Metal-Organic Frameworks and their Composites for the Development of Electrochemical Sensors for Environmental Applications


Metal-Organic Frameworks and their Composites for the Development of Electrochemical Sensors for Environmental Applications

Ankit Kumar Singh and Ida Tiwari

The demand for accurate monitoring of environmental pollutants and their control has increased the need to develop some novel sensing techniques with high accuracy and lower limit of detection. Number of electrochemical sensors have been developed which can provide such platform for the determination of variety of chemical as well as biological pollutants. Metal-organic frameworks (MOFs) synthesized by coordinating the metal ions with the organic moieties are extensively used in the electrochemical sensing. Detection and removal of heavy metal ions and several inorganic as well as organic ions can be done by using electrochemical sensors based on MOFs and their composites. MOFs are used for constructing highly sensitive and reliable electrochemical sensor because MOFs are highly porous and have large surface area that helps in concentrating the analyte which results in strong signal intensity and higher sensitivity. Here advantages of MOFs and their composites in the construction of electrochemical sensors as well as their applications in the determination of several environmental contaminants are discussed.

Metal-Organic Frameworks, Electrochemical Sensor, Environmental Applications, Sensing

Published online 6/30/2019, 26 pages

Citation: Ankit Kumar Singh and Ida Tiwari, Metal-Organic Frameworks and their Composites for the Development of Electrochemical Sensors for Environmental Applications, Materials Research Foundations, Vol. 53, pp 29-54, 2019


Part of the book on Metal-Organic Framework Composites

[1] F.Y. Yi, R. Zhang, H. Wang, L.F. Chen, L. Han, H. L. Jiang, and Q. X, Metal- Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications, Small Methods 1 (2017) 1700187.
[2] O. M. Yaghi, G. M. Li, H. L. Li, Selective binding and removal of guests in a microporous metal–organic framework, Nature 378 (1995) 703.
[3] B. F. Hoskins, R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments, J. Am. Chem. Soc. 111(1989) 5962.
[4] B. F. Hoskins, R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][Cu(I)Zn(II)(CN)4] and Cu(I)[4,4′,4”,4”’-tetracyanotetraphenylmethane]BF4.xC6H5NO2, J. Am. Chem. Soc. 112 (1990) 1546.
[5] D. Venkataraman, G. B. Gardner, S. Lee, J. S. Moore, Zeolite-like Behavior of a Coordination Network, J. Am. Chem. Soc. 117 (1995) 11600.
[6] G. B. Gardner, D. Venkataraman, J. S. Moore, S. Lee, Spontaneous assembly of a hinged coordination network, Nature 374 (1995) 792.
[7] G. Férey, Hybrid porous solids: past, present, future, Chem. Soc. Rev. 37 (2008) 191.
[8] S. Horike, S. Shimomura, S. Kitagawa, Soft porous crystals, Nat. Chem. 1(2009) 695.
[9] H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science341 (2013) 974.
[10] J. M. Yoon, R. Srirambalaji, K. Kim, Homochiral, Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis, Chem. Rev. 112 (2012) 1196.
[11] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y.Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc.Rev. 43 (2014) 6011.
[12] G. Huang, Y.-Z.Chen, H.-L.Jiang, Metal-organic frameworks for Catalysis, Acta. Chim. Sin. 74 ( 2016) 113.
[13] Y.-Z. Chen, Z. U. Wang, H. Wang, J. Lu, S.-H.Yu, H.-L. Jiang, Singlet Oxygen-Engaged Selective Photo-Oxidation over Pt Nanocrystals/Porphyrinic MOF: The Roles of Photothermal Effect and Pt Electronic State, J. Am. Chem. Soc. 139(2017) 2035.
[14] S. Ou, C.-D.Wu, Rational construction of metal–organic frameworks for heterogeneous catalysis, Inorg. Chem. Front. 1 (2014) 721.
[15] L. Zeng, X. Guo, C. He, C. Duan, Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis, ACS Catal. 6 (2016) 7935.
[16] A. Aijaz, A. Karkamkar, Y. J. Choi, N. Tsumori, E. Rönnebro,T. Autrey, H. Shioyama, Q. Xu, Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal–Organic Framework: A Double Solvents Approach, J. Am. Chem. Soc. 134 (2012) 13926.
[17] R. Q. Zou, H. Sakurai, S. Han, R. Q. Zhong, Q. Xu, Probing the Lewis Acid Sites and CO Catalytic Oxidation Activity of the Porous Metal−Organic Polymer [Cu(5 methylisophthalate)], J. Am. Chem. Soc. 129 (2007) 8402.
[18] J. Y. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, J. T. Hupp, Metal–organic framework materials as catalysts, Chem. Soc. Rev 38( 2009) 1450.
[19] A. Corma, H. García, F. X. Llabrés-Xamena, Engineering Metal Organic Frameworks for Heterogeneous Catalysis, Chem. Rev. 110 (2010) 4606.
[20] J.-L. Wang, C. Wang, W. Lin, Metal–Organic Frameworks for Light Harvesting and Photocatalysis, ACS Catal. 2 (2012) 2630.
[21] Q.-L. Zhu, Q. Xu, Immobilization of Ultrafine Metal Nanoparticles to High-Surface-Area Materials and Their Catalytic Applications, Chem 1 (2016) 220.
[22] X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita, Q. Xu, Synergistic Catalysis of Metal–Organic Framework-Immobilized Au–Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage, J. Am. Chem. Soc. 133 (2011) 11822.
[23] P.-Z. Li, K. Aranishi, Q. Xu, ZIF-8 immobilized nickel nanoparticles: highly effective catalysts for hydrogen generation from hydrolysis of ammonia borane, Chem. Commun. 48 (2012) 3173.
[24] Q.-L. Zhu, J. Li, Q. Xu, Immobilizing Metal Nanoparticles to Metal–Organic Frameworks with Size and Location Control for Optimizing Catalytic Performance, J. Am. Chem. Soc. 135 (2013) 10210.
[25] P. Pachfule, X. Yang, Q.-L. Zhu, N. Tsumori, T. Uchidaa, Q. Xu,From Ru nanoparticle-encapsulated metal–organic frameworks to highly catalytically active Cu/Ru nanoparticle-embedded porous carbon, J. Mater. Chem. A. 5 (2017) 4835.
[26] J.-P. Zhang, X.-M. Chen, Exceptional Framework Flexibility and Sorption Behavior of a Multifunctional Porous Cuprous Triazolate Framework, J. Am. Chem. Soc. 130 (2008) 6010.
[27] J. R. Li, R. J. Kuppler, H. C. Zhou, Selective gas adsorption and separation in metal–organic fameworks Chem. Soc. Rev. 38 (2009) 1477.
[28] M. P. Suh, H. J. Park, T. K. Prasad, D. W. Lim, Hydrogen Storage in Metal–Organic Frameworks, Chem. Rev. 112(2012) 782.
[29] H. H. Wu, Q. H. Gong, D. H. Olson, J. Li, Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks, Chem. Rev. 112 (2012) 836.
[30] S. H. Yang, X. Lin, W. Lewis, M. Suyetin, E. Bichoutskaia,J. E. Parker, C. C. Tang, D. R. Allan, P. J. Rizkallah, P. Hubberstey, N. R. Champness, K. M. Thomas, A. J. Blake, M. Schröder, A partially interpenetrated metal-organic framework for selective hysteretic sorption of carbon dioxide, Nat. Mater. 11 (2012) 710.
[31] P. Nugent, Y. Belmabkhout, S. D. Burd, A. J. Cairns, R. Luebke,K. Forrest, T. Pham, S. Ma, B. Space, L. Wojtas, M. Eddaoudi,M. J. Zaworotko, Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation, Nature 495 (2013) 80.
[32] Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha,T. Yildirim, Methane Storage in Metal–Organic Frameworks: Current Records, Surprise Findings, and Challenges, J. Am. Chem. Soc. 135 ( 2013) 11887.
[33] K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. H. Bae, J. R. Long, Carbon Dioxide Capture in Metal–Organic Frameworks, Chem. Rev. 112 (2012) 724.
[34] Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal–organic frameworks, Chem. Soc. Rev. 43(2014) 5657.
[35] J. R. Li, J. Sculley, H. C. Zhou, Metal–Organic Frameworks for Separations, Chem. Rev. 112(2012)869.
[36] B. V. de Voorde, B. Bueken, J. Denayer, D. De Vos, Adsorptive separation on metal organic frameworks in the liquid phase, Chem. Soc.Rev.43 ( 2014) 5766.
[37] S. Qiu, M. Xue, G. Zhu, Metal–organic framework membranes: from synthesis to separation application, Chem. Soc. Rev.43(2014) 6116.
[38] Q.-L. Zhu, Q. Xu, Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage, Energy Environ. Sci. 8 (2015) 478.
[39] F.-Y. Yi, D. Chen, M.-K.Wu, L. Han, H.-L. Jiang, Chemical Sensors Based on Metal–Organic Frameworks, Chem Plus Chem 81 (2016) 675.
[40] B. L. Chen, S. C. Xiang, G. D. Qian, Metal-organic frameworks with functional pores for recognition of small molecules, Acc. Chem. Res. 43 (2010) 1115.
[41] L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. V. Duyne,J. T. Hupp, Metal–Organic Framework Materials as Chemical Sensors, Chem. Rev. 112 (2012) 1105.
[42] Z. Hu, B. J. Deibert, J. Li, Luminescent metal–organic frameworks for chemical sensing and explosive detection, Chem. Soc. Rev. 43 (2014) 5815.
[43] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur,G. Férey, R. E. Morris, C. Serre, Metal–Organic Frameworks in Biomedicine, Chem. Rev. 112 (2012) 1232.
[44] C. He, D. Liu, W. Lin, Nanomedicine Applications of Hybrid Nanomaterials Built from Metal–Ligand Coordination Bonds: Nanoscale Metal–Organic Frameworks and Nanoscale Coordination Polymers, Chem. Rev. 115 (2015) 11079.
[45] Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent Functional Metal–Organic Frameworks, Chem. Rev. 112 (2012) 1126.
[46] P. Cheng, Lanthanide Metal–Organic Frameworks, Structure and Bonding Series, Springer, New York, USA (2015)
[47] J Lei, R. Qian, P. Ling, L. Cui, H.Ju, Design and sensing applications of metal–organic framework composites, Trends in Analytical Chemistry, 58 (2014) 71–78.
[48] L.E. Kreno, K. Leong, O.K. Farha, M. Allendorf, R.P. Van Duyne, J.T. Hupp, Metal organic framework materials as chemical sensors, Chem. Rev. 112 (2012)1105–1125.
[49] F. Sun, Z. Yin, Q.Q. Wang, D. Sun, M.H. Zeng, M. Kurmoo, Tandem postsynthetic modification of a metal–organic framework by thermal elimination and subsequent bromination: effects on absorption properties and photoluminescence, Angew. Chem. Int. Ed. 52 (2013) 4538–4543.
[50] X.Q. Wu, J.G. Ma, H. Li, D.M. Chen, W. Gu, G.M. Yang, P. Cheng, Metal–organic framework biosensor with high stability and selectivity in a bio-mimic environment., Chem. Commun. 51(44) (2015)9161–9164.
[51] D. Sheberla, L. Sun, M.A. Blood-Forsythe, S. Er, C.R. Wade,C.K. Brozek, A. Aspuru-Guzik, M. Dinca, High electrical conductivity in Ni(3)(2,3,6,7,10,11-hexaiminotriphenylene)(2), a semiconducting metal–organic graphene analogue, J. Am. Chem. Soc. 136(25),(2014) 8859–8862.
[52] M.G. Campbell, D. Sheberla, S.F. Liu, T.M. Swager, M. Dinca, Cu(3)(hexaiminotriphenylene)(2): an electrically conductive 2Dmetal–organic framework for chemiresistive sensing, Angew. Chem. Int. Ed. 54(14) (2015) 4349–4352.
[53] X. Wang, Q.X. Wang, Q.H. Wang, F. Gao, Y.Z. Yang,H.X. Guo, Highly dispersible and stable copper terephthalate metal–organic framework-graphene oxide nanocomposite for an electrochemical sensing application, ACS Appl. Mater.123Nano-Micro Lett. (2018) 10:64 Page 17 of 19 64Interfaces 6(14), 11573–11580 (2014).
[54] Z.D. Xu, L.Z. Yang, C.L. Xu, Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range, Anal. Chem. 87(6) (2015) 3438–3444.
[55] P. Falcaro, R. Ricco, A. Yazdi, I. Imaz, S. Furukawa, D. Maspoch,R. Ameloot, J.D. Evans, C.J. Doonan, Application of metal and metal oxide nanoparticles@MOFs, Coord. Chem. Rev. 307 (2016) 237–254.
[56] J. Wang, J.T. Jiu, T. Araki, M. Nogi, T. Sugahara, S. Nagao, H.Koga, P. He, K. Suganuma, Silver nanowire electrodes: conductivity improvement without post-treatment and application in capacitive pressure sensors, Nano-Micro Lett. 7(1) (2015) 51–58.
[57] Z. Yang, Z.H. Li, M.H. Xu, Y.J. Ma, J. Zhang, Y.J. Su, F. Gao,H. Wei, L.Y. Zhang, Controllable synthesis of fluorescent carbon dots and their detection application as nanoprobes, Nano-Micro Lett. 5(4) (2013) 247–259.
[58] I.Bontidean, C. Berggren, G. Johansson, E. Csoregi, B. Mattiasson, J.R. Lloyd, K.J Jakeman, N.L Brown, Detection of heavy metal ions at femtomolar levels using protein-based biosensors, Anal.Chem.70 (1998) 4162–4169.
[59] D. Pan, Y. Wang, Z. Chen, T. Lou, W. Qin, Nanomaterial/Ionophore-Based Electrode for Anodic Stripping Voltammetric Determination of Lead: An Electrochemical Sensing Platform toward Heavy Metals, Anal. Chem. 81 ( 2009) 5088–5094.
[60] C. Combellas, F. Kanoufi, J. Pinson, F.I. Podvorica, Sterically Hindered Diazonium Salts for the Grafting of a Monolayer on Metals, J.Am.Chem.Soc.130 (27) (2008) 8576–8577.
[61] L. Fan, J. Chen, S. Zhu, M. Wang , G. Xu, Determination of Cd2+ and Pb2+ on glassy carbon electrode modified by electrochemical reduction of aromatic diazonium salts, Electrochem. Commun. 11 (2009) 1823– 1825.
[62] Z. Xie, W. Xu, X. Cui, and Y. Wang, Recent Progress in Metal–Organic Frameworks and Their Derived Nanostructures for Energy and Environmental Applications, Chem. Sus. Chem 10 (2017), 1645 – 1663.
[63] M. Z. Jacobson, Review of solutions to global warming, air pollution, and energy security, Energy Environ. Sci. 2 (2009) 148–173.
[64] V. Thavasi, G. Singh, S. Ramakrishna, Electrospun nanofibers in energy and environmental applications, Energy Environ. Sci. 1 (2008) 205 –221.
[65] Z. Q. Xie, X. D. Cui, W. W. Xu, Y. Wang, Metal-Organic framework Derived CoNi@CNTs embedded Carbon Nanocages for efficient dye-sensitized solar cells, Electrochim. Acta 229 (2017) 361–370.
[66] Z. L. Li, J. Chen, H. Y. Guo, X. Fan, Z. Wen, M. H. Yeh, C. W. Yu, X. Cao, Z. L. Wang, Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater, Adv. Mater. 28 (2016) 2983–2991.
[67] R. K. Sharma, M. Agrawal, Biological effects of heavy metals: an overview, J. Environ. Biol. 26 (2005) 301–313.
[68] S. H. Hsu, C. T. Li, H. T. Chien, R. R. Salunkhe, N. Suzuki, Y. Yamauchi,K. C. Ho, K. C. W. Wu, Platinum- free counter electode comprised of metal- organic-framework(MOF)- derived cobalt sulfide nanoparticles for efficient dye-senitized solar cells (DSSCs) Sci. Rep.4 (2014) 6983.
[69] G. Aragay, J. Pons, A. Merkoci, Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection, Chem. Rev. 111 (2011) 3433–3458.
[70] E. Tahmasebi, M. Y. Masoomi, Y. Yamini, A. Morsali, Application of Mechano synthesized Azine-Decorated Zinc(II)Metal- Organic frameworks for highly efficient removal and extraction of some heavy-metal ions from aqueous samples: A comparative study, Inorg. Chem. 54 (2015) 425–433.
[71] J.-N. Hao, B. Yan, A water-stable lanthanide- functionalized MOF as a highly selective and sensitive fluorescent probe for Cd2+, Chem. Commun. 51 (2015) 7737–7740.
[72] N. Stock, S. Biswas, Synthesis of Metal-Organic Frameworks (MOFs): routes to various MOF Topologies, Morphologies, and composites, Chem. Rev. 112 (2012) 933–969.
[73] C. Dey, T. Kundu, B. P. Biswal, A. Mallick and R. Banerjee,Crystalline metal-organic frameworks (MOFs): synthesis, structure and function, Acta. Cryst. B 70 (2014) 3–10.
[74] Sergio Carrasco , Metal-Organic Frameworks for the Development of Biosensors: A Current Overview, Biosensors 8 (2018), 92.
[75] C. Petit, et al. Langmuir, Toward Understanding reactive adsorption of ammonia on Cu-MOF/Graphite Oxide Nanocomposites 27 (2011) 13043–13051.
[76] C. Petit, B. Mendoza, T.J. Bandosz, Hydrogen sulfide adsorption on MOFs and MOF/ graphite oxide composites, ChemPhysChem 11 (2010) 3678–3684.
[77] C. Petit, T.J. Bandosz, Synthesis, Characterization, and Ammonia Adsorption Properties of mesoporous metal-organic framework (MIL(Fe))-Graphite Oxide Composites: Exploring the limits of Materials Fabrication, Adv. Funct. Mater. 21 (2011) 2108–2117.
[78] C. Petit, T.J. Bandosz, Exploring the coordination chemistry of MOF- graphite oxide composites and their applications as adsorbents, Dalton Trans. 41 (2012) 4027–4035.
[79] X. Chen, Y. Wang, Y. Zhang, Z. Chen, Y. Liu, Z. Li, J. Li,Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface, Anal. Chem. 86(9) (2014)4278–4286.
[80] X. Fang, J.F. Liu, J. Wang, H. Zhao, H.X. Ren, Z.X. Li, Dual signal amplification strategy of Au nanopaticles/ZnO nanorods hybridized reduced grapheme nanosheet and multi enzyme functionalized Au@ZnO composites for ultrasensitive electrochemical detection of tumor biomarker, Biosens. Bioelectron. 97 (2017)218–225.
[81] Y. Wang, C. Hou, Y. Zhang, F. He, M.Z. Liu, X.L. Li, Preparation of grapheme nano-sheet bonded PDA/MOF micro capsules with immobilized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose, J. Mater. Chem. B 4(21)(2016) 3695–3702.
[82] C. Zhang, X.R. Wang, M. Hou, X.Y. Li, X.L. Wu, J. Ge, Immobilization on metal–organic framework engenders high sensitivity for enzymatic electrochemical detection, ACS Appl. Mater. Interfaces 9(16) (2017) 13831–13836.
[83]F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, Journal of Environmental Management 92 (2011) 407-418.
[84]N.K. Srivastava, C.B. Majumder, Novel biofiltration methods for the treatment of heavy metals from industrial wastewater, J. Hazard. Mater. 151 (2008) 1-8.
[85] N. Tekaya, O. Saiapina, H. Ben Ouada, F. Lagarde, H. Ben Ouada, N.Jaffrezic-Renault, Ultra-sensitive conductometric detection of heavy metalsbased on inhibition of alkaline phosphatase activity from Arthrospiraplatensis, Bioelectrochemistry 90 (2013) 24–29.
[86] G.L. Turdean, Design and development of biosensors for the detection of heavy metal toxicity, Int. J. Electrochem. (2011) 1–15.
[87] W. S. Wan Ngah, M. A. K. M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review, Bioresour. Technol. 99 ( 2008) 3935–3948.
[88] A. Singh, R.K. Sharma, M. Agrawal, F.M. Marshall, Health risk assessment of heavy metals via dietary intake of food stuffs from the wastewater irrigated site of a dry tropical area of India, Food Chem. Toxicol. 48 (2010) 611–619.
[89] C. Gao, X.Y. Yu, S.Q. Xiong, J.-H. Liu, X.J. Huang, Electrochemical detection of arsenic (III) completely free from noble metal: Fe3O4microspheres-roomtemperature ionic liquid composite showing better performance than gold, Anal. Chem. 85 (2013) 2673–2680.
[90] K. Tag, K. Riedel, H.-J. Bauer, G. Hanke, K.H.R. Baronian, G. Kunze, Amperomet-ric detection of Cu2+by yeast biosensors using flow injection analysis (FIA),Sens. Actuators B: Chem. 122 (2007) 403–409.
[91] X. Rajaganapathy, M.P. Sreekumar, Heavy metal contamination in soil,water and fodder and their presence in livestock and products: a review, J. Environ. Sci. Technol. 4 (2011) 234–249.
[92] M.R. Guascito, C. Malitesta, E. Mazzotta, A. Turco, Inhibitive determination of metal ions by an amperometric glucose oxidase biosensor, Sens. Actuators B:Chem. 131 (2008) 394–402.
[93] M. Li, H. Gou, I. Al-Ogaidi, and N. Wu, Nanostructured Sensors for Detection of Heavy Metals: A Review, ACS Sustainable Chem. Eng. 2013, 1, 713−723.
[94] K.E.Lorber, Monitoring of heavy metals by energy dispersive X-ray fluorescence spectrometry, Waste Manage. Res. 4 ( 1986) 3−13.×8600400102
[95] R. Kunkel, S.E.Manahan, Atomic absorption analysis of strong heavy metal chelating agents in water and waste water, Anal. Chem 45(1973) 1465−1468.
[96] M. Lopez-Artiguez, A. Cameán, M. Repetto, Preconcentration of heavy metals in urine and quantification by inductively coupled plasma atomic emission spectrometry, J. Anal. Toxicol. 17 (1993) 18−22.
[97] J. Wang, Stripping Analysis, VCH Publishers, New York, 1985.
[98] J. Buffle and M.L. Tercier-Waeber, Trends Anal. Chem., 24 (2005) 172.
[99] J. Wang, Analytical Electrochemistry, 3rd ed, Wiley, New York, 2006.
[100] O. K. Farha and J. T. Hupp, Rational design, synthesis, purification, and activation of metal-organic framework materials, Acc. Chem. Res. 43 (2010) 1166-1175.
[101]. D. Zhao, D. J. Timmons, D. Q. Yuan and H. C. Zhou, Tuning the topology and functionality of metal-organic frameworks by ligand design, Acc.Chem. Res., 44 ( 2010) 123-133.
[102] B. Seoane, J. Coronas, I. Gascon, M. Etxeberria Benavides, O. Karvan, J. Caro, F. Kapteijnand J. Gascon, Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44 (2015) 2421-2454.
[103]. J. L. C. Rowsell and O. M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks, J. Am. Chem. Soc. 128 (2006) 1304-1315.
[104] K. Schlichte, T. Kratzke and S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, MicroporousMesoporous Mater.73 (2004) 81-88.
[105] B. Liu and B. Smit, Comparative Molecular simulation study of CO2/N2 and CH4/N2 Separation in zeolites and metal-organic frameworks, J. Am. Chem. Soc. 25 (2009) 5918-5926.
[106] Y. Wang, H. Ge, G. Ye, H. Chen and X. Hu, Carbon functionalized metal organic framework/ Nafion composites as novel electrode materials for ultrasensitive determination of dopamine, J. Mater. Chem. B 3 (2015) 3747-3753.
[107] Z. Xu, L. Yang and C. Xu, Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range, Anal. Chem. 87 (2015) 3438-3444.
[108] Y. Wang, L. Wang, H. Chen, X. Hu and S. Ma, Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal-metalloporphyrin framework modified electrode, ACS Appl. Mater. Interfaces 8 (2016) 18173-18181.
[109] Y. Zhang, X. Bo, C. Luhana, H. Wang, M. Li and L. Guo, Facile synthesis of a Cu- based MOF confined in macroporous carbon hybrid material with enhanced electrocatalytic ability, Chem.Commun.49 (2013) 6885-6887.
[110] X. Fang, B. Zong and S. Mao, Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing, Nano-Micro Lett. 10 (2018) 64.
[111] Y.J. Yu, C. Yu, Y.Z. Niu, J. Chen, Y.L. Zhao, Y.C. Zhang, R.F.Gao, J.L. He, Target triggered cleavage effect of DNAzyme: relying on Pd–Pt alloys functionalized Fe-MOFs for amplified detection of Pb2+, Biosens. Bioelectron. 101 (2018) 297–303.
[112] H.X. Guo, D.F. Wang, J.H. Chen, W. Weng, M.Q. Huang, Z. S. Zheng, Simple fabrication of flake-like NH2-MIL-53(Cr) and its application as an electrochemical sensor for the detection of Pb2+, Chem. Eng. J. 289 (2016) 479–485.
[113] J.C. Jin, J. Wu, G.P. Yang, Y.L. Wu, Y.Y. Wang, A microporous anionic metal–organic framework for a highly selective and sensitive electrochemical sensor of Cu2+ ions. Chem. Commun. 52 (2016) 8475–8478.
[114] J. C. Jin, J. Wu, G. P. Yang, Y. L. Wua and Y. Y. Wang, A microporous anionic metal–organic framework for highly selective and sensitive electrochemical sensor of Cu2+ ion, Electronic Supplementary Material (ESI) for Chem. Comm. J.
[115] M. Saraf, R. Rajak, S.M. Mobin, A fascinating multitasking Cu-MOF/rGO hybrid for high performance supercapacitors and highly sensitive and selective electrochemical nitrite sensors, J. Mater. Chem. A 4, 42 (2016)16432–16445.
[116] D. A. Perry, T. M. Razer, K. M. Primm, T. Chen, J. B. Shamburger et al., Surface-enhanced infrared absorption and density functional theory study of dihydroxybenzene isomer adsorption on silver nanostructures, J. Phys. Chem. C 117(16) (2013) 8170–8179.
[117] Y. Yang, Q. Wang, W. Qiu, H. Guo, F. Gao, Covalent immobilization of Cu3(btc)2 at chitosan–electro reduced grapheme oxide hybrid film and its application for simultaneous detectionof dihydroxybenzene isomers, J. Phys. Chem. C 120(18)(2016)9794–9803.
[118] X. Zhou, X. Yan, Z. Hong, X. Zheng, F. Wang, Design of magnetic core–shell Ni@graphene composites as a novel electrochemical sensing platform, Sens. Actuators B-Chem. 255(2018)2959–2962.
[119] J. Li, J. Xia, F. Zhang, Z. Wang, Q. Liu, An electrochemical sensor based on copper-based metal–organic frameworks-graphene composites for determination of dihydroxybenzene isomers in water, Talanta 181 (2018) 80–86.
[120] S.S. Huang, Y.X. Qu, R.N. Li, J. Shen, L.W. Zhu, Biosensor based on horseradish peroxidase modified carbon nanotubes for determination of 2,4-dichlorophenol,Microchim. Acta., 162 (1–2) (2008) 261–268.
[121] S. Dong, G. Suo, N. Li, Z. Chen, L. Peng, Y. Fu, Q. Yang, T. Huang, A simple strategy to fabricate high sensitive 2,4-dichlorophenol electrochemical sensor based on metal organic framework Cu3(BTC)2, Sens. Actuators B-Chem. 222 (2016) 972–979.
[122] Y. Wang, Y.C. Wu, J. Xie, X.Y. Hu, Metal–organic framework modified carbon paste electrode for lead sensor. Sens. Actuators B-Chem. 177 (2013) 1161–1166.
[123] J. Yang, L.T. Yang, H.L. Ye, F.Q. Zhao, B.Z. Zeng, Highly dispersed Au-Pd alloy nanoparticles immobilized on UiO-66-NH2 metal–organic framework for the detection of nitrite. Electrochim. Acta 219 (2016) 647–654.
[124]. J. Zhou, X. Li, L.L. Yang, S.L. Yan, M.M. Wang et al., The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal. Chim. Acta 899 (2015) 57–65.