‘Surface-Modification’ and ‘Composite-Engineering’ of Metal Chalcogenide Electrodes for Solar Hydrogen Production


‘Surface-Modification’ and ‘Composite-Engineering’ of Metal Chalcogenide Electrodes for Solar Hydrogen Production

A. Pareek, P.H. Borse

Solar energy is the future fuel and an apt solution for energy related concerns. Photoelectrochemical (PEC) cells can channelize solar energy directly into chemical energy and provide a useful fuel in the form of hydrogen. Exploring an efficient semiconductor material for such purpose is an essential prospect. This chapter highlights the importance of Cd chalcogenides in this technology. CdS is the most studied material for PEC research, possess perfect band gap, and band edge position as required for the desired photoanode material in the PEC cell. The efficiency of CdS photoanode can be improved specially by; (i) tuning of the electronic band structure of electrode lattice via. doping, and by (ii) electrode surface modification by utilizing metal-oxide nanoparticles or by loading of co-catalyst. Effect of modification of CdS photoanodes, with earth abundant transition metal hydroxide co-catalysts, on the PEC performance is reviewed.

Solar, Hydrogen Energy, Surface Modification, Electrode, Photoelectrochemical, Chalcogenides

Published online 2/25/2018, 23 pages

DOI: http://dx.doi.org/10.21741/9781945291593-8

Part of Photocatalytic Nanomaterials for Environmental Applications

[1] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338. https://doi.org/10.1038/35104607
[2] Pramod H. Borse, “Hydrogen from water” Sustainable utilization of natural resources, Edited by P. Mondal, A.K. Dalai, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742, CRC Press 2017, pp 441–457, Print ISBN: 978-1-4987-6183-3.
[3] M. Graetzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem., 44 (2005) 6841. https://doi.org/10.1021/ic0508371
[4] G. Wang, Y. Ling, H. Wang, X. Lu, Y. Li, Chemically modified nanostructures for photoelectrochemical water splitting, J Photochem. Photobio. C: Photochem. Rev. 19 (2014) 35. https://doi.org/10.1016/j.jphotochemrev.2013.10.006
[5] D.W. Jing, L.J. Guo, L.A. Zhao, X.M. Zhang, H.A. Liu, M.T. Li, S.H. Shen, G.J. Liu, X.W. Hu, X.H. Zhang, K. Zhang, L.J. Ma, P.H. Guo, Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration, Int. J. Hydrogen Energy 35 (2010) 7087. https://doi.org/10.1016/j.ijhydene.2010.01.030
[6] V. Lionel, Solar Hydrogen production, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2009.
[7] C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang and J. Tang, Photoelectrochemical devices for solar water splitting – materials and challenges, Chem. Soc. Rev. 46 (2017) 4645-4660. https://doi.org/10.1039/C6CS00306K
[8] M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori,and N.S. Lewis, Solar Water Splitting Cells, Chem. Rev. 110 (2010) 6446–6473. https://doi.org/10.1021/cr1002326
[9] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37-38. https://doi.org/10.1038/238037a0
[10] O. Khaselev, J.A. Turner, A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting, Science, 280 (1998) 425-427. https://doi.org/10.1126/science.280.5362.425
[11] G. Peharz, F. Dimroth, U. Wittstadt, Solar hydrogen production by water splitting with a conversion efficiency of 18%, Int. J. Hydrogen Energy, 32 (2007) 3248-3252. https://doi.org/10.1016/j.ijhydene.2007.04.036
[12] M.M. May, H.J. Lewerenz, D. Lackner, F. Dimroth, T. Hannappel, Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure, Nat Commun., 6 (2015) 8286. https://doi.org/10.1038/ncomms9286
[13] C. Jiang, S.J.A. Moniz, A. Wang, T. Zhang and J. Tang, Photoelectrochemical devices for solar water splitting – materials and challenges, Chem. Soc. Rev. 46 (2017) 4645-4660. https://doi.org/10.1039/C6CS00306K
[14] J.Y. Jia, L.C. Seitz, J.D. Benck, Y. J. Huo, Y.S. Chen, J.W.D. Ng, T. Bilir, J.S. Harris and T.F. Jaramillo, Solar water splitting by photovoltaic-electrolysis with a solar-to hydrogen efficiency over 30%, Nat. Commun. 7 (2016) 13237. https://doi.org/10.1038/ncomms13237
[15] J.Z. Zhang, Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting, MRS BULLETIN, 36 (2011) 49-55. https://doi.org/10.1557/mrs.2010.9
[16] K. Sivula, F.L. Formal and M. Graetzel, Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes, Chem. Sus. Chem., 4 (2011) 432–449. https://doi.org/10.1002/cssc.201000416
[17] J. Wu, W. Walukiewicz, K.M. Yu, J. W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Unusual properties of the fundamental band gap of InN, Appl. Phys. Lett. 80 (2002) 3967. https://doi.org/10.1063/1.1482786
[18] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Small band gap bowing in In1ÀxGaxN alloys, Appl. Phys. Lett, 80 (2002) 4741. https://doi.org/10.1063/1.1489481
[19] R.N. Dominey, N.S. Lewis, J.A. Bruce, D.C. Bookbinder and M.S. Wrighton, Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes, J. Am. Chem. Soc., 104 (1982) 467–482. https://doi.org/10.1021/ja00366a016
[20] A.A. Yadav, E.U. Masumdar, Optical and electrical transport properties of spray deposited CdS1−xSex thin films, J. Alloys Compd. 505 (2010) 787. https://doi.org/10.1016/j.jallcom.2010.06.141
[21] Mark S. Wrighton, Jeffrey M. Bolts, Andrew B. Bocarsly, Michael C. Palazzotto, and Erick G. Walton, Stabilization of n‐type semiconductors to photoanodic dissolution: II–VI and III–V compound semiconductors and recent results for n‐type silicon, Journal of Vacuum Science and Technology 15 (1978) 1429. https://doi.org/10.1116/1.569801
[22] R.K. Pandey, Shikha Mishra, Sanjay Tiwari, P. Sahu, B.P. Chandra, Comparative study of performance of CdTe, CdSe and CdS thin “films-based photoelectrochemical solar cells, Solar Energy Materials & Solar Cells 60 (2000) 59-72. https://doi.org/10.1016/S0927-0248(99)00063-X
[23] R. Memming, Solar energy conversion by photoelectrochemical processes, Electrochim. Acta, 25 (1980) 77. https://doi.org/10.1016/0013-4686(80)80054-5
[24] H. Gerischer, J. Gobrecht, On the power characteristics of electrochemical solar cells. Ber Bunsenges. Phys. Chem. 80 (1976) 327–333. https://doi.org/10.1002/bbpc.19760800412
[25] J.K. Dongre,V. Nogriya, M. Ramrakhiani, Structural, optical and photoelectrochemical characterization of CdS nanowire synthesized by chemical bath deposition and wet chemical etching, App. Surf. Sci. 255 (2009) 6115–6120. https://doi.org/10.1016/j.apsusc.2009.01.064
[26] J.K. Dongre, M. Ramrakhiani, Synthesis of flower-like CdS nanostructured films and their application in photoelectrochemical solar cells, J. Alloys. Compds. 487 (2009) 653–658. https://doi.org/10.1016/j.jallcom.2009.08.031
[27] F. Gao, Q. Lu, Single Crystalline Cadmium Sulfide Nanowires with Branched Structure, Nanoscale Res Lett 4 (2009) 371–376. https://doi.org/10.1007/s11671-009-9256-3
[28] S.B. Patil, A.K. Singh, Effect of complexing agent on the photoelectrochemical properties of bath deposited CdS thin films, Applied Surface Science 256 (2010) 2884–2889. https://doi.org/10.1016/j.apsusc.2009.11.043
[29] Ahed Zyoud, Iyad Saadeddin, Sahar Khurduj, Mumen Marie, Zafer M. Hawash, Maryam I. Faroun, Guy Campet, Dae Hoon Park, Hikmat S. Hilal, J. Electroana. Chem. 707 (2013) 117–121. https://doi.org/10.1016/j.jelechem.2013.08.022
[30] A.A. Yadav, E.U. Masumdar, Photoelectrochemical investigations of cadmium sulphide (CdS) thin film electrodes prepared by spray pyrolysis, J. Alloys Compd. 509 (2011) 5394–5399. https://doi.org/10.1016/j.jallcom.2011.02.061
[31] A. Pareek, R. Dom, P. H. Borse, Fabrication of large area nanorod like structured CdS photoanode for solar H2 generation using spray pyrolysis technique, Inter. J. Hydrogen Energy 38 (2013) 36-44. https://doi.org/10.1016/j.ijhydene.2012.10.057
[32] P.B. Bagdare, S.B. Patil, A.K. Singh, Phase evolution and PEC performance of ZnxCd(1-x) S nanocrystalline thin films deposited by CBD, J. Alloys Compds. 506 (2010) 120–124. https://doi.org/10.1016/j.jallcom.2010.06.152
[33] J. Zhou, X. Wu, G. Teeter, B. To, Y. Yan, R. G. Dhere, T. A. Gessert, CBD-Cd1−xZnxS thin films and their application in CdTe solar cells, Phys. Stat. Sol. (b), 241 (2004) 775–778. https://doi.org/10.1002/pssb.200304218
[34] W. Xia, J.A. Welt, H. Lin, H.N. Wu, M.H. Ho, C. W.Tang, Fabrication of Cd1−xZnxS films with controllable zinc doping using a vapor zinc chloride treatment, Sol. Energy Mater. Sol. Cells, 94 (2010) 2113-2118. https://doi.org/10.1016/j.solmat.2010.06.037
[35] F. Chen, W. Qiu, X. Chen, L. Yang, X. Jiang, M. Wang, H. Chen, Large-scale fabrication of CdS nanorod arrays on transparent conductive substrates from aqueous solutions, Sol. Energy 85 (2011) 2122–2129. https://doi.org/10.1016/j.solener.2011.05.020
[36] J. Kaur, M. Sharma, O.P. Pandey, Structural and optical studies of undoped and copper doped zinc sulphide nanoparticles for photocatalytic application, Superlat. Micro. 77 (2015) 35-53.
[37] Y. Raviprakash, K.V. Bangera, G.K Shivakumar, Preparation and characterization of Cd x Zn 1− x S thin films by spray pyrolysis technique for photovoltaic applications, Solar Energy 83 (2009) 1645-1651. https://doi.org/10.1016/j.solener.2009.06.004
[38] F. Iacomi, I. Salaoru, N. Apetroaei, A. Vasile, C.M. Teodorescu, D. Macovei, J. Optpelectr. Physical characterization of CdMnS nanocrystalline thin films grown by vacuum thermal evaporation, J. Optoelec. Adv. Mater., 8 (2006) 266-270.
[39] J.A. Akintunde, Dual impurity doping of buffer solution cadmium sulphide thin films: electrical and optical properties, J. Mater. Sci.: Mater. Electr., 11(2000) 503-508. https://doi.org/10.1023/A:1008920602583
[40] S. J. Ikhmayies, R.N. Ahmad-Bitar, A study of the optical bandgap energy and Urbach tail of spray-deposited CdS:In thin films, App. Surf. Sci. 256 (2010) 3541–3545. https://doi.org/10.1016/j.apsusc.2009.12.104
[41] A. Pareek, R. Dom and P.H. Borse, Fabrication of large area nanorod like structured CdS photoanode for solar H2 generation using spray pyrolysis technique, Inter. J. Hydrogen Energy 38 (2013) 36 -44. https://doi.org/10.1016/j.ijhydene.2012.10.057
[42] A. Pareek, R. Thotakuri, R. Dom, H.G. Kim and P.H. Borse, Nanostructure Zn Cu co-doped CdS chalcogenide electrodes for opto-electric-power and H2 generation, Inter. J. Hydrogen Energy 42 (2017) 125-132. https://doi.org/10.1016/j.ijhydene.2016.10.029
[43] M.A. Barote, S.S. Kamble, A.A. Yadav, R.V. Suryavanshi, L.P. Deshmukh, E.U. Mazumdar, Thickness dependence of Cd0.825 Pb0.175 S thin film properties, Materials Letters 78 (2012) 113–115. https://doi.org/10.1016/j.matlet.2012.03.018
[44] G. Campet, J.P. Manaud, C. Puprichitkun, Z.W. Sun, P. Salvador, Protection of photoanodes against photo-corrosion by surface deposition of oxide films: criteria for choosing the protective coating, Active and Passive Elec. Comp.13 (1989) 175-189. https://doi.org/10.1155/1989/78914
[45] R. Liu, Z. Zheng, J. Spurgeon, B. S. Brunschwig, X. Yang, Enhanced Photoelectrochemical Water-Splitting Performance of Semiconductors by Surface Passivation Layers, Energy Environ. Sci.,7 (2014) 2504-2517. https://doi.org/10.1039/C4EE00450G
[46] A. Pareek, R. Purbia, P. Paik, N.Y. Hebalkar, H.G. Kim, P.H. Borse, Stabilizing effect in nano-titania functionalized CdS photoanode for sustained hydrogen generation Int. J. Hydrogen Energy, 39 (2014) 4170-4180. https://doi.org/10.1016/j.ijhydene.2013.12.185
[47] A. Pareek, P. Paik and P.H. Borse, Nanoniobia Modification of CdS Photoanode for an Efficient and Stable Photoelectrochemical Cell, Langmuir, , 30 (2014) 15540-15549. https://doi.org/10.1021/la503713t
[48] A. Pareek, P. Paik and P.H. Borse, Fabrication of a highly efficient and stable nano-modified photoanode for solar H2 generation, RSC Adv. 3 (2013) 19905-19908. https://doi.org/10.1039/c3ra42632g
[49] A. Pareek, P. Paik and P.H. Borse, Characterization of Nano-Titania Modified CdS/Polysulfide Electrolyte Interface by Utilizing Mott-Schottky and Electrochemical Impedance Spectroscopy, Electroanalysis, 26 (2014) 2403 – 2407. https://doi.org/10.1002/elan.201400241
[50] A. Pareek, A. Gopalakrishnan and P.H. Borse, Efficiency and stability aspects of CdS photoanode for solar hydrogen generation technology, Journal of Physics: Conference Series 755 (2016) 012006. https://doi.org/10.1088/1742-6596/755/1/012006
[51] J. Jiang, M. Wang, R. Li, L. Ma, L. Guo, Fabricating CdS/BiVO4 and BiVO4/CdS heterostructured film photoelectrodes for photoelectrochemical applications, Int. J. Hydrogen Energy, 38 (2013) 13069-13076. https://doi.org/10.1016/j.ijhydene.2013.03.057
[52] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, Int. J. Hydrogen Energy 27 (2002) 991–1022. https://doi.org/10.1016/S0360-3199(02)00022-8
[53] G. Wang, Y. Ling, X. Lu, T. Zhai, F. Qian, Y. Tong and Y. A. Li, A mechanistic study into the catalytic effect of Ni(OH)2 on hematite for photoelectrochemical water oxidation, Nanoscale 5 (2013) 4129. https://doi.org/10.1039/c3nr00569k
[54] J. Li, F. Meng, S. Suri, W. Ding, F. Huang and N. Wu, Photoelectrochemical performance enhanced by a nickel oxide–hematite p–n junction photoanode, Chem. Commun. 48 (2012) 8213-8215. https://doi.org/10.1039/c2cc30376k
[55] A. Pareek, P. Paik and P.H. Borse, Role of Transition Metal-Hydroxide (M-OHx, M=Mn, Fe, Ni, Co) Co-catalyst Loading : Efficiency and Stability of CdS Photoanode, Mater. Res. Soc. Symp. Proc. Vol. 1776 (2015). https://doi.org/10.1557/opl.2015.363
[56] A. Pareek, P. Paik and P.H. Borse, Stable hydrogen generation from Ni- and Co-based co-catalysts in supported CdS PEC cell, Dalton Trans., 45 (2016)11120–11128. https://doi.org/10.1039/C6DT01277A
[57] A. Pareek, P. Paik and P.H. Borse, Ultrathin MoS2–MoO3 nanosheets functionalized CdS photoanodes for effective charge transfer in photoelectrochemical (PEC) cells, J. Mater. Chem. A 5 (2017) 1541-1547. https://doi.org/10.1039/C6TA09122A