MXenes Composites


MXenes Composites

Aqib Muzaffar, M. Basheer Ahamed, Kalim Deshmukh

The chemical transformations of MAX phase compounds especially in the form of chemical exfoliations into new functional and novel two dimensional (2D) nitrides and carbides lead to the formation of so called MXenes. The evolution of these 2D novel materials in the field of material science and technology has brought new opportunities, and their continuous exploitation has opened a new window in the field of electronics. MXenes form a family of layered 2D materials having the combined hydrophilic surfaces with metallic conductivity. The delamination of MXenes produces single–layered nanosheets with a thickness of the order of nanometers with lateral size of the order of micrometers. The higher aspect ratio of these delaminated layers renders MXene promising nanofillers for multifunctional polymeric nanocomposites. The addition of other nanofillers to MXene forming hybrid fillers for polymeric composites has been an innovative approach to yield multifunctional materials. This chapter highlights the fundamentals of MXene composites along with their physical and chemical characteristics and potential applications.

2D Materials, MXenes, MAX Phases, Polymer Composites, Applications

Published online 5/30/2019, 32 pages

Citation: Aqib Muzaffar, M. Basheer Ahamed, Kalim Deshmukh, MXenes Composites, Materials Research Foundations, Vol. 51, pp 105-136, 2019


Part of the book on MXenes: Fundamentals and Applications

[1] K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences, 102 (2005) 10451-10453.
[2] R. Ma, T. Sasaki, Nanosheets of oxides and hydroxides: Ultimate 2D charge‐bearing functional crystallites. Adv. Mat., 22 (2010) 5082-5104.
[3] M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two-dimensional transition metal carbides. ACS Nano, 6 (2012) 1322-1331.
[4] M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. Barsoum, Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mat., 23 (2011), 4248-4253.
[5] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science, 306 (2004) 666-669.
[6] M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J. Billinge, M.W. Barsoum, Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Comm., 50 (2014) 9517-9520.
[7] P. Urbankowski, B. Anasori, T. Er, D. Makaryan, S. Kota, P.L. Walsh, M. Zhao, V.B. Shenoy, M.W. Barsoum, Y. Gogotsi, Synthesis of two-dimensional titanium nitride Ti 4 N 3 (MXene). Nanoscale, 8 (2016) 11385-11391.
[8] M.W. Barsoum, M. Radovic, Elastic and mechanical properties of the MAX phases. Ann. Rev. Mat. Res., 41 (2011) 195-227.
[9] A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: Design, fabrication and applications. Renewable and Sustainable Energy Rev., 101 (2019) 123-145.
[10] A. Muzaffar, M.B. Ahamed, Iron molybdate and manganese dioxide microrods as a hybrid structure for high-performance supercapacitor applications. Cer. Int., 45 (2019) 4009-4015.
[11] Y. Xie, P.R.C. Kent, Hybrid density functional study of structural and electronic properties of functionalized Ti n+ 1 X n (X= C, N) monolayers. Phy. Rev. B, 87 (2013) 235441.
[12] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper. Nature, 448 (2007) 457.
[13] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes. Science, 343 (2014) 752-754.
[14] H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 342 (2013) 95-98.
[15] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335 (2012) 442-444.
[16] J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 331 (2011) 568-571.
[17] M. Khazaei, A. Ranjbar, M. Arai, T. Sasaki, S. Yunoki, Electronic properties and applications of MXenes: a theoretical review. J. Mat. Chem. C, 5 (2017) 2488-2503.
[18] S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 7 (2013) 2898-2926.
[19] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, L. Colombo, Electronics based on two-dimensional materials. Nature Nanotechnol., 9 (2014)768.
[20] G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, Recent advances in two-dimensional materials beyond graphene. ACS Nano, 9 (2015) 11509-11539.
[21] M. Khazaei, A. Ranjbar, M. Arai, S. Yunoki, Topological insulators in the ordered double transition metals M 2′ M ″C 2 MXenes (M′= Mo, W; M ″= Ti, Zr, Hf). Phy. Rev. B, 94 (2016) 125152.
[22] C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.L. Ma, H.M. Cheng, W. Ren, 2015. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Mat., 14 (2015) 1135.
[23] B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9 (2015), 9507-9516.
[24] J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.Å. Näslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. Barsoum, Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mat., 26 (2014) 2374-2381.
[25] Y. Yang, S. Umrao, S. Lai, S. Lee, Large-Area Highly Conductive Transparent Two-Dimensional Ti2CT x Film. J. Phy. Chem. Lett., 8 (2017) 859-865.
[26] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall’Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341 (2013) 1502-1505.
[27] R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CT x MXene electrodes for supercapacitor applications. Chem. Mat., 27 (2015) 5314-5323.
[28] Y. Xie, Y. Dall’Agnese, M. Naguib, Y. Gogotsi, M.W. Barsoum, H.L. Zhuang, P.R. Kent, Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 8 (2014) 9606-9615.
[29] F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353 (2016) 1137-1140.
[30] Q. Peng, J. Guo, Q. Zhang, J. Xiang, B. Liu, A. Zhou, R. Liu, Y. Tian, Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. J. Am. Chem. Soc., 136 (2014) 4113-4116.
[31] G. Fan, X. Li, Y. Ma, Y. Zhang, J. Wu, B. Xu, T. Sun, D. Gao, J. Bi, Magnetic, recyclable Pt y Co 1− y/Ti 3 C 2 X 2 (X= O, F) catalyst: a facile synthesis and enhanced catalytic activity for hydrogen generation from the hydrolysis of ammonia borane. NJC, 41(2017) 2793-2799.
[32] F. Liu, A. Zhou, J. Chen, H. Zhang, J. Cao, L. Wang, Q. Hu, Preparation and methane adsorption of two-dimensional carbide Ti 2 C. Adsorption, 22 (2016) 915-922.
[33] J. Ran, G. Gao, F.T. Li, T.Y. Ma, A. Du, S.Z. Qiao, Ti 3 C 2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nature Comm., 8 (2017) 13907.
[34] M.P. Tran, C. Detrembleur, M. Alexandre, C. Jerome, J.M. Thomassin, The influence of foam morphology of multi-walled carbon nanotubes/poly (methyl methacrylate) nanocomposites on electrical conductivity. Polymer, 54 (2013) 3261-3270.
[35] M. Khazaei, M. Arai, T. Sasaki, A. Ranjbar, Y. Liang, S. Yunoki, OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Phy. Rev. B, 92 (2015) 075411.
[36] Y. Liu, H. Xiao, W.A. Goddard III, Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc., 138 (2016) 15853-15856.
[37] H. Weng, A. Ranjbar, Y. Liang, Z. Song, M. Khazaei, S. Yunoki, M. Arai, Y. Kawazoe, Z. Fang, X. Dai, Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phy. Rev. B, 92 (2015) 075436.
[38] L. Li, Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): The effect of Mo substitution. Com. Mat. Sci., 124 (2016) 8-14.
[39] C. Si, K.H. Jin, J. Zhou, Z. Sun, F. Liu, Large-gap quantum spin Hall state in MXenes: d-band topological order in a triangular lattice. Nano Lett., 16 (2016) 6584-6591.
[40] H. Fashandi, V. Ivády, P. Eklund, A.L. Spetz, M.I. Katsnelson, I.A. Abrikosov, Dirac points with giant spin-orbit splitting in the electronic structure of two-dimensional transition-metal carbides. Phys. Rev. B, 92 (2015) 155142.
[41] M.F. Cover, O. Warschkow, M.M.M. Bilek, D.R. McKenzie, A comprehensive survey of M2AX phase elastic properties. J. Phy.: Cond. Matt., 21 (2009) 305403.
[42] Z.M. Sun, Progress in research and development on MAX phases: a family of layered ternary compounds. Int.Mat. Rev., 56 (2011) 143-166.
[43] M. Khazaei, M. Arai, T. Sasaki, M. Estili, Y. Sakka, Trends in electronic structures and structural properties of MAX phases: a first-principles study on M2AlC (M= Sc, Ti, Cr, Zr, Nb, Mo, Hf, or Ta), M2AlN, and hypothetical M2AlB phases. J. Phy.: Cond. Matt., 26 (2014) 505503.
[44] J.F. Nye, Physical properties of crystals: their representation by tensors and matrices. Oxford University Press. (1985).
[45] X.L. Qi, S.C. Zhang, Topological insulators and superconductors. Rev. Mod. Phy., 83 (2011) 1057.
[46] M.A. Hope, A.C. Forse, K.J. Griffith, M.R. Lukatskaya, M. Ghidiu, Y. Gogotsi, C.P. Grey, NMR reveals the surface functionalisation of Ti3C2 MXene. Phy. Chem.Chem. Phy., 18 (2016) 5099-5102.
[47] K.D. Fredrickson, B. Anasori, Z.W. Seh, Y. Gogotsi, A. Vojvodic, Effects of applied potential and water intercalation on the surface chemistry of Ti2C and Mo2C MXenes. J. Phy. Chem. C, 120 (2016) 28432-28440.
[48] P. Srivastava, A. Mishra, H. Mizuseki, K.R. Lee, A.K. Singh, Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS App. Mat. & Int., 8 (2016) 24256-24264.
[49] A. Mishra, P. Srivastava, H. Mizuseki, K.R. Lee, A.K. Singh, Isolation of pristine MXene from Nb4AlC3 MAX phase: a first-principles study. Phy. Chem.Chem. Phy., 18 (2016) 11073-11080.
[50] M. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mat., 29 (2017) 7633-7644.
[51] K. Chen, N. Qiu, Q. Deng, M.H. Kang, H. Yang, J.U. Baek, Y.H. Koh, S. Du, Q. Huang, H.E. Kim, Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN: In Vitro Tests and First-Principles Calculations. ACS BioMat. Sci.& Eng., 3(2017) 2293-2301.
[52] M.W. Barsoum, T. El‐Raghy, L. Farber, M. Amer, R. Christini, A. Adams, The Topotactic Transformation of Ti3SiC2 into a Partially Ordered Electrochem. Soc., 146 (1999) 3919-3923.
[53] J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, Q. Huang, A two‐dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angewandte Chem. Int. Ed., 55 (2016) 5008-5013.
[54] M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi, M.W. Barsoum, Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mat., 28 (2016) 3507-3514.
[55] X. Yu, X. Cai, H. Cui, S.W. Lee, X.F. Yu, B. Liu, Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 9 (2017) 17859-17864.
[56] B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nature Rev. Mat., 2 (2017) 16098.
[57] M. Kurtoglu, M. Naguib, Y. Gogotsi, M.W. Barsoum, First principles study of two-dimensional early transition metal carbides. Mrs Comm., 2 (2012) 133-137.
[58] T. Hu, M. Hu, Z. Li, H. Zhang, C. Zhang, J. Wang, X. Wang, Interlayer coupling in two-dimensional titanium carbide MXenes. Phys. Chem. Chemical Phy., 18 (2016) 20256-20260.
[59] Y. Gogotsi, Chemical vapour deposition: transition metal carbides go 2D. Nature Mat., 14 (2015).
[60] C. Xu, L. Wang, Z. Liu, L. Chen, J. Guo, N. Kang, X.L. Ma, H.M. Cheng, W. Ren, Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Mat., 14 (2015) 1135.
[61] C. Dai, H. Lin, G. Xu, Z. Liu, R. Wu, Y. Chen, Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chem. Mat., 29 (2017) 8637-8652.
[62] G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang, Q. Zhang, W. Huang, P. Chen, J. Shao, X. Dong, Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS App. Mat. & Int., 9 (2017) 40077-40086.
[63] Y. Xie, M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, X. Yu, K.W. Nam, X.Q. Yang, A.I. Kolesnikov, P.R. Kent, Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc., 136 (2014) 6385-6394.
[64] M. Ashton, K. Mathew, R.G. Hennig, S.B. Sinnott, Predicted surface composition and thermodynamic stability of MXenes in solution. J. Phy. Chem. C, 120 (2016) 3550-3556.
[65] U. Yorulmaz, A. Özden, N.K. Perkgöz, F. Ay, C. Sevik, Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation. Nanotechno., 27 (2016) 335702.
[66] X.H. Zha, K. Luo, Q. Li, Q. Huang, J. He, X. Wen, S. Du, Role of the surface effect on the structural, electronic and mechanical properties of the carbide MXenes. EPL (Europhysics Letters), 111 (2015) 26007.
[67] V.N. Borysiuk, V.N. Mochalin, Y. Gogotsi, Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnol., 26 (2015) 265705.
[68] Z. Guo, J. Zhou, C. Si, Z. Sun, Flexible two-dimensional Tin+1Cn (n= 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phy. Chem. Chem. Phy., 17 (2015) 15348-15354.
[69] X. Sang, Y. Xie, M.W. Lin, M. Alhabeb, K.L. Van Aken, Y. Gogotsi, P.R. Kent, K. Xiao, R.R. Unocic, Atomic defects in monolayer titanium carbide (Ti3C2T x) MXene. ACS Nano, 10 (2016) 9193-9200.
[70] Z. Ling, C.E. Ren, M.Q. Zhao, J. Yang, J.M. Giammarco, J. Qiu, M.W. Barsoum, Y. Gogotsi, Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 111 (2014) 16676-16681.
[71] X. Zhang, Z. Zhang, Z. Zhou, MXene-based materials for electrochemical energy storage. J. Energy Chem.., 27 (2018) 73-85.
[72] L. Li, Effects of the interlayer interaction and electric field on the band gap of polar bilayers: A case study of Sc2CO2, The J. Phy. Chem. C, 120 (2016) 24857-24865.
[73] Y. Lee, Y. Hwang, S.B. Cho, Y.C. Chung, Achieving a direct band gap in oxygen functionalized-monolayer scandium carbide by applying an electric field. Phy. Chem. Chem. Phy., 16 (2014) 26273-26278.
[74] H. Weng, R. Yu, X. Hu, X. Dai, Z. Fang, Quantum anomalous Hall effect and related topological electronic states. Adv. Phy., 64 (2015) 227-282.
[75] B. Silvi, A. Savin, Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 371 (1994) p.683.
[76] K.J. Harris, M. Bugnet, M. Naguib, M.W. Barsoum, G.R. Goward, Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CTx using NMR spectroscopy. The J. Phy. Chem. C, 119 (2015) 13713-13720.
[77] H. Weng, A. Ranjbar, Y. Liang, Z. Song, M. Khazaei, S. Yunoki, M. Arai, Y. Kawazoe, Z. Fang, X. Dai, Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phy. Rev.B, 92 (2015) 075436.
[78] A. Miranda, J. Halim, M.W. Barsoum, A. Lorke, Electronic properties of freestanding Ti3C2Tx MXene monolayers. App. Phy. Lett., 108 (2016) 033102.
[79] B. Anasori, C. Shi, E.J. Moon, Y. Xie, C.A. Voigt, P.R. Kent, S.J. May, S.J. Billinge, M.W. Barsoum, Y. Gogotsi, Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Hor., 1 (2016) 227-234.
[80] A. Muzaffar, K. Muthusamy, M.B. Ahamed, Ferrous nitrate–nickel oxide (Fe(NO3)2–NiO) nanospheres incorporated with carbon black and polyvinylidenefluoride for supercapacitor applications. J. Electrochem. Energy Con. Stor., 16 (2019) 031008.
[81] A.D. Dillon, M.J. Ghidiu, A.L. Krick, J. Griggs, S.J. May, Y. Gogotsi, M.W. Barsoum, A.T. Fafarman, Highly conductive optical quality solution‐processed films of 2D titanium carbide. ADV. Fun. Mat., 26 (2016) 4162-4168.
[82] H. Wang, Y. Wu, J. Zhang, G. Li, H. Huang, X. Zhang, Q. Jiang, Enhancement of the electrical properties of MXene Ti3C2 nanosheets by post-treatments of alkalization and calcination. Mat. Lett., 160 (2015) 537-540.
[83] N.C. Osti, M. Naguib, A. Ostadhossein, Y. Xie, P.R. Kent, B. Dyatkin, G. Rother, W.T. Heller, A.C. Van Duin, Y. Gogotsi, E. Mamontov, Effect of metal ion intercalation on the structure of MXene and water dynamics on its internal surfaces. ACS Appl. Mat. & Int., 8 (2016) 8859-8863.
[84] D.J. Singh, Doping-dependent thermopower of PbTe from Boltzmann transport calculations. Phy. Rev. B, 81 (2010)195217.
[85] G.R. Berdiyorov, Effect of surface functionalization on the electronic transport properties of Ti3C2 MXene. EPL (Europhysics Letters), 111 (2015) 67002.
[86] H. Lashgari, M.R. Abolhassani, A. Boochani, S.M. Elahi, J. Khodadadi, Electronic and optical properties of 2D graphene-like compounds titanium carbides and nitrides: DFT calculations. Sol. St. Comm., 195 (2014) 61-69.
[87] G.R. Berdiyorov, Optical properties of functionalized Ti3C2T2 (T= F, O, OH) MXene: First-principles calculations. AIP Adv., 6 (2016) 055105.
[88] H. Kumar, N.C. Frey, L. Dong, B. Anasori, Y. Gogotsi, V.B. Shenoy, Tunable magnetism and transport properties in nitride MXenes. ACS Nano, 11 (2017) 7648-7655.
[89] A. Chandrasekaran, A. Mishra, A.K. Singh, Ferroelectricity, antiferroelectricity, and ultrathin 2D electron/hole gas in multifunctional monolayer MXene. Nano Lett., 17 (2017) 3290-3296.
[90] W. Chen, H.F. Li, X. Shi, H. Pan, Tension-tailored electronic and magnetic switching of 2D Ti2NO2. The J. Phy. Chem. C, 121 (2017) 25729-25735.
[91] N.J. Lane, M.W. Barsoum, J.M. Rondinelli, Correlation effects and spin-orbit interactions in two-dimensional hexagonal 5d transition metal carbides, Tan+1Cn (n= 1, 2, 3). EPL (Europhysics Letters), 101 (2013) 57004.
[92] S. Zhao, W. Kang, J. Xue, Manipulation of electronic and magnetic properties of M2C (M= Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. App. Phy. Lett., 104 (2014) 133106.
[93] G. Gao, G. Ding, J. Li, K. Yao, M. Wu, M. Qian, Monolayer MXenes: promising half-metals and spin gapless semiconductors. Nanoscale, 8 (2016) 8986-8994.
[94] J. Hu, B. Xu, C. Ouyang, S.A. Yang, Y. Yao, Investigations on V2C and V2CX2 (X= F, OH) monolayer as a promising anode material for Li ion batteries from first-principles calculations. The J. Phy. Chem. C, 118 (2014) 24274-24281.
[95] L.Y. Gan, Y.J. Zhao, D. Huang, U. Schwingenschlögl, First-principles analysis of MoS2/Ti2C and MoS¬2/Ti2CY2 (Y= F and OH) all-2D semiconductor/metal contacts. Phy. Rev. B, 87 (2013) 245307.
[96] T.C. Leung, C.L. Kao, W.S. Su, Y.J. Feng, C.T. Chan, Relationship between surface dipole, work function and charge transfer: Some exceptions to an established rule. Phy. Rev. B, 68 (2003) 195408.
[97] S. Roldán, C. Blanco, M. Granda, R. Menéndez, R. Santamaría, 2011. Towards a further generation of high‐energy carbon‐based capacitors by using redox‐active electrolytes. Angewandte Chem. Int. Ed., 50 (2011) 1699-1701.
[98] M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications. Energy & Environ. Sci., 5 (2012) 5147-5162.
[99] A.N. Gandi, H.N. Alshareef, U. Schwingenschlögl, Thermoelectric performance of the mxenes M2Co2 (M= Ti, Zr, or Hf). Chem. Mat., 28 (2016) 1647-1652.
[100] X.H. Zha, J. Yin, Y. Zhou, Q. Huang, K. Luo, J. Lang, J.S. Francisco, J. He, S. Du, Intrinsic structural, electrical, thermal, and mechanical properties of the promising conductor Mo2C MXene. J. Phy. Chem. C, 120 (2016) 15082-15088.
[101] N.S. Venkataramanan, M. Khazaei, R. Sahara, H. Mizuseki, Y. Kawazoe, First-principles study of hydrogen storage over Ni and Rh doped BN sheets. Chem. Phy., 359 (2009) 173-178.
[102] K.M. Bui, V.A. Dinh, T. Ohno, Diffusion mechanism of polaron–Li vacancy complex in cathode material Li2FeSiO4. App. Phy. Exp., 5 (2012) 125802.
[103] M.S. Islam, C.A. Fisher, Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem. Soc. Rev., 43 (2014) 185-204.
[104] J.M. Clark, P. Barpanda, A. Yamada, M.S. Islam, Sodium-ion battery cathodes Na2FeP2O7 and Na2MnP2O7: diffusion behaviour for high rate performance. J. Mat. Chem. A, 2 (2014) 11807-11812.
[105] P.M. Panchmatia, A.R. Armstrong, P.G. Bruce, M.S. Islam, Lithium-ion diffusion mechanisms in the battery anode material Li1+ xV1− xO2. Phy. Chem. Chem. Phy., 16 (2014) 21114-21118.
[106] Z. Hu, K. Zhang, Z. Zhu, Z. Tao, J. Chen, FeS2 microspheres with an ether-based electrolyte for high-performance rechargeable lithium batteries. J. Mat. Chem. A, 3 (2015) 12898-12904.
[107] J. Come, M. Naguib, P. Rozier, M.W. Barsoum, Y. Gogotsi, P.L. Taberna, M. Morcrette, P. Simon, A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J. Electrochem. Soc., 159 (2012) A1368-A1373.
[108] X. Zhu, B. Liu, H. Hou, Z. Huang, K.M. Zeinu, L. Huang, X. Yuan, D. Guo, J. Hu, J. Yang, Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II) and Hg(II). Electrochim. Acta, 248 (2017) 46-57.
[109] X. Chen, X. Sun, W. Xu, G. Pan, D. Zhou, J. Zhu, H. Wang, X. Bai, B. Dong, H. Song, Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale, 10 (2018) 1111-1118.
[110] K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, Y. Gogotsi, Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets. Sci. Rep., 7 (2017) 1598.
[111] K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev., 47 (2018) 5109-5124.
[112] X. Han, J. Huang, H. Lin, Z. Wang, P. Li, Y. Chen, 2D ultrathin mxene‐based drug‐delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthcare Mat., 7 (2018) 1701394.