Biofuel Production from Food Processing Waste


Biofuel Production from Food Processing Waste

Nivedita Sharma, Kanika Sharma, Neha Kaushal, Ranjana Sharma

Food waste is simply disposed off in land fillings/incinerators worldwide without making much use of it. However this food waste is rich in many nutrients and by employing suitable technology, it can be converted to value added products like biofuel. This type of food waste management not only resolves the serious pollution problem but also helps to reduce partially the dependency of the energy sector on crude oil. The important aspects like a critical evaluation of types of food waste, current food waste scenario and its strategic way of management and bioconversion to biofuel have thoroughly been explored in this chapter to discover the utility of this waste in real terms.

Food Processing Waste, Biofuel, Fermentation, Saccharification, Renewable Energy

Published online 2/21/2019, 44 pages

Citation: Nivedita Sharma, Kanika Sharma, Neha Kaushal, Ranjana Sharma, Biofuel Production from Food Processing Waste, Materials Research Foundations, Vol. 46, pp 177-220, 2019


Part of the book on Microbial Fuel Cells

[1] L. Cadoche, G.D. Lopez, Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biology of Wastes, 30 (1989) 153-157.
[2] J. Sheehan, V. Cambreco, J. Duffield, M. Garboski, H. Shapouri, An overview of biodiesel and petroleum diesel life cycles, A report by US Department of Agriculture and Energy, Washington, D.C, 1998, pp. 1-35.
[3] P. Awasthi, S. Shrivastava, A.C. Kharkwal, A. Varma, Biofuel from agricultural waste: a review. Int. J. Curr. Microbiol. App. Sci. 4 (2015) 470-477.
[4] Digital trends.
[5] S.J.B. Duff, W.D. Murray, Bioconversion of forest products industry waste cellulosics to fuel ethanol: a review, Bioresource Technol. 55 (1996) 1-33.
[6] M. Melikoglu, C.S.K. Lin, C. Webb, Analysing global food waste problem: pinpointing the facts and estimating the energy content, Cent. Eur. J. Eng, 3 (2013) 157-164.
[7] FAO, FAOSTAT, 21.02.2013
[8] U. Gustafsson, W. Wills, A. Draper, Food and public health: contemporary issues and future directions, Crit. Publ. Health 21 (2011) 385-393.
[9] Sharma N and Sharma N. 2016. Bioethanol production from alkaline hydrogen peroxide pretreated Populas deltoids wood, International Journal of Bioassays 5 (2) 4810-4816.
[10] The hindu business line.,,
[11] L. Reijnders, Conditions for the sustainability of biomass based fuel use, Energy Pol. 34 (2006) 863-876.
[12] P. Vasudevan, S. Sharma, A. Kumar, Liquid fuel from biomass: an overview, J. Sci. Ind. Res. 64 (2005) 822-831.
[13] T.I.N. Ezejiofor, U.E. Enebaku, C. Ogueke, Waste to wealth-value recovery from agro-food processing wastes using biotechnology: A review, British Biotechnology Journal, 4 (2014) 2231-2927.
[14] IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Cambridge Univ. Press, 2014.
[15] V Dyk, E Chanchorn, M.W. Van Dyke, The Saccharomyces cerevisiae protein Stm1p facilitates ribosome preservation during quiescence, Biochem. Biophys. Res. Commun, 430 (2013) 745-50
[16] F Raganati, G Olivieri G, A Procentese, M.E. Salatino P, A Marzocchella A, Butanol production by bioconversion of cheese whey in a continuous packed bed reactor, Bioresour. Technol. 138 (2013) 259-265.
[17] WRAP. 2015.
[18] B. Mahro, M. Timm, Potential of biowaste from the food industry as a biomass resource, Engineer. Life Sci. 7 (2007) 463-476.
[19] T. Katami, A. Yasuhara, T. Shibamoto, Formation of dioxins from incineration of foods found in domestic garbage, Environmental Science and Technology, 38 (2004) 1062-1065.
[20] H. Ma, The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage, Renew. Energy, 34 (2009) 1466-1470.
[21] S.K. Han, H.S. Shin, Biohydrogen production by anaerobic fermentation of food waste, Int. J. Hydrogen Energ. 29 (2004) 569-577.
[22] Y. Ohkouchi, Y. Inoue, Impact of chemical components of organic wastes on l(+)-lactic acid production, Bioresource Technol. 98 (2007) 546-553.
[23] K. Sakai, Y. Ezaki, Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora, J. Biosci. Bioeng. 101 (2006) 457-463.
[24] Q. Wang, Bioconversion of kitchen garbage to lactic acid by two wild strains of Lactobacillus species, Journal of Environmental Science and Health – Part A Toxic/Hazardous Substances and Environmental Engineering, 40 (2005) 1951-1962.
[25] S.Y. Yang, Lactic acid fermentation of food waste for swine feed, Bioresource Technol. 97 (2006) 1858-1864.
[26] C. Zhang, The anaerobic co-digestion of food waste and cattle manure, Bioresource Technol. 129 (2013) 170-176.
[27] Y. Koike, Production of fuel ethanol and methane from garbage by high-efficiency twostage fermentation process, J. Biosci. Bioeng. 108 (2009) 508-512.
[28] Y. He, Recent advances in membrane technologies for biorefining and bioenergy production, Biotechnol. Adv. 30 (2012) 817-858.
[29] J. Pan, Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation, Int. J. Hydrogen Energ. 33 (2008) 6968-6975.
[30] M.S. Rao, S.P. Singh, Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield–organic loading relationships for process optimization, Bioresource Technol. 95(2004) 173-185.
[31] WRAP, Household food waste, 2015.
[32] A. Lundgren, T. Hjertberg, Ethylene from renewable resources, Surf. Renew. Resour. (2010) 109-126.
[33] A.B. Thomsen, C. Medina, B.K. Ahring, Biotechnology in ethanol production, New Emerg Bioenergy Technol. 2 (2003) 40-44.
[34] R.J. Kawa, C. Joanna, P. Elzbieta, Effect of raw material quality on fermentation activity of distillery yeast, Polish J. Food Nutri. Sci, 57 (2007) 275-279.
[35] Joanna Kawa-Rygielska, Anna Czubaszek, Witold Pietrzak, Some aspects of baking industry wastes utilization in bioethanol production, Zeszyty Problemowe Postępów Nauk Rolniczych, 575 (2013) 71–77.
[36] K. Ohgren, A. Rudolf, M. Galbe, G. Zacchi, Fuel ethanol production from steam-pretreated cornstover using SSF at higher dry matter content, Biomass Bioenerg. 30 (2006) 863-869.
[37] H.S. Oberoi, P.V. Nadlani, L. Saida, S. Bansal, J.D. Hughes, Ethanol production from banana peels using statistically optimized simultaneous saccharification and fermentation process, Waste Manag. 31 (2011) 1576-1584.
[38] D. Arapoglou, T. Varzakas, A. Vlyssides, C. Israilides, Ethanol production from potato peelwaste (PPW), Waste Manag. 30 (2010) 1898-1902.
[39] J.W. Jensen, C. Felby, H. Jorgensen, G.O. Ronsh, N.D. Norholm, Enzymatic processing of municipal solid waste, Waste Manag. 34 (2010) 2497–2503.
[40] J.H. Kim, J.C. Lee, D. Pak, Feasibility of producing ethanol from food waste, Waste Manag. 31 (2011) 2121-2125.
[41] R.C. Agu, A.E. Amadife, C.M. Ude, A. Onyia, E.O. Ogu, M. Okafor, E. Ezejiofor, Combined heat treatment and acid hydrolysis of cassava grate waste (CGW) biomass for ethanol production, Waste Manag. 17 (1997) 91–96.
[42] K. Dewettinck, F. Van Bockstaee, B. Kühne, D. Van de Walle, T.M. Courtens, X. Gellynck, Nutritional value of bread: influence of processing, food interaction and consumer perception, J. Cereal Sci. 48 (2008) 243-257.
[43] S.S. Joshi, R. Dhopeshwarkar, U. Jadav, R. Jadav, L. D’souza, D. Jayaprakash, Continuous ethanol production by fermentation of waste banana peels using flocculating yeast, Indian J. Chem. Technol. 8 (2001) 153-159.
[44] S. Bhushan, K. Kalia, M. Sharma, B. Singh, P.S. Ahuja, Processing of apple pomace for bioactive molecules, Critical Review Biotechnology, 28 (2008) 285-296.
[45] S. Pathania, N. Sharma, S. Handa, Utilization of horticultural waste (Apple Pomace) for multiple carbohydrase production from Rhizopus delemar F2 under solid state fermentation, Int. J. Genet. Eng. Biotechnol. 16 (2018) 181-189.
[46] J.W. Jensen, C. Felby, H. Jørgensen, Cellulase hydrolysis of unsorted MSW, Appl. Biochem. Biotechnol. 165 (2011) 1799-1811.
[47] N. Sharma, T.C. Bhalla, A.K. Bhatt, H.O. Agrawal, Enhanced degradation of gamma irradiated forest biomass by a strain of Trichoderma viride isolated from forest soil, National Academy Science Letters, 16 (1993) 11-13.
[48] D. Tandon, N. Sharma, R. Kaushal, Saccharification of pine needles by a potential celluloytic and hemicelluloytic strain of Penicillium notatum102 isolated from forest soil, Int. J. Biol. Pharm. Allied Sci. 1 (2012) 1344-1355.
[49] Y.Q. Tang, Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7, Biomass and Bioenergy, 32 (2008) 1037-1045.
[50] J.V. Kumar, A. Shahbazi, R. Mathew, Bioconversion of solid food wastes to ethanol, Analyst 123 (1998) 497-502.
[51] K.C. Kim, Saccharification of food wastes using cellulolytic and amylolytic enzymes from Trichoderma harzianum FJ1 and its kinetics, Biotechnol. Bioproc. Eng. 10 (2005) 52-59.
[52] Z. Ye, Use of starter culture of Lactobacillus plantarum BP04 in the preservation of dining hall food waste, World J. Microbiol. Biotechnol. 24 (2008) 2249-2256.
[53] Q. Wang, Ethanol production from kitchen garbage using response surface methodology, Biochem. Eng. J. 39 (2008) 604-610.
[54] F. Tao, Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition, Process Biochem. 40 (2005) 183-187.
[55] R.S. Tubb, Amylolytic yeasts for commercial applications, Trends Biotechnol. 4 (1986) 98-104.
[56] P. Tomasik, D. Horton, Enzymatic conversions of starch, Adv. Carbohydr. Chem. Biochem. 68 (2012) 59-436.
[57] P. Ducroo, Improvements relating to the production of glucose syrups and purified starches from wheat and other cereal starches containing pentosans, In Chem. Abstr., E.P. Ep, Editor. 1987. p. 4704.
[58] D. Cekmecelioglu, O.N. Uncu, Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production, Waste Manag. 33 (2013) 735-739.
[59] Y.S. Hong, H.H. Yoon, Ethanol production from food residues, Biomass Bioenergy 35 (2011) 3271-3275.
[60] N. Sharma, A. Sood, Biodegradation of agricultural residue by Bacillus sp. Strain CBS28 and CBS11 isolated from soil, Proceedings in Biotechnological Strategies in Agroprocessing, PCST Chandigarh (2000) 242-250.
[61] R. Kaushal, N. Sharma, V. Dogra, Molecular characterisation of glycolslyhydrolysalses of Trichomerma harzanium WF5 a potential strain isolated from decaying wood and their application in bioconversion of popular wood to ethanol under separate hydrolysis and fermentation, Biomass and Bioenergy 85 (2016) 243-251.
[62] N. Sharma, N. Sharma, Bioethanol production from NaOH+ H2O2 pretreated Populus deltoids wood using cocktail of in house and commercial enzymes under four different modes of separate hydrolysis and fermentation, World J. Pharmaceut. Res. 5 (2016) 661-676.
[63] N. Sharma, T.C. Bhalla, A.K. Bhatt, H.O. Agrawal, Enhanced degradation of gamma irradiated forest biomass by a strain of Trichoderma viride isolated from forest soil, National Academy Science Letters, 16 (1993) 11-13.
[64] E.U. Kiran, A.P. Trzcinski, W.J. Ng, Y. Liu, Bioconversion of food waste to energy: A review, Fuel, 134 (2014) 389-399.
[65] K.D. Ma, Repeated-batch ethanol fermentation of kitchen refuse by acid tolerant flocculating yeast under the non-sterilized condition, Japan Journal of Food Engineering, 8 (2007) 275-279.
[66] N. Sharma, Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation, Indian J. Microbiol. 47(2007) 310-316.
[67] K.D. Ma, Repeated-batch ethanol fermentation of kitchen refuse by acid tolerant flocculating yeast under the non-sterilized condition, Japan Journal of Food Engineering, 8 (2007) 275-279.
[68] N. Sharma, N. Sharma, Evaluation of different pretreatments for enzymatic digestibility of forest residues and cellulase production by Bacillus stratosphericus N12 (M) under submerged fermentation, International Journal of Current Research, 9 (2017) 58430-58436.
[69] N. Sharma, K.L. Bansal, B. Neopany, Enhanced biodegradation of forest waste under solid state fermentation by using a new modified technique, Indian Journal of Forestry, (2008) 112-117.
[70] S. Yan, Fed batch enzymatic saccharification of food waste improves the sugar concentration in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae H058, Braz. Arch. Biol. Tech. 55 (2012) 183-192.
[71] M. Ballesteros, Ethanol production from paper materials using a simultaneous saccharification and fermentation system in a fed-batch basis, World J. Microbiol. Biotechnol. 18 (2009) 559-561.
[72] H. Krishna, T.J. Redd, G.V. Chowdary, Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast, Bioresource Technol. 77 (2001) 193-196.
[73] H. Ma, The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage, Renewable Energy, 34 (2009) 1466–1470.
[74] C. Xue, X. Zhao, C. Liu, L. Chen, F. Bai, Prospective and development of butanol as an advanced biofuel, Biotechnol. Adv., 31 (2013) 1575-1584.
[75] M. Shao, H. Chen, Feasibility of acetone–butanol–ethanol (ABE) fermentation from Amorphophallus konjac waste by Clostridium acetobutylicum ATCC 824, Process. Chem. 50 (2015) 1301-1307.
[76] P. Branduardi, V. Longo, N. Berterame, G. Rossi, D. Porro, A novel pathway to produce butanol and isobutanol in Saccharomyces cerevisiae, Biotechnol. Biofuels, 6 (2013) 68.
[77] T. Si, Y. Luo, H. Xiao, H. Zhao, Utilizing an endogenous pathway for 1-butanol production in Saccharomyces cerevisiae, Metab. Eng. 22 (2014) 60-68.
[78] N. Ouellette, H. Rogner, D.S. Scott, Hydrogen-based industry from remote excess hydroelectricity, Int. J. Hydrogen Energ. 22 (1997) 397-403.
[79] I.K. Muniraj, S.K. Uthandi, Z. Hu, L. Xiao, X. Zhan, Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock, Environ. Technol. Rev. 10 (2015) 10-18.
[80] A. Mondala, K. Liang, H. Toghian, R. Hernandez, T. French, Biodiesel production by in situ transesterification of municipal primary and secondary sludges, Bioresour Technol. 100 (2009) 1203-1210.
[81] H.J. Berchmans, S. Hirata, Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids, Bioresour Technol. 99 (2008) 1716-1721.
[82] D.Y.C. Leung, X. Wu, M.K.H. Leung, A review on biodiesel production using catalyzed transesterification, Appl. Energ. 87 (2010), 1083-1095.
[83] H.N. Bhatti, M.A. Hanif, M. Qasim, A.U. Rehman, Biodiesel production from waste tallow, Fuel, 87 (2008) 2961-2966.
[84] Z. Helwani, M.R. Othman, N. Aziz, W.J.N. Fernando, J. Kim, Technologies for production of biodiesel focusing on green catalytic techniques: A review, Fuel Process Tech. 90 (2009) 1502-1514.
[85] I.M. Atadashi, M.K. Aroua, A.A. Aziz, High quality biodiesel and its diesel engine application: a review, Renew. Sustain. Energ. Rev. 14 (2010) 1999-2008.
[86] M.W. Formo, Ester reactions of fatty materials, J. Am. Oil Chem. Soc. 31 (1954) 548-559.
[87] S.C. Low, G.K. Gan, K.T. Cheong, Separation of methyl ester from water in a wet neutralization process, J. Sustain. Energy Environ. 2 (2011) 15-19.
[88] J.A. Siles, M.A. Martín, A.F. Chica, A. Martín, Anaerobic co-digestion of glycerol and waste waster derived from biodiesel manufacturing, Bioresourc. Technol. 101 (2010) 6315-6321.
[89] J.M.N. Van Kasteren, A.P. Nisworo, A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification, Resour. Conservat. Recycl. 50 (2007) 442-458.
[90] W. Zhang, L. Zhang, A. Li, Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability, Water Res. 84 (2015) 266-277.
[91] C.S. Zhang, H.J. Su, J. Baeyens, T.W. Tan, Reviewing the anaerobic digestion of food waste for biogas production, Renew. Sustain. Energy. Rev. 38 (2014) 383-392.
[92] N.N.A.N. Yusuf, S.K. Kamarudin, Z. Yaakob, Overview on the current trends in biodiesel production, Energ. Convers. Manag. 52 (2011) 2741-2751.
[93] A.N. Phan, T.M. Phan, Biodiesel production from waste cooking oils, Fuel, 87 (2008) 3490-3496.
[94] W.N.N. Omar, S.N.A. Amin, Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology, Biomass and Bioenergy, 35 (2011) 1329-1338.
[95] K.T. Tan, K.T. Lee, A.R. Mohamed, Potential of waste palm cooking oil for catalyst- free biodiesel production, Energy, 36 (2011) 2085-2088.
[96] A. Banerjee, R. Chakraborty, Parametric sensitivity in trans esterification of waste cooking oil for biodiesel production – A review, Resour. Conservat. Recycl.53 (2009) 490-497.
[97] B.K. Barnwal, M.P. Sharma, Prospects of biodiesel production from vegetable oils in India, Renew. Sustain. Energy Rev. 9 (2005) 363-378.
[98] D. Wang, S. Czernik, E. Chornet, Production of hydrogen from biomass by catalytic steam reforming of fast pyrolysis oils, Energy Fuels, 12 (1998) 19-24.
[99] D. Wang, S. Czernik, D. Montané, M. Mann, E. Chornet, Biomass to hydrogen via pyrolysis and catalytic steam reforming of the pyrolysis oil and its fractions, Ind. Eng. Chem. Res. 36 (1997) 1507-1518.
[100] A. Demirbas, Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples, Fuel, 80 (2001) 1885-1891.
[101] A. Demirbas, D. Gulu, Acetic acid, methanol and acetone from lignocellulosics by pyrpolysis, Energy Edu. Sci. Technol. 1 (1998) 111-115.
[102] N. Takezawa, M. Shimokawabe, H. Hiramatsu, H. Sugiura, T. Asakawa, H. Kobayashi, Steam reforming of methanol over Cu/ZrO2. Role of ZrO2 support, React. Kinet. Catal. Lett. 33 (1987) 191-196.
[103] R.G. Phillips, I.J.H. Roberts, P.W. Ingham, J.R.S. Whittle, The Drosophila segment polarity gene patched is involved in a position-signalling mechanism in imaginal discs. Develop. 110 (1990) 105-114.
[104] H.P. Brown, A.J. Panshin, C.C. Forsaith, Textbook of Wood Technology, Vol. II, New York, McGraw-Hill, 1952
[105] H.A. Sorensen, Energy conversion systems, New York, Wiley, 1983
[106] G. Grassi, Modern bioenergy in the European Union, Renew. Energy, 16 (1999) 985-990.
[107] D.O. Hall, C.F. Rosillo, R.H. Williams, J. Woods, Biomass for energy: supply prospects. In: renewable energy-sources for fuels and electricity, T.B. Johansson, H. Kelly, A.K.N. Reddy, R.H. Williams, (Eds.), Washington, DC, Island Press, 1993
[108] C. Azar, K. Lindgren, B.A. Andersson, Global energy scenarios meeting stringent CO2 constraints-cost-effective fuel choices in the transportation sector, Energy Pol. 31 (2003) 961-976.
[109] A. Cadenas, S. Cabezudo, Biofuels as sustainable technologies: perspectives for less developed countries, Technol. Forecasting Social Change, 58 (1998) 83-103.
[110] C. Difiglio, Using advanced technologies to reduce motor vehicle greenhouse gas emissions, Energy Pol. 25 (1997) 1173-1178.
[111] M. Morita, K. Sasaki, Factor influencing the degradation of garbage in methanogenic bioreactors and impacts on biogas formation, Appl. Microbiol. Biotechnol. 94 (2102) 575-582.
[112] M. Chartrain, M, L. Katz, C. Marcin, M. Thien, S. Smith, F. Fisher, K. Goklen, P. Salmon, T. Brix, K. Price, R. Greasham, Purification and characterization of a novel bioconverting lipase from Pseudomonas aeruginosa MB 5001, Enzyme Microb. Technol. 15 (1993) 575-580.
[113] J.P. Lee, J.S. Lee, S.C. Park, Two-phase methanization of food wastes in pilot scale. Appl. Biochem. Biotechnol. 77 (1999) 585-593.
[114] Anonymous, Research P: Worldwide power generation capacity from biogas will double by 2022, Boulder, USA, 2012.
[115] N. Rasit, A. Idris, R. Harun, W.A.K.G. Azilina, Effects of lipid inhibition on biogas production of anaerobic digestion from oily effluents and sludges: an overview, Renew. Sustain. Energy. Rev. 45 (2015) 351-358.
[116] C. Mao, Y. Feng, X. Wang, G. Ren, Review on research achievements of biogas from anaerobic digestion, Renew. Sustain. Energy. Rev. 45 (2015) 540-555.
[117] T.P.T. Pham, R. Kaushik, G.K. Parshetti, R. Mahmood, Food waste-to-energy conversion technologies: Current status and future directions, Waste Manag. 38 (2015) 399-408.
[118] P. Aichinger, Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction, Water Res. 87 (2015) 416-423.
[119] E. Mara-ón, Co-digestion of cattle manure with food waste and sludge to increase biogas production, Waste Manag. 32 (2012) 1821-1825
[120] L. Zhang, Y.W. Lee, D. Jahng, Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements, Bioresour. Technol. 102 (2011) 5048-5059.
[121] C.J. Banks, Y. Zhang, Y. Jiang, S. Heaven, Trace element requirements for stable food waste digestion at elevated ammonia concentrations, Bioresour. Technol. 104 (2012) 127-135
[122] W. Edelmann, H. Engeli, M. Gradenecker, Co-digestion of organic solid waste and sludge from sewage treatment, Water Sci. Technol. 41 (2000) 213-221.
[123] R.A. Labatut, L.T. Angenent, N.R. Scott, Conventional mesophilic vs. thermophilic anaerobic digestion: a trade-of between performance and stability? Water Res. 53 (2014) 249-258.
[124] J.H. Ebner, R.A. Labatut, J.S. Lodge, A.A. Williamson, T.A. Trabold, Anaerobic co-digestion of commercial food waste and dairy manure: Characterizing biochemical parameters and synergistic effects, Waste Manag. 52 (2016) 286-294.
[125] G. Knothe, Fuel properties of highly polyunsaturated fatty acid methyl esters. Prediction of fuel properties of algal biodiesel, Ener. Fuel, 26 (2012) 5265-5273.
[126] V.K. Vijay, E-newsletter of biogas forum of India, BiGFIN, 1 (2010) 1-29.
[127] J.X.W. Hay, T.Y. Wu, J.C. Juan, J.M. Jahim, Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: overview, economics, and future prospects of hydrogen usage, Biofuels Bioprod. Biorefin. Biofpr. 7 (2013) 334-352.
[128] A. Ghimire, L. Frunzo, F. Pirozzi, E. Trably, R. Escudie, P.N.L. Lens, G. Esposito, A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products, Appl. Energy, 144 (2015) 73-95.
[129] M.Y. Azwar, M.A. Hussain, A.K.W. Abdul, Development of biohydrogen production by photobiological, fermentation and electrochemical processes: A review, Renew. Sustain. Energy. Rev. 31 (2014) 158-173.
[130] K.Y. Show, Biohydrogen production: Current perspectives and the way forward, Int. J. Hydrogen Energ. 37 (2012) 15616-15631.
[131] D.H. Kim, Experience of a pilot-scale hydrogen-producing anaerobic sequencing batch reactor (ASBR) treating food waste, Int. J. Hydrogen Energ. 35 (2010) 1590-1594.
[132] C.L. Li, H.H.P. Fang, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures, Crit. Rev. Environ. Sci. Technol. 37 (2007) 1-39.
[133] E. Elbeshbishy, Single and combined effect of various pretreatment methods for biohydrogen production from food waste, Int. J. Hydrogen Energ. 36 (2011) 11379-11387.
[134] D.H. Kim, S.H. Kim, H.S. Shin, Hydrogen fermentation of food waste without inoculum addition, Enzym. Microb. Tech. 45 (2008) 181-187.
[135] G. Luo, Evaluation of pretreatment methods on mixed inoculum for both batch and continuous thermophilic biohydrogen production from cassava stillage, Bioresource Technol. 101 (2010) 959-964.
[136] X. Wang, Y.C. Zhao, A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process, Int. J. Hydrogen Energ. 34 (2009) 245-254.
[137] G. Cai, B. Jin, P. Monis, C. Saint, Metabolic flux network and analysis of fermentative hydrogen production, Biotechnol. Adv. 29 (2011) 375-387.
[138] A. Ghimire, L. Frunzo, L. Pontoni, G. Antonio, P.N.L. Lens, G. Esposito, F. Pirozzi, Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate, J. Environ. Manag. 152 (2015) 43-48.
[139] X. Feng, H. Wang, Y. Wang, X. Wang, J. Huang, Biohydrogen production from apple pomace by anaerobic fermentation with river sludge, Int. J. Hydrogen Energ. 30 (2009) 1-7.
[140] I.K. Kapdan, F. Kargi, Bio-hydrogen production from waste materials, Enzyme Microb. Technol. 38 (2006) 569-582.
[141] C.T. Gray, H. Gest, Biological formation of molecular hydrogen, Science, 148 (1965) 186-192.
[142] S. Shimizu, A. Fujisawa, O. Mizuno, T. Kameda, T. Yoshioka, Fermentative hydrogen production from food waste without inocula, In: 5th international workshop on water dynamics, AIP Conf Proc, 987 (2008) 171-174.
[143] F. Vendruscolo, Biohydrogen production from starch residues, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, 8 (2014) 1400-1406.
[144] L. A. Hawkes, A.C. Broderick, M.H. Godfrey, R.J. Godley, Investigating the potential impacts of climate change on a marine turtle population. Glob. Change. Bio. 13 (2007 b). 923-932.
[145] C.L. Li, H.H.P. Fang, Fermentative hydrogen production from wastewater and solid wastes by mixed cultures, Crit. Rev. Environ. Sci. Technol. 37 (2007) 1-39.
[146] S.B. Pasupuleti, S.V. Mohan, Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash, Bioresour. Technol. 189 (2015) 177-185.
[147] Z. Liu, C. Zhang, Y. Lu, X. Wu, L. Wang, B. Han, X. Xing, States and challenges for high-value biohythane production from waste biomass by dark fermentation technology, Bioresour. Technol. 135 (2013) 292-303.
[148] C. Mamimin, A. Singkhala, P. Kongjan, B. Suraraksa, P. Prasertsan, T. Imai, S. Thong, Two-stage thermophilic fermentation and mesophilic methanogen process for biohythane production from palm oil mill effluent, Int. J. Hydrogen Energ. 40 (2015) 6319-6328.
[149] X. Jia, M. Li, B. Xi, C. Zhu, Y. Yang, T. Xia, C. Song, H. Pan, Integration of fermentative biohydrogen with methanogenesis from fruit-vegetable waste using different pre-treatments, Energy Convers. Manag. 88 (2014) 1219-1227.
[150] S. Roy, D. Banerjee, M. Dutta, D. Das, Metabolically redirected biohydrogen pathway integrated with biomethanation for improved gaseous energy recovery, Fuel, 158 (2015) 471-478.