Current Trends on Lanthanide Glasses and Materials, Chapter 5


Spectroscopic properties and energy transfer parameters of Nd3+ and Sm3+ doped lithium borate glasses

J. Anjaiah, C. Laxmikanth

Li2O-B2O3 glasses mixed with three different modifier oxides viz., ZnO, CaO and CdO doped with Nd2O3 and Sm2O3 were prepared by melt quench method and using X-ray diffraction technique. The amorphous nature was confirmed. Differential scanning calorimetry analysis revealed reasonably good forming tendency of the glass composition. The glasses were characterized by X-ray diffraction, differential scanning calorimetry and IR spectra. FTIR spectra were used to analyze the presence of BO3 and BO4 functional groups in the glasses. From the optical absorption spectra, the intensities of various absorption bands of these glasses are measured and the Judd-Ofelt parameters Ω2, Ω4 and Ω6 have been evaluated. The variation of Judd–Ofelt intensity parameters are discussed and correlated to the structural changes in the glass network; out of all the J-O parameters Ωλ, the value of Ω2, which is related to the structural changes in the vicinity of the neodymium ion indicates the highest covalent environment of Nd3+ ion in ZnBNd glasses and samarium ion indicates the highest covalent environment of Sm3+ ion in ZnBSm glasses. From this theory, various radiative properties for various emission levels of these glasses have been determined and reported. The radiative transition probabilities are evaluated from photoluminescence spectra for various luminescent transitions observed in the luminescence spectra of all the Sm3+ ion doped glasses suggest the highest value for 4G5/2 6H9/2 transition in ZnBSm glass.

FTIR Spectra, Optical Absorption, Judd–Ofelt Parameters, Borate Glasses, Neodymium Ions, Samarium Ions

Published online 1/1/2017, 31 pages


Part of Current Trends on Lanthanide Glasses and Materials

[1] Yamane M, Asahara Y. Glasses for Photonics, Cambridge University Press, 2000.
[2] Balakrishna A, Rajesh, D, Ratnakaram Y.C. Structural and optical properties of Nd3+ in lithium fluoro-borate glass with relevant modifier oxides. Optical Materials, 2013, 35 (12): 2670.
[3] Ying Guan, Zhihao Wei, Yanlin Huang, Ramzi Maalej, Hyo Jin Seo. 1.55 μm emission and upconversion luminescence of Er3+- doped strontium borate glasses. Ceramics International, 2013, 39: 7023.
[4] Anjaiah J, Laxmikanth C, Veeraiah N. Spectroscopic properties and luminescence behaviour of europium doped lithium borate glasses. Physica B, 2014, 454: 148.
[5] Susumu Nakayama, Takamitsu Watanabe, Taro Asahi, Hajime Kiyono, Yan Lin Aung, Masatomi Sakamoto. Influence of rare earth additives and boron component on electrical conductivity of sodium rare earth borate glasses. Ceramics International, 2010, 36: 2323.
[6] Ramteke DD, Annapurna K, Deshpande VK, Gedam RS. Effect of Nd3+ on spectroscopic properties of lithium borate glasses. Journal of Rare Earths, 2014, 32(12), 1148.
[7] Bhushana Reddy M, Sailaja S, Nageswara Raju C, Sudhakar Reddy B. Optical absorption and NIR emission spectral studies of Er3+ and Nd3+: zinc lithium bismuth borate glasses. Journal of Optics, 2014, 43: 101.
[8] Ramteke DD, Gedam RS. Impedance spectroscopic characterization of Sm2O3 containing lithium borate glasses. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 133: 19.
[9] Kashif I, Abd El-Maboud A, Ratep. A. Effect of Nd2O3 addition on structure and characterization of lead bismuth borate glass. Results in Physics, 2014, 4: 1.
[10] Swapna K, Mahamuda Sk, Srinivasa Rao A, Jayasimhadri M, Sasikala T, Rama Moorthy L. Visible fluorescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for optoelectronic devices. Ceramics International, 2013, 39: 8459.
[11] Yan Zhang, Chunhua Lu, Liyan Sun, Zhongzi Xu, Yaru Ni. Influence of Sm2O3 on the crystallization and luminescence properties of boroaluminosilicate glasses, Materials Research Bulletin, 2009, 44: 179.
[12] Annapurna K, Das M, Kundu M, Dwivedhi R.N, Buddhudu S. Spectral properties of Eu3+: ZnO–B2O3–SiO2 glasses, Journal of Molecular Structure. 2005, 741: 53.
[13] Pinckney LR. Transparent glass-ceramics based on ZnO Crystals, Physics and Chemistry of Glasses. European Journal of Glass Science and Technology Part B, 2006, 47: 127.
[14] Miguel A, Morea R, Gonzalo J, Arriandiaga MA, Fernandez J, Balda R. Near-infrared emission and upconversion in Er3+-doped TeO2–ZnO–ZnF2 glasses, Journal of Luminescence, 2013, 140: 38.
[15] Ticha H, Kincl M, Tichy L. Some structural and optical properties of ,Bi2O3,x,ZnO,60−x,B2O3,40 glasses, Materials Chemistry and Physics, 2013, 138: 633.
[16] Lee JD. Concise Inorganic Chemistry, Oxford: Blackwell Science, 1996.
[17] Brahmaiah A, Bala Murali Krishna S, Kondaiah M, Bala Narendra Prasad T, Krishna Rao D. Influence of chromium ions on dielectric and spectroscopic properties of Na2O-PbO-B2O3glass system, IOP Conference Series: Materials Science and Engineering, 2009, 2: 012028.
[18] Rao TVR, Reddy RR, Nazeer Ahammed Y, Parandamaiah M., et. al. Luminescence properties of Nd3+, TeO2-B2O3–P2O5–Li2O glass. Infrared Physics & Technology 2000, 41: 247.
[19] Serqueira EO, Dantas NO, Monte AFG, Bell MJV. Judd Ofelt calculation of quantum efficiencies and branching ratios of Nd3+ doped glasses, Journal of Non-Crystalline Solids, 2006, 352: 3628.
[20] Srinivasa Rao L, Srinivasa Reddy M, Ramana Reddy M.V, Veeraiah N. Spectroscopic features of Pr3+, Nd3+, Sm3+ and Er3+ ions in Li2O–MO ,Nb2O5, MoO3 and WO3,–B2O3 glass systems, Physica B: Condensed Matter, 2008, 403: 2542.
[21] Shanmugavelu B, Venkatramu V, Ravi Kanth Kumar VV. Optical properties of Nd3+ doped bismuth zinc borate glasses, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 122: 422.
[22] Vijaya Kumar K, Suresh Kumar A. Spectroscopic properties of Nd3+ doped borate glasses, Optical Materials, 2012, 35(1): 12.
[23] Pal I, Agarwal A, Sanghi S, Aggarwal MP, Bhardwaj S. Fluorescence and radiative properties of Nd3+ ions doped zinc bismuth silicate glasses, Journal of Alloys and Compounds, 2014, 587: 332.
[24] Mhareb MHA, Hashim S, Ghoshal SK, Alajerami YSM, Saleh MA, Dawaud RS, Razak NAB, Azizan SAB. Impact of Nd3+ ions on physical and optical properties of Lithium Magnesium Borate glass, Optical Materials, 2014, 37: 391.
[25] Rao TGVM, Rupesh Kumar A, Neeraja K, Veeraiah N, Rami Reddy M. Optical and structural investigation of Eu3+ ions in Nd3+ co-doped magnesium lead borosilicate glasses, Journal of Alloys and Compounds, 2013, 557: 209.
[26] Campbell JH, Suratwala TI. Nd-doped phosphate glasses for high-energy/high-peak-power lasers, Journal of Non-Crystalline Solids, 2000, 263–264: 318.
[27] Bettinell, M, Speghini A, Brik MG. Spectroscopic studies of emission and absorption properties of 38PbO-62SiO2:Nd3+ glass, Optical Materials, 2010, 32: 1592.
[28] Gandhi Y, Kityk IV, Brik M.G, Raghava Rao P, Veeraiah N. Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2–WO3–TeO2 glasses, Journal of Alloys and Compounds, 2010, 508: 278.
[29] Reisfeld, R., 1975, Structure and Bonding 22 “Springer- verlag, New York”, 123
[30] Henrie, D.E., Fellows, R.L., Choppin, G.R., 1976, Coord. Chem. Rev. 18, p. 199.
[31] Peacock, R.D., Structure and Bonding 1975, “Springer-Verlag, New York”, 22, p.83
[32] Horrocks, W.D., Albin, M., 1984, “Prog. Inorg. Chem” (An Inter science Publication, New York,) 31, pp.1
[33] Florez A., Martinez J.F., Florez M., J.Non-Crystlline Solids 284 (2001) 261.
[34] Karthikeyan B., Mohan S., Physica B 334 (2003) 298.
[35] Saisudha M.B., Ramakrishna J., Optical Materials 18 (2002) 403.
[36] Renuka Devi A., Jayasankar C.K., Materials Chemistry and Physics 42 (1995) 106.
[37] Mehta V., Aka G., Dawar A.L., Mansingh A., Optical Materials 12 (1999) 53.
[38] Surana S.S.L., Sharma1 Y.K., Tandon S.P.,Materials Science and Engg. B 83 (2001) 204.
[39] Jayasankar C.K., Ravi Kanth Kumar V.V., Physica B 226 (1996) 313.
[40] Peter A. Tanner., Kumar V.V.R.K., Jayasankar C.K., J. Alloys and compounds 225 (1995) 85.
[41] Ebendorff-Heidepriem H., Seeber W., Ehrt D., Journal of Non-Crystalline Solids 183 (1995) 191.
[42] Rao T.V.R., Reddy R.R., Nazeer Ahammed Y., Parandamaiah M., Infrared Physics & Technology 41 (2000) 247.
[43] Konishi A., Kanno R., Kawamoto Y., J. All. and Comp. 232 (1996) 53.
[44] Ajith Kumar G., Biju P.R., Venugopal C., Journal of Non-Crystalline Solids 221 (1997) 47.
[45] De la Rosa-Cruz E., Kumar G.A., Diaz-Torres L.A., Optical Materials 18 (2001) 321.
[46] Lakshman S.V.J. and Ratnakaram Y.C., Phys. Chem. Glasses, 29 (1988) 26.
[47] Subramanyam Y., Moorthy L.R. and Lakshman S.V.J., J. Phys. Chem. Solids 51 (1990) 231.
[48] Jayasankar C.K., Babu P., J. Alloy. and Comp. 307 (2000) 82.
[49] Rodriguez V.D., Martin I.R., Alcala R., Cases R., J. Lumin. 54 (1992) 231.
[50] Reisfeld R., Bornstein A., Boehm L., J. Solid State Chem. 14 (1975) 14.
[51] Reddy R.R., Nazeer Ahammed Y., Abdul Azeem P., Rama Gopal K., Rao T.V.R., Buddhudu S., Sooraj Hussain N., Journal of Quantitative Spectroscopy & Radiative Transfer 77 (2003) 149.
[52] Nachimuthu P., Jagannathan R., Nirmal Kumar V., Narayana Rao D., Journal of Non-Crystalline Solids 217 (1997) 215.
[53] Reddy C.V., Ahammed Y.N., Reddy R.R. and Rao T.V.R., J. Phys. Chem. Solids 159 (1998) 337.
[54] Sooraj Hussain N., Aruna V., Buddhudu S., Materials Research Bulletin, 35 (2000) 703.
[55] Ahrens H., Wollenhaupt M., Frobel P., Jun Lin, Barner K., Sun G.S., Braunstein R., Journal of Luminescence 82 (1999) 177.
[56] Biju P.R., Jose G., Thomas V., Nampoori V.P.N., Unnikrishnan N.V., Optical Materials 24 (2004) 671.
[57] Jayasankar C.K., Babu P., Troster Th., Holzapfel W.B., J. Luminescence 91 (2000) 33.
[58] Akshaya Kumar, Rai D.K., Rai S.B., Spectrochimica Acta Part A 59 (2003) 917.
[59] Schoonover J.R., Lee Y.L., Su S.N., Lin S.H., Eyring L., Appl. Spectrosc. 28 (1984) 154.
[60] Mahato K.K., Rai D.K., Rai S.B., Solid State Commun. 108 (1998) 671.
[61] Joshi J.C., Joshi J., Belwel R., Joshi B.C., Pandey N.C., J.Phys. Chem. Solids, 39 (1978) 581.
[62] Sharma B., Rai S.B., Rai D.K., Buddhudu S., Indian J.Eng. Mater. Sci. 2 (1995) 297.
[63] Jayasankar C.K., Rukmini E., Optical Materials 8 ( 1997) 193.
[64] Souza Filho A.G., Mendes Filho J., Melo F.E.A., Custo dio M.C.C., Lebullenger R., Hernandes A.C., Journal of Physics and Chemistry of Solids 61 (2000) 1535.
[65] Vijaya Prakash G., Materials Letters 46 (2000) 15.
[66] Takashi Kushida, Atusi Kurita, Masanori Tanaka., Journal of Luminescence 102 (2003) 301.
[67] Annapurna K., Dwevedi R.N., Kundu P., Buddhudu S., Materials Research Bulletin 38 (2003) 429.
[68] Aruna V., Sooraj Hussain N., Buddhudu S., Materials Research Bulletin, 33 (1998) 149.
[69] Jianrong Qiu, Shimizuguwa Y., Sugimoto N., Hirao K., Journal of Non-Crystalline Solids 222 (1997) 290.
[70] A. Paul, Chemistry of glasses, Chapman & Hall, London (1982).
[71] S.R. Elliot, Physics of amorphous materials, (Longman, London 1990).
[72] J. F. Shackl Ford, Introduction to Materials Science for Engineers, (Macmillan, New York, 1985).
[73] B. R. Judd, Phys. Rev 127 (1962) 750.
[74] G.S. Ofelt, J. Chem. Phys. 37 (1962) 511.
[75] Carnall WT, Feilds PR, Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, The Journal of Chemical Physics, 1968, 49: 4424.
[76] Lucas J. Rare earths in fluoride glasses, Journal of the Less-Common Metals, 1985, 112: 27.
[77] Jorgenson CK. Orbitals Atoms and Molecules, Academic Press, London, 1962.
[78] Sinha SP. Complexes of the Rare Earths, Pergamon, Oxford, 1966.
[79] Renuka Devi A, Jayasankar CK. Optical properties of Nd3+ ions in lithium borate glasses, Materials chemistry and physics, 1995, 42: 106.
[80] Kanoun A, Alaya S, Maaref H. Spectroscopic properties of Pr3+ and Nd3+ ions in zinc tellurite glasses, Physica Status Solidi B. 1990, 162: 523.
[81] Balda R, Fernandez J, Sanz M, de Pablos A, Fdez-Navarro JM, Mugnier J. Infrared-to-visible upconversion in Nd3+-doped chalcohalide glasses , Physical Review B , 2000, 61: 144101.
[82] Sunil Kumar S, Jayakrishna Khatei Kasthurirengan S, Koteswara Rao K.S.R, Ramesh, K.P. Optical absorption and photoluminescence studies of Nd3+ doped alkali boro germanate glasses, Journal of Non-Crystalline Solids, 2011, 357: 842.
[83] Upendra Kumar K, Prathyusha VA, Babu P, Jayasankar CK, Joshi AS, Speghini A, Bettinelli M. Fluorescence properties of Nd3+-doped tellurite glasses, Spectrochimica Acta Part A, 2007, 67: 702.
[84] Ravi Kanth Kumar VV, Bhatnagar A, Jagannathan R. Structural and optical studies of Pr3+, Nd3+, Er3+ and Eu3+ ions in tellurite based oxyfluoride, TeO2-LiF, glass, Journal of Physics D: Applied Physics, 2001, 34: 1563.
[85] Vermelho MVD, Neto ASG, Amorim HT, Cassanjes FC, Ribeirod SJL, Messaddeqd Y. Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited at 1540 nm, Journal of Luminescence, 2003, 102: 755.
[86] Adam, J. L., Sibley, W. A., 1985, “J. Non-Cryst. Solids” 76, pp.267-279.
[87] Hirayama, C., Camp, F.E., Melamid, N.T., Steinbruegge, K.B., 1971 “J. Non- Cryst. Solids” 6, pp.342-356.
[88] Tandon RP, Hotchandani S. Electrical conductivity of semiconducting tungsten oxide glasses. Physica Status Solidi (a) 2001, 185: 453.<453::AID-PSSA453>3.0.CO;2-L
[89] Qiu HH, Sakata H, Hirayama T. Electrical conduction of glasses in the system Fe2O3-Sb2O3-TeO2, Journal of Ceramic Society of Japan, 1995, 103: 32.
[90] Khalifa FA, Azooz A. Infrared absorption spectra of gamma irradiated glasses of the system Li2O-B2O3-Al2O3. Indian Journal of Pure & Applied Physics, 1998, 36: 314.
[91] Ahmed AA, Eltohamy MR. Infrared study of glasses in the system B2O3-PbO-CuO in relation to their structure. Indian Journal of Pure & Applied Physics, 1998, 36: 335.
[92] Subbalakshmi P, Veeraiah N. Influence of WO3 on dielectric properties of zinc phosphate glasses. Indian Journal of Engineering & Materials Sciences, 2001, 8: 275.
[93] Karthikeyan B, Mohan, Baesso M.L. Spectroscopic and glass transition studies on Nd3+-doped sodium zincborate glasses. Physica B , 2003, 337: 249.