrin-Mn: 2. the water-oxidizing activities, J. Photochem. Photobiol. B Biol. 152 (2015) 112–118.
[38] M. Huynh, D.K. Bediako, D.G. Nocera, A functionally stable manganese oxide oxygen evolution catalyst in acid, J. Am. Chem. Soc. 136 (2014) 6002–6010.
[39] K.L. Pickrahn, S.W. Park, Y. Gorlin, H.B.R. Lee, T.F. Jaramillo, S.F. Bent, Active MnOx electrocatalysts prepared by atomic layer deposition for oxygen evolution and oxygen reduction reactions, Adv. Energy Mater. 2 (2012) 1269–1277.
[40] A. Ramírez, P. Hillebrand, D. Stellmach, M.M. May, P. Bogdanoff, S. Fiechter, Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water, J. Phys. Chem. C. 118 (2014) 14073–14081.
[41] F. Jiao, H. Frei, Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts, Chem. Commun. 46 (2010) 2920–2922.
[42] X. Liu, C. Chen, Y. Zhao, B. Jia, A review on the synthesis of manganese oxide nanomaterials and their applications on lithium-ion batteries, J. Nanomater. 2013 (2013).
[43] D. Bélanger, T. Brousse, J.W. Long, Manganese oxides: Battery materials make the leap to electrochemical capacitors, Electrochem. Soc. Interface. 17 (2008) 49–52.
[44] J. Masa, W. Xia, I. Sinev, A. Zhao, Z. Sun, S. Grützke, P. Weide, M. Muhler, W. Schuhmann, MnxOy/NC and CoxOy/NC nanoparticles embedded in a nitrogen-doped carbon matrix for high-performance bifunctional oxygen electrodes, Angew. Chemie – Int. Ed. 53 (2014) 8508–8512.
[45] A. Chinnappan, D. Ji, C. Baskar, X. Qin, S. Ramakrishna, 3-Dimensional MWCNT /CuO nanostructures use as an electrochemical catalyst for oxygen evolution reaction, J. Alloys Compd. 735 (2018) 2311–2317.
[46] N. Cheng, Y. Xue, Q. Liu, J. Tian, L. Zhang, A.M. Asiri, X. Sun, Cu/(Cu(OH)2-CuO) core/shell nanorods array: in-situ growth and application as an efficient 3D oxygen evolution anode, Electrochim. Acta. 163 (2015) 102–106.
[47] T. Ma, J. Bai, Q. Wang, C. Li, The novel synthesis of a continuous tube with laminated g-C3N4 nanosheets for enhancing photocatalytic activity and oxygen evolution reaction performance, Dalton Trans. 4 (2018) 10240–10248.
[48] M.P. Browne, C. Domínguez, P.E. Colavita, Emerging trends in metal oxide electrocatalysis: bifunctional oxygen catalysis, synergies and new insights from in situ studies, Curr. Opin. Electrochem. 7 (2018) 208–215.
[49] A. Pérez-tomás, A. Mingorance, D. Tanenbaum, Metal oxides in photovoltaics: all-oxide, ferroic, and perovskite solar cells, in: M.L. Cantu (Ed.), The future of semiconductor oxides in next-generation solar cells, Elsevier Inc., Amsterdam, 2018, pp. 267–356.
[50] H. Zhang, Z. Zhang, N. Li, W. Yan, Z. Zhu, Cu2O@C core/shell nanoparticle as an electrocatalyst for oxygen evolution reaction, J. Catal. 352 (2017) 239–245.
[51] G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R.C. Fitzmorris, C. Wang, J.Z. Zhang, Y. Li, Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting, Nano Lett. 11 (2011) 3026–3033.
[52] C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev. 39 (2010) 4206–4219.
[53] N. Roy, Y. Sohn, K.T. Leung, D. Pradhan, Engineered electronic states of transition metal doped TiO2 nanocrystals for low overpotential oxygen evolution reaction, J. Phys. Chem. 118 (2014) 29499-29506.
[54] L. Cai, I.S. Cho, M. Logar, A. Mehta, J. He, C.H. Lee, P.M. Rao, Y. Feng, J. Wilcox, F.B. Prinz, X. Zheng, Sol-flame synthesis of cobalt-doped TiO2 nanowires with enhanced electrocatalytic activity for oxygen evolution reaction, Phys. Chem. Chem. Phys. 16 (2014) 12299–12306.
[55] H. Yoo, Y.W. Choi, J. Choi, Ruthenium oxide-doped TiO2 nanotubes by single-step anodization for water-oxidation applications, Chem. Cat. Chem. 7 (2015) 643–647.
[56] J. Chattopadhyay, R. Srivastava, P.K. Srivastava, Ni-doped TiO2 hollow spheres as electrocatalysts in water electrolysis for hydrogen and oxygen production, J. Appl. Electrochem. 43 (2013) 279–287.
[57] N. Kim, E.M. Turner, Y. Kim, S. Ida, H. Hagiwara, T. Ishihara, E. Ertekin, Two-dimensional TiO2 nanosheets for photo and electro-chemical oxidation of water: predictions of optimal dopant species from first-principles, J. Phys. Chem. C. 121 (2017) 19201–19208.
[58] X. Li, M. Zhang, Y. Zhang, C. Yu, W. Qi, J. Cui, Y. Wang, Y. Qin, J. Liu, X. Shu, Y. Chen, T. Xie, Y. Wu, Controlled synthesis of MnO2@TiO2 hybrid nanotube arrays with enhanced oxygen evolution reaction performance, Int. J. Hydrogen Energy. 43 (2018) 14369–14378.
[59] H. Yoo, M. Kim, Y.-T. Kim, K. Lee, J. Choi, Catalyst-doped anodic TiO2 nanotubes: binder-free electrodes for (photo)electrochemical reactions, Catalysts. 8 (2018) 555.
[60] F. Lu, M. Zhou, Y. Zhou, X. Zeng, First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances, Small. 13 (2017) 1–18.
[61] G. Wu, W. Chen, X. Zheng, D. He, Y. Luo, X. Wang, J. Yang, Y. Wu, W. Yan, Z. Zhuang, X. Hong, Y. Li, Hierarchical Fe-doped NiOx nanotubes assembled from ultrathin nanosheets containing trivalent nickel for oxygen evolution reaction, Nano Energy. 38 (2017) 167–174.
[62] C. He, X. Kong, M. Jiang, X. Lei, Metal Ni-decorated Fe3O4 nanoparticles: A new and efficient electrocatalyst for oxygen evolution reaction, Mater. Lett. 222 (2018) 138–141.
[63] J.A. Koza, Z. He, A.S. Miller, J.A. Switzer, Electrodeposition of crystalline Co3O4-A catalyst for the oxygen evolution reaction, Chem. Mater. 24 (2012) 3567–3573.
[64] F. Basharat, U.A. Rana, M. Shahid, M. Serwar, Heat treatment of electrodeposited NiO films for improved catalytic water oxidation, RSC Adv. 5 (2015) 86713–86722.
[65] Y. Meng, W. Song, H. Huang, Z. Ren, S.Y. Chen, S.L. Suib, Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media, J. Am. Chem. Soc. 136 (2014) 11452–11464.
[66] Y. Deng, A.D. Handoko, Y. Du, S. Xi, B.S. Yeo, In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species, ACS Catal. 6 (2016) 2473–2481.
[67] D.M. Jang, I.H. Kwak, E.L. Kwon, C.S. Jung, H.S. Im, K. Park, J. Park, Transition-metal doping of oxide nanocrystals for enhanced catalytic oxygen evolution, J. Phys. Chem. C. 119 (2015) 1921–1927.
[68] K. Elumeeva, J. Masa, J. Sierau, F. Tietz, M. Muhler, W. Schuhmann, Perovskite-based bifunctional electrocatalysts for oxygen evolution and oxygen reduction in alkaline electrolytes, Electrochim. Acta. 208 (2016) 25–32.
[69] R.J.D. Tilley, Perovskites: structure-property relationships, first ed., Wiley, West Sussex, 2016.
[70] I. Borriello, G. Cantele, D. Ninno, Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides, Phys. Rev. B – Condens. Matter Mater. Phys. 77 (2008).
[71] W.D. Kingery, H. K. Bowen, D.R. Uhlmann, Introduction to Ceramics, second ed., Wiley, New York, 1960.
[72] E. Omari, M. Omari, D. Barkat, Oxygen evolution reaction over copper and zinc co-doped LaFeO3 perovskite oxides, Polyhedron. 156 (2018) 116–122.
[73] P. Gao, M.Grätzel, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy Environ. Sci. 7 (2014) 2448.
[74] H.S. Kushwaha, A. Halder, P. Thomas, R. Vaish, CaCu3Ti4O12: abifunctional perovskite electrocatalyst for Oxygen Evolution and Reduction reaction in alkaline medium, Electrochim. Acta. 252 (2017) 532–540.
[75] I. Yamada, A. Takamatsu, K. Asai, T. Shirakawa, H. Ohzuku, A. Seno, T. Uchimura, H. Fujii, S. Kawaguchi, K. Wada, H. Ikeno, S. Yagi, Systematic study of descriptors for Oxygen Evolution Reaction catalysis in perovskite oxides, J. Phys. Chem. C. 122 (2018) 27885–27892.
[76] M. Wan, H. Zhu, S. Zhang, H. Jin, Y. Wen, Building block nanoparticles engineering induces multi-element perovskite hollow nanofibers structure evolution to trigger enhanced oxygen evolution, Electrochim. Acta. 279 (2018) 301–310.
[77] H. Liu, J. Yu, J. Sunarso, C. Zhou, B. Liu, Y. Shen, Mixed protonic-electronic conducting perovskite oxide as a robust oxygen evolution reaction catalyst, Electrochim. Acta. 282 (2018) 324–330.
[78] D.S. Bick, A. Kindsmüller, G. Staikov, F. Gunkel, D. Müller, T. Schneller, R. Waser, I. Valov, Stability and degradation of perovskite electrocatalysts, Electrochim. Acta. (2016).
[79] Y. Bai, T. Siponkoski, J. Peräntie, H. Jantunen, J. Juuti, Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide, Appl. Phys. Lett. 110 (2017).
[80] B.E. Hayden, F.K. Rogers, Oxygen reduction and oxygen evolution on SrTi1−xFexO3−y (STFO) perovskite electrocatalysts, 819 (2018) 275–282.
[81] M.H. Seo, H.W. Park, D.U. Lee, M.G. Park, Z. Chen, Design of highly active perovskite oxides for Oxygen Evolution Reaction by combining experimental and ab Initio Studies, ACS Catal. 5 (2015)4337–4344.
[82] J. Kim, X. Yin, K. Tsao, S. Fang, H. Yang, Ca2Mn2O5 as oxygen-deficientperovskite electrocatalyst for Oxygen Evolution Reaction, J. Am. Chem. Soc. 136 (2014) 14646–14649.
[83] J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for Oxygen Evolution catalysis from molecular orbital principles, Science. 334 (2011) 1383–1385.
[84] J. Gracia, Spin dependent interactions catalyse the oxygen electrochemistry, Phys. Chem. Chem. Phys. 19 (2017) 20451–20456.
[85] W.T. Hong, M. Risch, K.A. Stoerzinger, A. Grimaud, Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis, Energy Env. Sci. 8 (2015) 1404–1427.
[86] Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen, Y. Du, A.C. Fischer, F. Cheng, X. Wang, H. Zhang, Z. Xu, Enlarged Co-O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction, Adv. Mater. 30 (2018) 1802912.
[87] B. Han, M. Risch, Y. Lee, C. Ling, H. Jia, Y. Shao-horn, Activity and stability trends of perovskite oxides for oxygen evolution catalysis at neutral pH, Phys. Chem. Chem. Phys.17 (2015) 22576–22580.
[88] F.A. Kröger, H.J. Vink, Relations between the concentrations of imperfections in crystalline solids, Solid State Phys. – Adv. Res. Appl. 3 (1956) 307–435.
[89] A.I. Becerro, C. McCammon, F. Langenhorst, F. Seifert, R. Angel, Oxygen vacancy ordering in CaTiO3-CaFeO2.5perovskites: from isolated defects to infinite sheets, Phase Transitions. 69 (1999) 133–146.
[90] A. Grimaud, K.J. May, C.E. Carlton, Y. Lee, M. Risch, W.T. Hong, J. Zhou, Y. Shao- horn, Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution, Nature Commun. 4 (2013) 2439.
[91] J.H. Clark, M.S. Dyer, R.G. Palgrave, C.P. Ireland, J.R. Darwent, J.B. Claridge, M.J. Rosseinsky, Visible light photo-oxidation of model pollutants using CaCu3Ti4O12: an experimental and theoretical study of optical properties, electronic structure, and Selectivity, J. Am. Chem. Soc. 133 (2011) 1016–1032.
[92] S. Yagi, I. Yamada, H. Tsukasaki, A. Seno, M. Murakami, H. Fujii, H. Chen, N. Umezawa, H. Abe, N. Nishiyama, S. Mori, Covalency-reinforced oxygen evolution reaction catalyst, Nature Commun. 6 (2015) 8249.
[93] C. Alegre, E. Modica, M. Rodlert-bacilieri, F.C. Mornaghini, T. Avanzate, E. Nicola, S. Santa, Enhanced durability of a cost-effective perovskite-carbon catalyst for the oxygen evolution and reduction reactions in alkaline environment, Int. J. Hydrog. Energy 42 (2017) 28063–28069.
[94] J. Hu, Q. Liu, L. Shi, Z. Shi, H. Huang, Silver decorated LaMnO3 nanorod/graphene composite electrocatalysts as reversible metal-air battery electrodes, Appl. Surf. Sci. 402 (2017) 61–69.
[95] D. Chen, M. Qiao, Y. Lu, L. Hao, D. Liu, C. Dong, Y. Li, S. Wang, Preferential cation vacancies in perovskite hydroxide for the Oxygen Evolution Reaction, Angew. Chemie – Int. Ed. 57 (2018) 8691–8696.
[96] H.S. Kushwaha, A. Halder, R. Vaish, Ferroelectric electrocatalysts: a new class of materials for oxygen evolution reaction with synergistic effect of ferroelectric polarization, J. Mat. Sci. 53 (2018) 1414–1423.
[97] A. Kakekhani, S. Ismail-beigi, E.I. Altman, Ferroelectrics: A pathway to switchable surface chemistry and catalysis, Surf. Sci. 650 (2015) 302–306.
[98] S. Park, C.W. Lee, M. Kang, S. Kim, H.J. Kim, J.E. Kwon, S. Y. Park, C. Kang, K.S. Hong, K.T. Nam, A ferroelectric photocatalyst for enhancing hydrogen evolution: polarized particulate suspension, Phys. Chem. Chem. Phys. 16 (2014) 10408–10413.
[99] N.K. Singh, B. Lal, R.N. Singh, Electrocatalytic properties of perovskite-type La1−xSrxMnO3 obtained by a novel sol–gel route for O2 evolution in KOH solutions, Int. J. Hydrogen Energy. 27 (2002) 885–893.
[100] J. Scholz, M. Risch, G. Wartner, C. Luderer, V. Roddatis, C. Jooss, Tailoring the Oxygen Evolution activity and stability using defect chemistry, Catalysts. 7 (2017) 139.
[101] M.C. Weidman, D. V Esposito, Y. Hsu, J.G. Chen, Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range, J. Power Sources. 202 (2012) 11–17.
[102] Y. Liu, T.G. Kelly, J.G. Chen, W.E. Mustain, Metal carbides as alternative electrocatalyst supports, ACS Catal. 3 (2013) 1184–1194.
[103] S. Zhou, G. Zhou, S. Jiang, P. Fan, H. Hou, Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity, Mater. Lett. 200 (2017) 97–100.
[104] Y. Wang, J. Wang, G. Han, C. Du, Q. Deng, Y. Gao, G. Yin, Y. Song, Pt decorated Ti3C2MXene for enhanced methanol oxidation reaction, Ceram. Int. 45 (2018) 2411–2417.
[105 ]D.J. Ham, J.S. Lee, Transition metal carbides and nitrides as electrode materials for low temperature fuel cells, Energies. 2 (2009) 873–899.
[106] F. Karimi, B.A. Peppley, Metal carbide and oxide supports for iridium-based Oxygen Evolution Reaction electrocatalysts for polymer-electrolyte-membrane water electrolysis, Electrochim. Acta. 246 (2017) 654–670.
[107] I.M. Petrushina, E. Christensen, K. Bouzek, C.B. Prag, J.E.T. Andersen, J. Polonsky, N.J. Bjerrum, Tantalum carbide as a novel support material for anode electrocatalysts in polymer electrolyte membrane water electrolysers, Int. J. Hydrogen Energy. 37 (2011) 2173–2181.
[108] Y. Nabil, S. Cavaliere, I.A. Harkness, D.J. Jones, Novel niobium carbide/carbon porous nanotube electrocatalyst supports for proton exchange membrane fuel cell cathodes, J. Power Sources. 363 (2017) 20–26.
[109] T. Li, Z. Tang, K. Wang, W. Wu, S. Chen, C. Wang, Palladium nanoparticles grown on Β-Mo2C nanotubes as dual functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction, Int. J. Hydrogen Energy. 43 (2018) 4932–4941.
[110] S. Saha, J. Andrés, C. Rodas, S. Tan, D. Li, Performance evaluation of platinum-molybdenum carbide nanocatalysts with ultralow platinum loading on anode and cathode catalyst layers of proton exchange membrane fuel cells, J. Power Sources. 378 (2018) 742–749.
[111] Y. Liu, W.E. Mustain, Evaluation of tungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts, Int. J. Hydrogen Energy. 37 (2012) 8929–8938.
[112] L. Liao, X. Bian, J. Xiao, B. Liu, M.D. Scanlon, H.H. Girault, Nanoporous molybdenum carbide wires as an active electrocatalyst towards the oxygen reduction reaction, Phys. Chem. Chem. Phys. 16 (2014) 10088–10094.
[113] M.A.R. Anjum, M.H. Lee, J.S. Lee, Boron- and nitrogen-codopedmolybdenum carbide nanoparticles imbedded in a BCN network as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions, ACS Catal. 8 (2018) 8296.
[114] T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution, Angew. Chemie – Int. Ed. 55 (2016) 1138–1142.
[115] H. Cui, G. Zhu, X. Liu, F. Liu, Y. Xie, C. Yang, T. Lin, H. Gu, F. Huang, Niobium nitride Nb4N5as a new high-performance electrode material for supercapacitors, Adv. Sci. 2 (2015) 150026.
[116] E. Davari, D.G. Ivey, Synthesis and electrochemical performance of manganese nitride as an oxygen reduction and oxygen evolution catalyst for zinc–air secondary batteries, J. Appl. Electrochem. 47 (2017) 815–827.
[117] M.S. Balogun, Y. Huang, W. Qiu, H. Yang, H. Ji, Y. Tong, Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting, Mater. Today. 20 (2017) 425–451.
[118] K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, Y. Xie, Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation, J. Am. Chem. Soc. 137 (2015) 4119–4125.
[119] X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G.I.N. Waterhouse, L. Wu, C. Tung, T. Zhang, Ni3FeN nanoparticles derived from ultrathin NiFe-layered double hydroxide nanosheets :an efficient overall water splitting electrocatalyst, Adv. Energy Mater. 6 (2016) 1502585.
[120] Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R.S. Rawat, H.J. Fan, Rapid synthesis of cobalt nitride nanowires: highly efficient and low-cost catalysts for Oxygen Evolution, Angew. Chemie – Int. Ed. 637616 (2016) 8670–8674.
[121] P. Chen, K. Xu, Y. Tong, X. Li, S. Tao, Z. Fang, W. Chu, X. Wu, C. Wu, Cobalt nitrides as a class of metallic electrocatalysts for the oxygen evolution reaction, Inorg. Chem. Front. 3 (2016) 236–242.
[122] X. Chen, P. Gao, H. Liu, J. Xu, B. Zhang, Y. Zhang, Y. Tang, C. Xiao, In situ growth of iron-nickel nitrides on carbon nanotubes with enhanced stability and activity for oxygen evolution reaction, Electrochim. Acta. 267 (2018) 8–14.
[123] G. Li, K. Li, L. Yang, J. Chang, R. Ma, Z. Wu, J. Ge, Boosted performance of Ir species by employing TiN as the support toward Oxygen Evolution Reaction, ACS Appl. Mater. Interfaces. 10 (2018) 38117–38124.
[124] L. Peng, S. Shoaib, A. Shah, Z. Wei, Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction, Chinese J. Catal. 39 (2018) 1575–1593.
[125] W. Li, X. Gao, D. Xiong, F. Xia, J. Liu, W. Song, J. Xu, S.M. Thalluri, M.F. Cerqueira, X. Fu, L. Liu, Vapor–solid synthesis of monolithic single- crystalline CoP nanowire electrodes for efficient and robust water electrolysis, Chem. Sci. 8 (2017) 2952–2958.
[126] Z. Jin, P. Li, D. Xiao, Metallic Co2P ultrathin nanowires distinguished from CoP as robust electrocatalysts for overall, Green Chem. 18 (2016) 1459–1464.
[127] A. Dutta, A.K. Samantara, S.K. Dutta, B.K. Jena, N. Pradhan, Surface-oxidized dicobaltphosphide nanoneedles as a nonprecious, durable, and efficient OER catalyst, ACS Energy Lett. 1 (2016) 169–174.
[128] C. Hou, S. Cao, W. Fu, Y. Chen, Ultrafine CoP nanoparticles supported on carbon nanotubes as highly active electrocatalyst for both Oxygen and Hydrogen Evolution in basic media, ACS Appl. Mater. Interfaces. 7 (2015) 28412–28419.
[129] M. Jiang, J. Li, X. Cai, Y. Zhao, L. Pan, Q. Cao, D. Wang, Y. Du, Ultrafine bimetallic phosphide nanoparticles embedded in carbon nanosheets: two-dimensional metal–organic framework-derived non-noble electrocatalysts for the highly efficient oxygen evolution reaction, Nanoscale. 10 (2018) 19774–19780.
[130] D. Xiong, X. Wang, W. Li, L. Liu, Facile synthesis of iron phosphide nanorods for efficient and durable electrochemical oxygen evolution, Chem. Commun. 52 (2016) 8711–8714.
[131] P. He, X. Yu, X. Wen, D. Lou, Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxeswith enhanced electrocatalytic activity for oxygen evolution, Angew. Chemie – Int. Ed. 56 (2017) 3897–3900.
[132] C. Zhang, Y. Xie, H. Deng, C. Zhang, J. Su, Y. Dong, J. Lin, Ternary nickel iron phosphide supported on nickel foam as a high-efficiency electrocatalyst for overall water splitting, Int. J. Hydrogen Energy. 43 (2018) 7299–7306.
[133] G. Liu, D. He, R. Yao, Y. Zhao, J. Li, Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation, Electrochim. Acta. 253 (2017) 498–505.
[134] H. Man, C. Tsang, M.M. Li, J. Mo, B. Huang, L. Yoon, S. Lee, Y. Leung, K. Wong, S. Chi, E. Tsang, Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen evolution reaction (OER), Chem. Commun. 54 (2018) 8630–8633.
[135] C. Hou, Q. Chen, C. Wang, F. Liang, Z. Lin, W. Fu, Y. Chen, Self-supported cedar like semimetallic Cu3P nanoarrays as a 3D High-Performance Janus electrode for both Oxygen and Hydrogen Evolution under basic conditions, ACS Appl. Mater. Interfaces. 8 (2016) 23037–23048.
[136] S.M. Pawar, B.S. Pawar, P.T. Babar, A. Talha, A. Ahmed, H.S. Chavan, Y. Jo, S. Cho, J. Kim, A.I. Inamdar, J. Hyeok, H. Kim, H. Im, Electrosynthesis of copper phosphide thin films for efficient water oxidation, Mater. Lett. 241 (2019) 243–247.