Paper-Based Microbial Fuel Cell


Paper-Based Microbial Fuel Cell

Suruchee Samparnna Mishra, Swaraj Mohanty, Sonali Mohapatra

Microbial fuel cells (MFCs) are devices that convert organic substances into electrical energy with the help of microorganisms. The MFCs are advantageous in an industrial perspective as these can utilize a wide range of substrates. Hence, paper-based MFCs are a promising alternative for bioelectricity generation which can act ideally even without much effort by the operator and can produce efficient power even after just being plummeted onto the liquid solution containing organic matter. Further, the wide-scale applicability of paper-based MFCs along with their cost-effective features has made the device an important ration in the present industrial based energy sector.

Microbial Fuel Cell (MFC), Exoelectrogens, Membranes, Electricity

Published online 2/21/2019, 24 pages

Citation: Suruchee Samparnna Mishra, Swaraj Mohanty, Sonali Mohapatra, Paper-Based Microbial Fuel Cell, Materials Research Foundations, Vol. 46, pp 101-124, 2019


Part of the book on Microbial Fuel Cells

[1] S.P. Sukhatme, Meeting India’s future needs of electricity through renewable energy sources, Curr. Sci. 101 (2011) 624-630.
[2] N. Thepsuparungsikul, N. Phonthamachai, H.Y. Ng, Multi-walled carbon nanotubes as electrode material for microbial fuel cells, Water Sci Technol. 65 (2012) 1208-1214.
[3] B.E. Logan, Scaling up microbial fuel cells and other bioelectrochemical systems, Appl. Microbiol. Biotechnol. 85 (2010) 1665-1671.
[4] J. Chouler, M. Di Lorenzo, Water quality monitoring in developing countries; can microbial fuel cells be the answer? Biosensors (Basel). 5 (2015) 450-470.
[5] M. Di Lorenzo, A.R. Thomson, K. Schneider, P.J. Cameron, I. Ieropoulos, A small-scale air-cathode microbial fuel cell for on-line monitoring of water quality, Biosens Bioelectron. 62 (2014) 182-188.
[6] Y.C. Yong, Y.Y. Yu, X. Zhang, H. Song, Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene oxide-hybridized biofilm, Angew. Chem. Int. Ed. Engl. 53 (2014) 4480-4483.
[7] C.I. Torres, A. Kato Marcus, B.E. Rittmann, Proton transport inside the biofilm limits electrical current generation by anoderespiring bacteria, Biotechnol. Bioeng. 100 (2008) 872-881.
[8] M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S.E. Oh, Microbial fuel cell as new technology for bioelectricity generation: A review, Alexandria Eng. J. 54 (2015) 745-756.
[9] R.A. Bullen, T.C. Arnot, J.B. Lakeman, F.C. Walsh, Biofuel cells and their development, Biosens. Bioelectron. 21 (2006) 2015-2045.
[10] M. Mustakeem, Electrode materials for microbial fuel cells: nanomaterial approach, Mater. Renew. Sustain Energy. 4 (2015) 22.
[11] R. Chandra, S.V. Mohan, P.S. Roberto, B.E. Ritmann, R.A.S. Cornejo, Biophotovoltaics: conversion of light energy to bioelectricity through photosynthetic microbial fuel cell technology, Microbial Fuel Cell, Springer, 2018, 373-387.
[12] M. Rosenbaum, F. Aulenta, M. Villano, L.T. Angenent, Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved?, Bioresour Technol. 102 (2011) 324-333.
[13] S. Tsujimura, A. Wadano, K. Kano, T. Ikeda, Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase, Enzyme Microb. Technol. 29 (2001) 225-231.
[14] M.J. Cooney, E. Roschi, I.W. Marison, C. Comminellis, U. Von Stockar, Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: evaluation for use in a biofuel cell, Enzyme Microb. Technol. 18 (1996) 358-365.
[15] K. Rabaey, G. Lissens, S.D. Siciliano, W. Verstraete, A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency, Biotechnol Lett. 25 (2003) 1531-1535.
[16] L. Mao, W.S. Verwoerd, Selection of organisms for systems biology study of microbial electricity generation: a review, Int. J. Energy Environ. Eng. 4 (2013) 17.
[17] T.K. Sajana, M.M. Ghangrekar, A. Mitra, Effect of pH and distance between electrodes on the performance of a sediment microbial fuel cell, Water Sci Technol. 68 (2013) 537-543.
[18] D.R. Bond, D.E. Holmes, L.M. Tender, D.R. Lovley, Electrode-reducing microorganisms that harvest energy from marine sediments, Science. 295 (2002) 483-485.
[19] D.R. Bond, D.R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol. 69 (2003) 1548-1555.
[20] B.H. Kim, T. Ikeda, H.S. Park, H.J. Kim, M.S. Hyun, K. Kano, K. Takagi, H. Tatsumi, Electrochemical activity of an Fe (III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors, Biotechnol. Tech. 13 (1999) 475-478.
[21] H.J. Kim, H.S. Park, M.S. Hyun, I.S. Chang, M. Kim, B.H. Kim, A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens, Enzyme Microb. Technol. 30 (2002) 145-152.
[22] D.H. Park, S.K. Kim, I.H. Shin, Y.J. Jeong, Electricity production in biofuel cell using modified graphite electrode with neutral red, Biotechnol. Lett. 22 (2000) 1301-1304.
[23] S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol. 21 (2003) 1229-1232.
[24] D. Xing, Y. Zuo, S. Cheng, J.M. Regan, B.E. Logan, Electricity generation by Rhodopseudomonas palustris DX-1, Environ. Sci. Technol. 42 (2008) 4146-4151.
[25] Y. Zuo, D. Xing, J.M. Regan, B.E. Logan, Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell, Appl. Environ. Microbiol. 74 (2008) 3130-3137.
[26] R. Kumar, L. Singh, A.W. Zularisam, Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications, Renew. Sust. Energ. Rev. 56 (2016) 1322-1336.
[27] Y. Yang, Y. Ding, Y. Hu, B. Cao, S.A. Rice, S. Kjelleberg, H. Song, Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway, ACS Synth. Biol. 4 (2015) 815-823.
[28] D.R. Bond, D.R. Lovley, Electricity production by Geobacter sulfurreducens attached to electrodes, Appl. Environ. Microbiol. 69 (2003) 1548-1555.
[29] F. Kracke, I. Vassilev, J.O. Krömer, Microbial electron transport and energy conservation–the foundation for optimizing bioelectrochemical systems, Front Microbiol. 6 (2015) 575.
[30] P. Parameswaran, T. Bry, S.C. Popat, B.G. Lusk, B.E. Rittmann, C.I. Torres, Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica, Environ. Sci. Technol. 47 (2013) 4934-4940.
[31] A. Okamoto, S. Kalathil, X. Deng, K. Hashimoto, R. Nakamura, K.H. Nealson, Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH, Scientific Reports. 4 (2014) 5628.
[32] D.A. Gradskov, I.A. Kazarinov, V.V. Ignatov, Bioelectrochemical oxidation of glucose with bacteria Escherichia coli, Russ. J. Electrochem. 37 (2001) 1216-1219.
[33] S. Choi, Microscale microbial fuel cells: advanceds and challenges, Biosens. Bioelectron. 69 (2015) 8-25.
[34] A.K. Yetisen, M.S. Akram, C.R. Lowe, Paper-based microfluidic point-of-care diagnostic devices, Lab Chip. 13 (2013) 2210-2251.
[35] J. Winfield, P. Milani, J. Greenman, I. Ieropoulos, Passive feeding in paper-based microbial fuel cells, ECS Trans. 85 (2018) 1193-1200.
[36] J. Chouler, Á. Cruz-Izquierdo, S. Rengaraj, J.L. Scott, M. Di Lorenzo, A screen-printed paper microbial fuel cell biosensor for detection of toxic compounds in water, Biosens. Bioelectron.102 (2018) 49-56.
[37] N. Hashemi, J.M. Lackore, F. Sharifi, P.J. Goodrich, M.L. Winchell, N. Hashemi, A paper-based microbial fuel cell operating under continuous flow condition, Technology. 4 (2016) 98-103.
[38] A. Fraiwan, S. Mukherjee, S. Sundermier, H.-S. Lee, S. Choi, A paper-based microbial fuel cell: Instant battery for disposable diagnostic devices, Biosens. Bioelectron. 49 (2013) 410-414.
[39] A. Fraiwan, S. Choi, A stackable, two-chambered, paper-based microbial fuel cell, Biosens. Bioelectron. 83 (2016) 27-32.
[40] H. Lee, S. Choi, An origami paper-based bacteria-powered battery, Nano Energy. 15 (2015) 549-557.
[41] A. Fraiwan, S. Choi, A stackable, two-chambered, paper-based microbial fuel cell, Biosens. Bioelectron. 83 (2016) 27-32.
[42] S.K. Chaudhuri, D.R. Lovley, Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells, Nat. Biotechnol. 21 (2003) 1229-1232.
[43] B.E. Logan, Exoelectrogenic bacteria that power microbial fuel cells, Nat. Rev. Microbiol. 7 (2009) 375-381.
[44] A.S. Mathuriya, V.N. Sharma, Bioelectricity production from paper industry waste using a microbial fuel cell by Clostridium species, J. Biochem. Tech. 1 (2009) 49-52.
[45] M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S.E. Oh, Microbial fuel cell as new technology for bioelectricity generation: A review, Alexandria Eng. J. 54 (2015) 745-756.
[46] H.M. Singh, A.K. Pathak, K. Chopra, V.V. Tyagi, S. Anand, R. Kothari, Microbial fuel cells: a sustainable solution for bioelectricity generation and wastewater treatment, Biofuels. (2018) 1-21.
[47] A.S. Mathuriya, J.V. Yakhmi, Microbial fuel cells–Applications for generation of electrical power and beyond, Crit. Rev. Microbiol. 42 (2016) 127-143.
[48] A. Ghimire, L. Frunzo, F. Pirozzi, E. Trably, R. Escudie, P.N.L. Lens, G. Esposito, A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products, Appl. Energy. 144 (2015) 73-95.
[49] W.M. Budzianowski, A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment, Renew. Sust. Energ. Rev. 54 (2016) 1148-1171.
[50] C. Sakdaronnarong, A. Ittitanakam, W. Tanubumrungsuk, S. Chaithong, S. Thanosawan, N. Sinbuathong, C. Jeraputra, Potential of lignin as a mediator in combined systems for biomethane and electricity production from ethanol stillage wastewater, Renew. Energ. 76 (2015) 242-248.
[51] A. Kadier, Y. Simayi, P. Abdeshahian, N.F. Azman, K. Chandrasekhar, M.S. Kalil, A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production, Alexandria Eng. J. 55 (2016) 427-443.
[52] D.R. Lovley, K.P. Nevin, Microbial production of multi-carbon chemicals and fuels from water and carbon dioxide using electric current, US Patent, 9856449, January 2, 2018.
[53] Z. Xu, Y. Liu, I. Williams, Y. Li, F. Qian, H. Zhang, D. Cai, L. Wang, B. Li, Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time “shock” biosensor for wastewater, Biosens. Bioelectron. 85 (2016) 232-239.
[54] A. Escapa, M.I. San-Martín, R. Mateos, A. Morán, Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: Bottlenecks and limitations, Bioresour. Technol. 180 (2015) 72-78.
[55] H. Boghani, J.R. Kim, R.M. Dinsdale, A.J. Guwy, G.C. Premier, Reducing the burden of food processing washdown wastewaters using microbial fuel cells, Biochem. Eng. J. 117 (2017) 210-217.
[56] W. Yang, J. Li, Q. Fu, L. Zhang, X. Zhu, Q. Liao, A simple method for preparing a binder-free paper-based air cathode for microbial fuel cells, Bioresour. Technol. 241 (2017) 325-331.
[57] F. M. Ramírez, H. Addi, F.J. H. Fernández, C. Godínez, A. Pérez de los Ríos, E.M. Lotfi, M. El Mahi, L.J. Lozano Blanco, Air breathing cathode-microbial fuel cell with separator based on ionic liquid applied to slaughterhouse wastewater treatment and bio-energy production, J. Chem. Technol. Biotechnol. 92 (2017) 642-648.
[58] J.M. Sonawane, S.B. Adeloju, P.C. Ghosh, Landfill leachate: a promising substrate for microbial fuel cells, Int. J. Hydrogen Energy. 42 (2017) 23794-23798.
[59] P. Jain, M. Sharma, P. Dureja, P.M. Sarma, B. Lal, Bioelectrochemical approaches for removal of sulfate, hydrocarbon and salinity from produced water, Chemosphere 166 (2017) 96-108.
[60] B. Matturro, C. Cruz Viggi, F. Aulenta, S. Rossetti, Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments, Front. Microbiol. 8 (2017) 952.
[61] A.T. Vicente, A. Araújo, D. Gaspar, L. Santos, A.C. Marques, M.J. Mendes, L. Pereira, E. Fortunato, R. Martins, Optoelectronics and bio devices on paper powered by solar cells, Nanostructured Solar Cells, InTech. 2017.
[62] J.Z. Sun, G.P. Kingori, R.W. Si, D.D. Zhai, Z.H. Liao, D.Z. Sun, T. Zheng, Y.C. Yong, Microbial fuel cell-based biosensors for environmental monitoring: a review, Water Sci. Technol.71 (2015) 801-809.
[63] Y. Li, J. Sun, J. Wang, C. Bian, J. Tong, Y. Li, S. Xia, A microbial electrode based on the co-electrodeposition of carboxyl graphene and Au nanoparticles for BOD rapid detection, Biochem. Eng. J. 123 (2017) 86-94.
[64] S. Rengaraj, Á.C. Izquierdo, J.L. Scott, M. Di Lorenzo, Impedimetric paper-based biosensor for the detection of bacterial contamination in water, Sens. Actuators B Chem. 265 (2018) 50-58.
[65] A. Elmekawy, H.M. Hegab, D. Pant, C.P. Saint, Bio-analytical applications of microbial fuel cell–based biosensors for onsite water quality monitoring, J. Appl. Microbiol. 124 (2018) 302-313.
[66] H. Guo, M.H. Yeh, Y. Zi, Z. Wen, J. Chen, G. Liu, C. Hu, Z.L. Wang, Ultralight cut-paper-based self-charging power unit for self-powered portable electronic and medical systems, ACS Nano. 11 (2017) 4475-4482.
[67] F. Arduini, S. Cinti, V. Scognamiglio, D. Moscone, Paper-based electrochemical devices in biomedical field: recent advances and perspectives, 77 (2017). ISSN 0166-526X.
[68] J.P. Esquivel, J. Buser, C.W. Lim, C. Dominguez, S. Rojas, P. Yager, N. Sabate, Single-use paper-based hydrogen fuel cells for point-of-care diagnostic applications, J. Power Sources 342 (2017) 442-451.
[69] H. Wang, J.D. Park, Z.J. Ren, Practical energy harvesting for microbial fuel cells: a review, Environ. Sci. Technol. 49 (2015) 3267-3277.
[70] A.S. Commault, O. Laczka, N. Siboni, B. Tamburic, J.R. Crosswell, J.R. Seymour, P.J. Ralph, Electricity and biomass production in a bacteria-Chlorella based microbial fuel cell treating wastewater, J. Power Sources. 356 (2017) 299-309.
[71] R.C. Tyce, J.W. Book, L.M. Tender, Microbial fuel cell power systems, US Patent, 20100081014, April 2 2010.
[72] P.S. Schrader, C.E. Reimers, P. Girguis, J. Delaney, C. Doolan, M. Wolf, D. Green, Independent benthic microbial fuel cells powering sensors and acoustic communications with the MARS underwater observatory, J. Atmospheric Ocean. Technol. 33 (2016) 607-617.
[73] J.M. Sonawane, A. Yadav, P.C. Ghosh, S.B. Adeloju, Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells, Biosens. Bioelectron. 90 (2017) 558-576.
[74] M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Graphene-based ultracapacitors, Nano Lett. 8 (2008) 3498-3502.
[75] F. Yu, C. Wang, J. Ma, Capacitance-enhanced 3D graphene anode for microbial fuel cell with long-time electricity generation stability, Electrochim. Acta. 259 (2018) 1059-1067.
[76] E. Heidrich, J. Dolfing, M.J. Wade, W.T. Sloan, C. Quince, T.P. Curtis, Temperature, inocula and substrate: contrasting electroactive consortia, diversity and performance in microbial fuel cells, Bioelectrochem. 119 (2018) 43-50.
[77] M. Mohammadifar, J. Zhang, I. Yazgan, O. Sadik, S. Choi, Power-on-paper: origami-inspired fabrication of 3-D microbial fuel cells, Renew. Energ. 118 (2018) 695-700.
[78] Y. Zhang, J. Xiao, Q. Lv, L. Wang, X. Dong, M. Asif, J. Ren, W. He, Y. Sun, F. Xiao, S. Wang, In situ electrochemical sensing and real-time monitoring live cells based on freestanding nanohybrid paper electrode assembled from 3D functionalized graphene framework, ACS Appl. Mater. Interfaces. 9 (2017) 38201-38210.
[79] S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application, J. Nanostructure Chem. 8 (2018) 123-137.
[80] M. Ehsani, Y. Gao, S. Longo, K. Ebrahimi, Modern electric, hybrid electric, and fuel cell vehicles, CRC Press, Boca Raton. (2018).
[81] E. Kjeang, N. Djilali, D. Sinton, Microfluidic fuel cells: a review, J. Power Sources. 186 (2009) 353-369.
[82] F. Qian, Z. He, M.P. Thelen, Y. Li, A microfluidic microbial fuel cell fabricated by soft lithography, Bioresour. Technol. 102 (2011) 5836-5840.
[83] M.D. Khan, N. Khan, S. Sultana, R. Joshi, S. Ahmed, E. Yu, K. Scott, A. Ahmad, M.Z. Khan, Bioelectrochemical conversion of waste to energy using microbial fuel cell technology, Process Biochem. 57 (2017) 141-158.
[84] S.V. Mohan, G. Velvizhi, J.A. Modestra, S. Srikanth, Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements, Renew. Sust. Energ. Rev. 40 (2014) 779-797.
[85] R. Kumar, L. Singh, A.W. Zularisam, Exoelectrogens: recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications, Renew. Sust. Energ. Rev. 56 (2016) 1322-1336.
[86] G. Pasternak, J. Greenman, I. Ieropoulos, Comprehensive study on ceramic membranes for low-cost microbial fuel cells, ChemSusChem. 9 (2016) 88-96.
[87] V. Yousefi, D. M. Kalhori, A. Samimi, Ceramic-based microbial fuel cells (MFCs): a review, Int. J. Hydrogen Energ. 42 (2017) 1672-1690.
[88] J. Winfield, L.D. Chambers, J. Rossiter, I. Ieropoulos, Comparing the short and long term stability of biodegradable, ceramic and cation exchange membranes in microbial fuel cells, Bioresour. Technol. 148 (2013) 480-486.
[89] E. Antolini, Composite materials for polymer electrolyte membrane microbial fuel cells, Biosens. Bioelectron. 69 (2015) 54-70.
[90] S. Das, K. Dutta, D. Rana, Polymer electrolyte membranes for microbial fuel cells: a review, Polym. Rev. (2018) 1-20.
[91] K. Dutta, Polymer-inorganic nanocomposites for polymer electrolyte membrane fuel cells, Polymer-Engineered Nanostructures for Advanced Energy Applications, Springer, Cham. (2017) pp. 577-606.
[92] Y.C. Yong, X.C. Dong, M.B. Chan-Park, H. Song, P. Chen, Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells, ACS Nano. 6 (2012) 2394-2400.
[93] Y. Zhang, G. Mo, X. Li, W. Zhang, J. Zhang, J. Ye, X. Huang, C. Yu, A graphene modified anode to improve the performance of microbial fuel cells, J. Power Sources. 196 (2011) 5402-5407.
[94] S. Khilari, S. Pandit, M.M. Ghangrekar, D. Pradhan, D. Das, Graphene oxide-impregnated PVA–STA composite polymer electrolyte membrane separator for power generation in a single-chambered microbial fuel cell, Ind. Eng. Chem. Res. 52 (2013) 11597-11606.
[95] C.E. Zhao, J. Wu, S. Kjelleberg, J.S.C. Loo, Q. Zhang, Employing a flexible and low-cost polypyrrole nanotube membrane as an anode to enhance current generation in microbial fuel cells, Small. 11 (2015) 3440-3443.
[96] Y. Zou, J. Pisciotta, I.V. Baskakov, Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells, Bioelectrochemistry. 79 (2010) 50-56.
[97] Y. Zou, C. Xiang, L. Yang, L.X. Sun, F. Xu, Z. Cao, A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material, Int. J. Hydrogen Energ. 3 3 ( 2 0 0 8 ) 4 8 5 6 – 4 8 6 2.
[98] A.N. Lai, L.S. Wang, C.X. Lin, Y.Z. Zhuo, Q.G. Zhang, A.M. Zhu, Q.L. Liu, Phenolphthalein-based poly(arylene ether sulfone nitrile) s multiblock copolymers as anion exchange membranes for alkaline fuel cells, ACS Appl. Mater. Interfaces. 7 (2015) 8284-8292.
[99] E.N. Hu, C.X. Lin, F.H. Liu, X.Q. Wang, Q.G. Zhang, A.M. Zhu, Q.L. Liu, Poly(arylene ether nitrile) anion exchange membranes with dense flexible ionic side chain for fuel cells, J. Membr. Sci Technol. 550 (2018) 254-265.
[100] S. Angioni, L. Millia, G. Bruni, D. Ravelli, P. Mustarelli, E. Quartarone, Novel composite polybenzimidazole-based proton exchange membranes as efficient and sustainable separators for microbial fuel cells, J. Power Sources. 348 (2017) 57-65.
[101] A. Kalathil, A. Raghavan, B. Kandasubramanian, Polymer fuel cell based on polybenzimidazole membrane: A Review, Polym. Plast. Technol. Eng. (2018) 1-33.