New Polymeric Composite Materials, Chapter 1


Shape Memory Polymers in Biomedical Applications

Mahadevappa Y. Kariduraganavar, Radha V. Doddamani and Divya D. Achari

Shape-memory polymers (SMPs) provide an attractive insight into material science, opening unexplored horizons and giving access to unconventional functions mainly in polymer materials, and thus SMPs play a vital role in the field of biomedical engineering and clinical applications. The shape-memory polymers are able to recover fully under load and generate high levels of stress during recovery. When activated under a programmed thermo-chemical cycle, the materials demonstrate excellent shape-fixity and reach complete recovery on re-heating. In view of different structural approaches, a large number of polymers of medical applications are anticipated from resulting shape-memory polymers. Some of the devices are already being utilized in the medical field and others are under examination. One of these potential applications is the removal of a clot in a blood vessel using a laser-activated shape-memory polymer. This chapter includes different functionality polymers and their structural approaches, types of different stimuli responsive shape-memory polymers and their applications in the biomedical field. At the end, future prospects and challenges related to clinical research are discussed in detail. To compile this chapter and to provide adequate information to the readers, we have explored all possible ways including research articles, books, reviews and search engines such as

Shape Memory, Polymers, Biomedical Applications, Polyrotaxanes

Published online 11/1/2016, 60 pages


Part of New Polymeric Composite Materials

[1] K.S.S. Kumar, A.K. Khatwa, C.P.R. Nair, High transition temperature shape memory polymers (SMPs) by telechelic oligomer approach, Reactive Functional Polymers 78 (2014) 7-13.
[2] Y. Liu, Y. Li, H. Chen, G. Yang, X. Zheng, S. Zhou, Water-induced shape-memory poly(D,L-lactide)/microcrystalline cellulose composites, Carbohydrate Polymers 104 (2014) 101–108.
[3] J. Hu, Y. Zhu, H. Huang, J. Lu, Recent advances in shape–memory polymers: structure, mechanism, functionality, modeling and applications, Progress in Polymer Science 37 (2012) 1720–1763.
[4] J. Hu, S. Chen, A review of actively moving polymers in textile applications, Journal of Materials Chemistry 20 (2010) 3346–3355.
[5] M.R. Aguilar, C. Elvira, A. Gallardo, B. Vázquez, J.S. Román, Topics in tissue engineering, in: N. Ashammakhi, R. Reis, E. Chiellini (Eds.), Smart Polymers and their Applications as Biomaterials, Spain, 2007, pp. 1-27.
[6] J. Xu, J. Song, Thermal responsive shape memory polymers for biomedical applications, in: R.F. Rezai (Ed.), Biomedical Engineering–Frontiers and Challenges, In Tech CC BY-NC-SA 3.0 license, USA, 2011, pp. 125-142.
[7] B. Yan, S. Gua, Y. Zhang, Polylactide-based thermoplastic shape memory polymer nanocomposites, European Polymer Journal 49 (2013) 366-378.
[8] Inamuddin, R.K. Jain, S. Hussain, M. Naushad, Poly (3,4-ethylenedioxythiophene): polystyrene sulfonate zirconium(IV) phosphate compsiteionomeric membrane for artifical muscle application.RSC Adv 5 (2015) 84526-84534.
[9] S. Pandini, F. Baldi, K. Paderni, M. Messori, M. Toselli, F. Pilati, A. Gianoncelli, M. Brisotto, E. Bontempi, T. Riccò, One-way and two-way shape memory behaviour of semi-crystalline networks based on sol-gel cross-linked poly(e-caprolactone), Polymer 54 (2013) 4253-4265.
[10] J.Y. Sun, X. Zhao, W.R.K. Illeperuma, O. Chaudhuri, K.H. Oh, D.J. Mooney, J.J. Vlassak, Z. Suo, Highly stretchable and tough hydrogels, Nature 489 (2012) 133-136.
[11] Y. Wang, X. Li, Y. Pan, Z. Zheng, X. Ding, Y. Peng, High-strain shape memory polymers with movable cross-links constructed by interlocked slide-ring structure, Royal Society of Chemistry Advances 4 (2014) 17156 -17160.
[12] D. Pathania, G. Sharma, M. Naushad, V. Priya, A biopolymerbasedhybridcationexchanger pectincerium(IV) iodate:Synthesis, characterization andanalyticalapplications. Des & Water Treat 57 (2016) 468-475.
[13] S. Hayashi, S. Kondo, P. Kapadia, E. Ushioda, Room-temperature-functional shape-memory polymers, Plastics Engineering 51 (1995) 29-31.
[14] D.J. Maitland, M.F. Metzger, D. Schumann, A. Lee, T.S. Wilson, Photothermal properties of shape memory polymer micro-actuators for treating stroke, Lasers in Surgery and Medicine 30 (2002) 1-11.
[15] W.M. Huang, B. Yang, Y. Zhao, Z. Ding, Thermo-moisture responsive polyurethane shape-memory polymer and composites: A review, Journal of Material Chemistry 20 (2010) 3367–3381.
[16] A. Gandhi, A. Paul, S.O. Sen, K.K. Sen, Studies on thermoresponsive polymers: Phase behaviour, drug delivery and biomedical applications, Asian Journal of Pharmaceutical sciences 10 (2015) 99-107.
[17] R. Xiao, J. Guo, D.L. Safranski, T.D. Nguyen, Solvent-driven temperature memory and multiple shape memory effects, Soft Matter 11 (2015) 3977-3985.
[18] H. Almeida, M. Helena Amaral, P. Lobao, Temperature and pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery, Journal of Applied Pharmaceutical Science 02 (2012) 1-10.
[19] J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: stimulus methods and applications, Progress in Materials Science 56 (2011) 1077–1135.
[20] F.E. Feninat, G. Laroche, M. Fiset, D. Mantovani, Shape memory materials for biomedical applications, Advanced Engineering Materials 4 (2002) 91-104.;2-B
[21] W. Small, P. Singhal, T.S. Wilsona, D.J. Maitland, Biomedical applications of thermally activated shape memory polymers, Journal of Material Chemistry 20 (2010) 3356–3366.
[22] X. Luo, P.T. Mather, Triple-shape polymeric composites (TSPCs), Advanced Functional Materials 20 (2010) 2649–2656.
[23] P. Bawa, V. Pillay, Y.E. Choonara, L.C. du Toit, Stimuli-responsive polymers and their applications in drug delivery, Biomedical Materials 4 (2009) 1-15.
[24] M. Lemanowicz, A. Gierczycki, W. Kuznik, R. Sancewicz, P. Imiela, Determination of lower critical solution temperature of thermosensitive flocculants, Minerals Engineering 69 (2014) 170–176.
[25] J. Li, C.L. Lewis, D.L. Chen, M. Anthamatten, Dynamic mechanical behavior of photo-cross-linked shape-memory elastomers, Macromolecules 44 (2011) 5336–5343.
[26] T.Y. Liu, S.H. Hu, D.M. Liu, S.Y. Chen, I.W. Chen, Biomedical nanoparticle carriers with combined thermal and magnetic responses, Nano Today 4 (2009) 52-65.
[27] M.A. Ward, T.K. Georgiou, Thermoresponsive polymers for biomedical applications, Polymers 3 (2011) 1215-1242.
[28] R.P. Shaikh, V. Pillay, Y.E. Choonara, L.C. Toit, V.M.K. Ndesendo, P. Bawa, S. Cooppan, A review of multi-responsive membranous systems for rate-modulated drug delivery, AAPS PharmSciTech 2 (2010) 441-459.
[29] Y. Hiruta, T. Funatsu, M. Matsuura, J. Wang, E. Ayano, H. Kanazawa, pH/temperature-responsive fluorescence polymer probe with pH-controlled cellular uptake, Sensors and Actuators B: Chemical 207 (2015) 724–731.
[30] M.F. Leung, J. Zhu, P. Li, F.W. Harris, Novel synthesis and properties of smart core-shell microgels, Macromolecular Symposia 226 (2005) 177-185.
[31] D. Kuckling, H.J.P. Adler, K.F. Arndt, L. Ling, W.D. Habicher. Temperature and pH dependent solubility of novel poly(N-isopropylacrylamide) copolymers, Macromolecular Chemistry and Physics 201 (2000) 273-280.;2-E
[32] G. Sun, X.Z. Zhang, C.C. Chu, Formulation and characterization of chitosan-based hydrogel films having both temperature and pH sensitivity, Journal of Material Science: Materials in Medicine 18 (2007) 1563–1577.
[33] X. Wu, W.M. Huang, Y. Zhao, Z. Ding, C. Tang, J. Zhang, Mechanisms of the shape memory effect in polymeric materials, Polymer 5 (2013) 1169-1202.
[34] A. Lendlein, H. Jiang, O. Junger, R. Lange, Light-induced shape-memory polymers, Nature 434 (2005) 879-882.
[35] G.J. Berg, M.K. McBride, C. Wang, C.N. Bowman, New directions in the chemistry of shape memory polymers, Polymer 55 (2014) 5849-5872.
[36] H. Finkelmann, E. Nishikawa, G.G. Pereira, M. Warner, A new opto-mechanical effect in solids, Physical Review letters 87 (2001) 015501-1- 015501-4.
[37] S. Chatani, C. J. Kloxin, C.N. Bowman, The power of light in polymer science: photochemical processes to maniplulate polymer formation, structure, and properties, Polymer Chemistry 5 (2014) 2187-2201.
[38] S.Q. Wang, D. Kaneko, M. Okajima, K. Yasaki, S. Tateyama, T. Kaneko, Hyperbranched polycoumarates with photofunctional multiple shape memory, Smart Materials 52 (2013) 11143-11148.
[39] H. Meng, G. Li, A review of stimuli-responsive shape memory polymer composites, Polymer 54 (2013) 2199-2221.
[40] R.S. Langer, A. Lendlein, A. Schmidt and H. Grablowitz, U.S. Patent 6,160,084. A. (2000)
[41] R. Mohr, K. Kratz, T. Weigel, M.L. Gabor, M. Moneke, A. Lendlein, Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers, Proceedings of the National Academy of Sciences 103 (2006) 3540-3445.
[42] A. Mahajan, G. Aggarwal, Smart polymers: Innovations in novel drug delivery, International Journal of Drug Development and Research 3 (2011) 16-30.
[43] W.M. Huang, B. Yang, L. An, C. Li, Y.S. Chan, Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism, Applied Physics Letters 86 (2005) 114105-1-114105-3.
[44] M.C. Chen, H.W. Tsai, Y. Chang, W.Y. Lai, F.L. Mi, C.T. Liu, H.S. Wong, H.W. Sung, Rapidly self-expandable polymeric stents with a shape-memory property, Biomacromolecules 8 (2007) 2774-2780.
[45] H. Luo, J. Hu, Y. Zhu, S. Zhang, Y. Fan, G. Ye, Achieving shape memory: Reversible behaviors of cellulose-PU blends in wet–dry cycles, Journal of Applied Polymer Science 125 (2012) 657-665.
[46] H. Luo, J. Hu, Y. Zhu, Tunable shape recovery of polymeric nano-composites, Materials Letters 65 (2011) 3583-3585.
[47] Y. Liu, H. Lv, X. Lan, J. Leng, S. Du, Review of electro-active shape-memory polymer composite, Composites Science and Technology 69 (2009) 2064–2068.
[48] E. Smela, Conjugated polymer actuators for biomedical applications, Advanced Materials 15 (2003) 481-494.
[49] G.G. Wallace, G.M. Spinks, P.R. Teasdale, Conductive electroactive polymers: Intelligent material systems, Technomic Publication Company, Lancaster, 1997.
[50] H.H. Qin, P.T. Mather, Combined one-way and two-way shape memory in a glass-forming nematic network, Macromolecules 42 (2009) 273–280.
[51] J. Zotzmann, M. Behl, D. Hofmann, A. Lendlein, Reversible triple-shape effect of polymer networks containing polypentadecalactone and poly(epsilon-caprolactone)-segments, Advanced Materials 22 (2010) 3424–3429.
[52] J.K. Kocsis, S. Kéki, Biodegradable polyester-based shape memory polymers: Concepts of (supra) molecular architecturing, Express Polymer Letters 8 (2014) 397–412.
[53] M. Behl, M.Y. Razzaq, A. Lendlein, Multifunctional shape-memory polymers, Advanced Materials 22 (2010) 3388–3410.
[54] J. Zhou, S.A. Turner, S.M. Brosnan, Q. Li, J.M.Y. Carrillo, D. Nykypanchuk, O. Gang, V.S. Ashby, A.V. Dobrynin, S.S. Sheiko, Shape shifting: reversible shape memory in semicrystalline elastomers, Macromolecules 47 (2014) 1768-1776.
[55] T. Xie, X. Xiao, Y.T. Cheng, Revealing triple-shape memory effect by polymer bilayers, Macromolecular Rapid Communications 30 (2009) 1823–1827.
[56] C. Samuel, S. Barrau, J.M. Lefebvre, J.M. Raquez, P. Dubois, Designing multiple-shape memory polymers with miscible polymer blends: evidence and origins of a triple-shape memory effect for miscible PLLA/PMMA blends, Macromolecules 47 (2014) 6791-6803.
[57] H. Jeon, P. Mather, T. Haddad, Shape memory and nanostructure in poly(norbornyl-POSS) copolymers, Polymer International 49 (2000) 453-457.;2-H
[58] K. Matyjaszewski, N.V. Tsarevsky, Nanostructured functional materials prepared by atom transfer radical polymerization, Nature Chemistry 1 (2009) 276-288.
[59] L. Schadler, Nanocomposites: Model interfaces, Nature Materials 6 (2007) 257-258.
[60] A.C. Balazs, T. Emrick, T.P. Russell, Nanoparticle polymer composites: Where two small worlds meet, Science 314 (2006) 1107-1110.
[61] Z. He, N. Satarkar, T. Xie, Y.-T. Cheng, J.Z. Hilt, Remote controlled multishape polymer nanocomposites with selective radiofrequency actuations, Advanced Materials 23 (2011) 3192–3196.
[62] A. Lendlein, S. Kelch, Shape-memory polymers, Angewandte Chemie International Edition 41 (2002) 2034-2057.;2-M
[63] C. Liu, H. Qin, P.T. Mather, Review of progress in shape-memory polymers, Journal of Material Chemistry 17 (2007) 1543–1558.
[64] B.S. Lee, B.C. Chun, Y.C. Chung, K.II SuI, J.W. Cho, Structure and thermomechanical properties of polyurethane block copolymers with shape memory effect, Macromolecules 34 (2001) 6431–6437.
[65] A.A. Basfar, S. Lotfy, Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes, Radiation Physics and Chemistry 106 (2015) 376–384.
[66] O. M’barki, A. Hanafia, D. Bouver, C. Faur, R. Seacousse, U. Delabre, C. Blot, P. Guenoun, A. Deratani, D. Quemener, C. Pochat-Bohatier, Greener method to prepare porous polymer membrane by combining thermally induced phase separation and crosslinking of poly(vinyl alcohol) in water, Journal of Membrane Science 458 (2014) 225–235.
[67] Y. Chen, X.L. Tang, B.T. Chen, G. Qiu. Low temperature plasma vapor treatment of thermo-sensitive poly(N-isopropylacrylamide) and its application, Applied Surface Science 268 (2013) 332– 336.
[68] D. Schmaljohann, Thermo and pH-responsive polymers in drug delivery, Advanced Drug Delivery Reviews 58 (2006) 1655–1670.
[69] C.A. Lorenzo, A. Concheiro, A.S. Dubovik, N.V. Grinberg, T.V. Burova, V.Y. Grinberg, Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties, Journal of Controlled Release 102 (2005) 629-641.
[70] J. Zhang, N.A. Peppas, Synthesis and characterization of pH- and temperature-sensitive poly(methacrylicacid)/poly(N-isopropylacrylamide) interpenetrating polymeric networks, Macromolecules 33 (2000) 102-107.
[71] J. Ma, Y. Xu, B. Fan, B. Liang, Macromolecular nanotechnology preparation and characterization of sodium carboxymethylcellulose/poly(N-isopropylacrylamide)/clay semi-IPN nanocomposite hydrogels, European Polymer Journal 43 (2007) 2221–2228.
[72] B.L. Guo, Q.Y. Gao, Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide) semi-IPN hydrogel for oral delivery of drugs, Carbohydrate Research 342 (2007) 2416–2422.
[73] L. Peponi, I.N. Baena, A. Sonseca, E. Gimenez, A.M. Fernandez, J.M. Kennya, Biobased polymers and related materials, synthesis and characterization of PCL–PLLA polyurethane with shape memory behavior, European Polymer Journal 49 (2013) 893–903.
[74] K. Suchao-in, S. Chirachanchai, “Grafting to” as a novel and simple approach for triple-shape memory polymers, Applied Materials & Interfaces 5 (2013) 6850-6853J.
[75] Hu, G. Zhang, Z. Ge, S. Liu, Stimuli-responsive tertiary amine methacrylate-based block copolymers: Synthesis, supramolecular self-assembly and functional applications, Progress in Polymer Science 39 (2014) 1096–1143.
[76] Y. Luo, Y. Guo, X. Gao, B.-G. Li, T. Xie, A general approach towards thermoplastic multishape-memory polymers via sequence structure design, Advanced Materials 25 (2013) 743-748.
[77] C.Y. Chiang, C.C. Chu, Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior, Carbohydrate Polymers 119 (2015) 18–25.
[78] Q. Meng, J. Hu, A review of shape memory polymer composites and blends, Composites: Part A 40 (2009) 1661–1672.
[79] H.M. Jeong, J.H. Song, S.Y. Lee, B.K. Kim, Miscibility and shape memory property of poly(vinyl chloride)/thermoplastic polyurethane blends, Journal of Materials Science 36 (2001) 5457-5463.
[80] W. Zhang, L. Chen, Y. Zhang, Surprising shape-memory effect of polylactide resulted from toughening by polyamide elastomer, Polymer 50 (2009) 1311–1315.
[81] J.J. Song, I. Srivastava, J. Kowalski, H.E. Naguib, Fabrication and characterization of a foamed polylactic acid (PLA)/ thermoplastic polyurethane (TPU) shape memory polymer (SMP) blend for biomedical and clinical applications, Proc. SPIE: Behavior and Mechanics of Multifunctional Materials and Composites 9058 (2014) 90580B
[82] P.T. Mather, C. Liu and C.J. Campo, U. S. Patent 7,371,799. (2007)
[83] I.S. Kolesov, H.J. Radusch, Multiple shape-memory behavior and thermal-mechanicalproperties of peroxide cross-linked blends of linear and short-chain branched polyethylenes, Express Polymer Letters 2 (2008) 461-473.
[84] J.M. Cuevas, R. Rubio, L. German, J.M. Laza, J.L. Vilas, M. Rodriguez, L.M. Leon, Triple-shape memory effect of covalently crosslinked polyalkenamer based semicrystalline polymer blends, Soft Matter 8 (2012) 4928-4935.
[85] M. Souri, Y.C. Lu, A. Erol, S.S. Pulla, H.E. Karaca, Characterization of unconstraint and constraint shape recoveries of an epoxy based shape memory polymer, Polymer Testing 41 (2015) 231-238.
[86] T. Xie, I.A. Rousseau, Facile tailoring of thermal transition temperatures of epoxy shape memory polymers, Polymer 50 (2009) 1852-1856.
[87] I.A. Rousseau, T. Xie, Shape memory epoxy: Composition, structure, properties and shape memory performances, Journal of Materials Chemistry 20 (2010) 3431–3441.
[88] L. Ionov, V. Bocharova, S. Diez, Biotemplated synthesis of stimuli-responsive nanopatterned polymer brushes on microtubules, Soft Matter 5 (2009) 67–71.
[89] H. Kitano, H. Kago, K. Matsuura, Temperature-responsive polymer brush constructed on a colloidal gold monolayer, Journal of Colloid and Interface Science 331 (2009) 343–350.
[90] A.S. Hoffman, Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation, Advanced Drug Delivery Reviews 65 (2013) 10–16.
[91] A.F. Azarbayjani, J.R. Venugopal, S. Ramakrishna, P.F.C. Lim, Y.W. Chan, S.Y. Chan, Smart polymeric nanofibers for topical delivery of Levothyroxine, Journal of Pharmacy & Pharmaceutical Sciences 13 (2010) 400-410.
[92] J.S. Chawla, M.M. Amiji, Biodegradable poly(e-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen, International Journal of Pharmaceutics 249 (2002) 127-138.
[93] E.S. Lee, K. Na, Y.H. Bae, Polymeric micelle for tumor pH and folate-mediated targeting Journal of Controlled Release 91 (2003) 103–113.
[94] C.M. Agrawal, R.B. Ray, Biodegradable polymeric scaffolds for musculoskeletal tissue engineering, Journal of Biomedical Materials Research 55 (2001) 141-150.;2-J
[95] C.W. Patrick Jr., P.B. Chauvin, G.L. Robb, Tissue engineered adipose, in : C. W. Patrick, A.G. Mikos, L.V. McIntire (Eds.), Frontiers in Tissue Engineering, Elsevier Science, New York, 1998, pp. 369-382.
[96] C.M. Agrawal, J. Bert, J.D. Heckman, B.D. Boyan, Protein release kinetics of a biodegradable implant for fracture non-unions, Biomaterials 16 (1995) 1255-1260.
[97] K.A. Athanasiou, D. Korvick, R.C. Schenck, Biodegradable implants for the treatment of osteochondral defects in a goat model, Tissue Engineering 3 (1997) 363-373.
[98] G. V. Navokovic, I. Martin, B. Obradovic, S. Treppo, A.J. Grodzinsky, R. Langer, L.E. Freed, Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilageJournal of Orthopaedic Research 17 (1999) 130-138.
[99] S.E. Ibim, K.E. Uhrich, R. Bronson, S.F. El-Amin, R. Langer, C.T. Laurencin, Poly(anhydride-co-imides): in vivo biocompatibility in a rat model, Biomaterials 19 (1998) 941-951.
[100] S.E. Ibim, K.E. Uhrich, M. Attawia, V.R. Shastri, S.F. El-Amin, R. Bronson, R. Langer, C.T. Laurencin, Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model, Journal of Biomedical Material Research 43 (1998) 374-379.;2-5
[101] J. Choueka, J.L. Koval, H. Alexander, K.S. James, L.A. Hooper, J. Kohn, Canine bone response to tyrosine-derived polycarbonates and poly(L-lactic acid), Journal of Biomedical Material Research 31 (1996) 35-41.;2-R
[102] S. Singh, J. Singh, Controlled release of a model protein lyzozyme from phase sensitive smartpolymer systems, International Journal of Pharmaceutics 271 (2004) 189-196.
[103] M.A. Ward, T.K. Georgiou, Thermoresponsive terpolymers based on methacrylate monomers: Effect of architecture and composition, Journal of Polymer Science Part A 48 (2010) 775-783.
[104] Y.M. Zhou, A. Ishikawa, R. Okahashi, K. Uchida, Y. Nemoto, M. Nakayama, Y. Nakayama, Deposition transfection technology using a DNA complex with a thermoresponsive cationic star polymer, Journal of Controlled Release 123 (2007) 239-246.
[105] M. Behl, A. Lendlein, Shape-memory polymers, Materials Today 10 (2007) 20-28.
[106] A. Lendlein and R.S. Langer, W.O. 2004073690 A1. (2004)
[107] D. Marco, W.O. 2006092789 A2. (2006)
[108] J.M. Hampikian, B.C. Heaton, F.C. Tong, Z. Zhang, C.P. Wong, Mechanical and radiographic properties of a shape memory polymer composite for intracranial aneurysm, Materials Science and Engineering C 26 (2006) 1373-1379.
[109] S. Farèet, V. Valtulina, P. Petrini, E. Alessandrini, G. Pietrocola, M.C. Tanzi, P. Speziale, L. Visai, In vitro interaction of human fibroblasts and platelets with a shape-memory polyurethane, Journal of Biomedical Materials Research Part A 73 (2005) 1-11.
[110] W. Small IV, T.S. Wilson, W. J. Benett, J.M. Loge, D.J. Maitland, Laser-activated shape memory polymer intravascular thrombectomy device, Optics Express 13 (2005) 8204-8213
[111] L. Xue, S. Dai, Z. Li, Biodegradable shape-memory block co-polymers for fast self-expandable stents, Biomaterials 31 (2010) 8132-8140.
[112] M.H. Kabir, T. Hazama, Y. Watanabe, J. Gong, K. Murase, T. Sunada, H. Furukawa, Smart hydrogel with shape memory for biomedical applications, Journal of the Taiwan Institute of Chemical Engineers 45 (2014) 3134–3138.
[113] M. Ahmad, J. Luo, M. Mohsen, Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application, Science and Technology of Advanced Materials 13 (2012) 015006-015013.
[114] B. Guo, Y. Chen, Y. Lei, L. Zhang, W.Y. Zhou, A.B.M. Rabie, J. Zhao, Biobased poly(propylene sebacate) as shape memory polymer with tunable switching temperature for potential biomedical applications, Biomacromolecules 12 (2011) 1312–1321.
[115] D. Nguyen, S. Sa, J.D. Pegan, B. Rich, G.X. Xiang, K.E. McCloskey, J.O. Manilay, M. Khine, Tunable shrink-induced honeycomb microwell arrays for uniform embryoid bodies, Lab on a Chip 9 (2009) 3338–3344.
[116] D. Ratna, J. K. Kocsis, Recent advances in shape memory polymers and composites: a review, Journal of Materials Science 43 (2008) 254–269.
[117] D.J. Maitland, W. Small, J.M. Ortega, P.R. Buckely, J. Rodriguez, J. Hartman, Prototype laser-activated shape memory polymer foam device for embolic treatment of aneurysms, Journal of Biomedical Optics 12 (2007) 030504-1-030504-3.
[118] J.M. Ortega, J. Hartman, J. Rodriguez, D.J. Maitland, Post-treatment hemodynamics of a basilar aneurysm and bifurcation, Annals of Biomedical Engineering 36 (2008) 1531-1546.
[119] J. Rodriguez, Y. Yu, M. Miller, T. Wilson, J. Hartman, F. Clubb, Opacification of shape memory polymer foam designed for treatment of intracranial aneurysms, Annals of Biomedical Engineering 40 (2012) 883-897.
[120] I.A. Rousseau, E.J. Berger, J.N. Owens and H.G. Kia, U.S. Patent 0,249,682 A1. (2010)
[121] J. Cui, K. Kratz, A. Lendlein, Adjusting shape-memory properties of amorphous polyether urethanes and radio-opaque composites thereof by variation of physical parameters during programming, Smart Materials and Structures 19 (2010) 065019-065029.
[122] P.R. Buckley, G.H. McKinley, T.S. Wilson, W. Small IV, W. J. Benett, J.P. Bearinger, M.W. McElfresh, D.J. Maitland, IEEE Transactions on Biomedical Engineering 53 (2006) 2075-2083.
[123] L. Song, W. Hu, G. Wang, G. Niu, H. Zhang, H. Cao, K. Wang, H. Yang, S. Zhu, Tailored (meth)acrylate shape-memory polymer networks for ophthalmic applications, Macromolecular Bioscience 10 (2010) 1194-1202.
[124] B. Simpson, G. Nunnery, R. Tannenbaum, K. Kalaitzidou, Capture/release ability of thermo-responsive polymer particles, Journal of Materials Chemistry 20 (2010) 3496-3501.
[125] W. Small, T.S. Wilson, P.R. Buckley, W.J. Benett, J.M. Loge, J. Hartman, D.J. Maitland, Prototype fabrication and preliminary in vitro testing of a shape memory endovascular thrombectomy device, IEEE Transactions on Biomedical Engineering 54 (2007) 1657-1666.
[126] J. Hartman, W. Small IV, T.S. Wilson, J. Brock, P.R. Buckley, W.J. Benett, J.M. Loge, D.J. Maitland, Embolectorny in a rabbit acute arterial occlusion model using a novel electromechanical extraction device, American Journal of Neuroradiology 28 (2007) 872-874.
[127] C. Wischke, A.T. Neffe, S. Steuer, A. Lendlein, Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release, Journal of Controlled Release 138 (2009) 243-250.
[128] G. Li, G. Fei, H. Xia, J. Han, Y. Zhao, Spatial and temporal control of shape memory polymers and simultaneous drug release using high intensity focused ultrasound, Journal of Materials Chemistry 22 (2012) 7692-7696.
[129] C. Wischke, A. Lendlein, Shape-memory polymers as drug carriers—a multifunctional system, Pharmaceutical Research 27 (2010) 527-529.
[130] C. Wischke, A.T. Neffe, A. Lendlein, Shape-Memory Polymers in Advances in Polymer Science, Springer, New York, 2010.
[131] J.J. Wykrzykowska, Y. Onuma, P.W. Serruys, Advances in stent drug delivery: The future is in bioabsorbable stents, Expert Opinion on Drug Delivery 6 (2009) 113-126.
[132] A.T. Neffe, B.D. Hanh, S. Steuer, A. Lendlein, Polymer networks combining controlled drug release, biodegradation, and shape memory capability, Advanced Materials 21 (2009) 3394-3398.
[133] C. Wischke, A.T. Neffe, S. Steuerc, A. Lendlein, Comparing techniques for drug loading of shape-memory polymer networks-effect on their functionalities, European Journal of Pharmaceutical Sciences 41 (2010) 136-147.
[134] K. Nagahama, Y. Ueda, T. Ouchi, Y. Ohya, Biodegradable shape-memory polymers exhibiting sharp thermal transitions and controlled drug release, Biomacromolecules 10 (2009) 1789-1794.
[135] A. Lendlein, R. Langer, Biodegradable, elastic shape-memory polymers for potential biomedical applications, Science 96 (2002) 1673-1676.
[136] R.S. Langer and A. Lendlein, World Patent W.O. 2003088818 A2. (2003)
[137] A. Lendlein, S. Kelch, Shape-memory polymers as stimuli-sensitive implant materials, Clinical Hemorphology and Microcirculation 32 (2005) 105-116.
[138] A. Lendlein, K. Kratz, S. Kelch, Smart implant materials, Medical Device Technology 16 (2005) 12-14.
[139] Smart surgery future materials (through Textile Technology Index) (2004) 33-34.
[140] A. Lendlein and U. Ridder, U.S. Patent 0088135 A1. (2007)
[141] A. Lendlein, G. Lang, K. Knitz, T. Krause, A. Kalbfleisch, J. Allwohn, J. Burghaus, G. Sendelbach, A. Beyer, D. Mattinger, S. Uhl, S. Birkel, A. Duchscherer, T.A.A. Hasson, H.-Y. Jiang, S. Morsheim and Y. Ghazlan, U.S. Patent 0244353 A1. (2005)
[142] J. Ortega, W. Small, T. Wilson, W. Benett, J. Loge, D. Maitland, A shape memory polymer dialysis needle adapter for the reduction of hemodynamic stress within arteriovenous grafts, IEEE Transactions on Biomedical Engineering 54 (2007) 1722-1724.
[143] Y. Yu, T. Ikeda, Photodeformable polymers: A new kind of promising smart material for micro- and nano-applications, Macromolecular Chemistry and Physics 206 (2005) 1705-1708.
[144] Y.C. Jung, J.W. Cho, Application of shape memory polyurethane in orthodontic, Journal of Materials Science: Materials in Medicine 21 (2010) 2881-2886.
[145] P.T. Mather, C. Liu and C.J. Burstone, World Patent 2006071520. (2006)
[146] S. Yasuo, U.S. Patent 19980189973. (1998)
[147] C. Liu, P.T. Mather, C. Burstone, Proceedings of the annual technical conference, Society of Plastics Engineers, 64th Brookfield, CT, USA, 2006, pp. 1356-1360.
[148] Q.H. Meng, J.L. Hu, B.H. Liu, Y. Zhu, A low-temperature thermoplastic anti-bacterial medical orthotic material made of shape memory polyurethane ionomer: influence of ionic group, Journal of Biomaterials Science, Polymer Edition 20 (2009) 199-218.
[149] Q.H. Meng, J.L. Hu, Y. Zhu, Properties of shape memory polyurethane used as a low-temperature thermoplastic biomedical orthotic material: influence of hard segment content, Journal of Biomaterials Science, Polymer Edition 19 (2008) 1437-1454.
[150] T. Ware, G. Ellson, A. Kwasnik, S. Drewicz, K. Gall, W. Voit, Tough shape-memory polymer-fiber composites, Journal of Reinforced Plastics and Composites 30 (2011) 371-380.
[151] C.M. Yakacki, T.D. Nguyen, R. Likos, R. Lamell, D. Guigou, K. Gall, Impact of shape-memory programming on mechanically-driven recovery in polymers, Polymer 52 (2012) 4947-4954.
[152] C.M. Yakacki, J. Griffis, M. Poukalova, K. Gall, Bearing area: A new indication for suture anchor pullout strength, Journal of Orthopaedic Research 27 (2009) 1048-1054.
[153] D. Rickert, GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery 8 (2009) PMC3199816.
[154] S. Pasche, S. Angeloni, R. Ischer, M. Liley, J. Luprano, G. Voirin, Wearable biosensors for monitoring wound healing, Advances in Science and Technology 57 (2008) 80-87.
[155] P. Lafont, A.D. Lantada and L. Yustos, Spain, P200603149. (2006)
[156] V. Lorenzo, A.D. Lantada, P. Lafont, H.L. Yustos, C. Fonseca, J. Acosta, Physical ageing of a PU-based shape memory polymer: Influence on their applicability to the development of medical devices, Materials & Design 30 (2009) 2431-2434.
[157] K. Ishida, R. Hortensius, X. Luo, P.T. Mather, Soft bacterial polyester-based shape memory nanocomposites featuring reconfigurable nanostructure, Journal of Polymer Science Part B: Polymer Physics 50 (2012) 387-393.
[158] K.A. Davis, K.A. Burke, P.T. Mather, J.H. Henderson, Dynamic cell behavior on shape memory polymer substrates, Biomaterials 32 (2011) 2285-2293.
[159] M. Ebara, K. Uto, N. Idota, J.M. Hoffman, T. Aoyagi, Shape-memory surface with dynamically tunable nano-geometry activated by body heat, Advanced Materials 24 (2012) 273-278.
[160] A.A. Sharp, H.V. Panchawagh, A. Ortega, R. Artale, S. R. Burns, D.S. Finch, K. Gall, R.L. Mahajan, D. Restrepo, Toward a self-deploying shape memory polymer neuronal electrode, Journal of Neural Engineering 3 (2006) L23-30.
[161] X. Yu, L. Wang, M. Huang, T. Gong, W. Li, Y. Cao, D. Ji, P. Wang, J. Wang , S. Zhou, A shape memory stent of poly(e-caprolactone-co-DL-lactide) copolymer for potential treatment of esophageal stenosis, Journal of Materials Science: Materials in Medicine 23 (2012) 581-589.
[162] T.G. Leong, C.L. Randall, B.R. Benson, N. Bassik, G.M. Stern, D.H. Gracias, Tetherless thermobiochemically actuated microgrippers, Proceedings of the National Academy of Sciences 106 (2009) 703-708.
[163] V.J. Neiman, S. Varghese, Synthetic bio-actuators and their applications in biomedicine, Smart Structures and Systems 7 (2011) 185-198.
[164] C. Yakacki, R. Shandas, C. Lanning, B. Rech, A. Eckstein, K. Gall, Unconstrained recovery characterization of shape-memory polymer networks for cardiovascular applications, Biomaterials 28 (2007) 2255-2263.
[165] G.M. Baer, W. Small IV, T.S. Wilson, W.J. Benett, D.L. Matthews, J. Hartman, D. J. Maitland, Fabrication and in vitro deployment of a laser-activated shape memory polymer vascular stent, Biomedical Engineering Online 6 (2007) 43-1-43-8.
[166] S.H. Ajili, N.G. Ebrahimi, M. Soleimani, Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants, Acta Biomaterialia 5 (2009) 1519-1530.
[167] G.M. Baer, T.S. Wilson, W. Small, J. Hartman, W.J. Benett, D.L. Matthews, D.J. Maitland, Thermomechanical properties, collapse pressure, and expansion of shape memory polymer neurovascular stent prototypes, Journal of Biomedical Materials Research Part B Applied Biomaterials 90 (2009) 421-429.
[168] L. Xue, S. Dai, Z. Li, Synthesis and characterization of elastic star shape-memory polymers as self-expandable drug-eluting stents, Journal of Materials Chemistry 22 (2012) 7403-7411
[169] L. Sun, W.M. Huang, Thermo/moisture responsive shape-memory polymer for possible surgery/operation inside living cells in future, Materials and Design 31 (2010) 2684-2689.
[170] V.J. Cornelius, N. Majcen, M.J. Snowden, J.C. Mitchell, B. Voncina, Smart materials IV, in: H.V. Nicolas (Ed.), Preparation of SMART wound dressings based on colloidal microgels and textile fibres, Proceedings of the SPIE, SPIE Publications, Bellingham, Washington, 2007, pp. 6413.
[171] G. Li, M. John, A self-healing smart syntactic foam under multiple impacts, Composites Science and Technology 68 (2008) 3337-3343.
[172] J. Nji, G. Li, A biomimic shape memory polymer based self-healing particulate composite, Polymer 51 (2010) 6021-6029.
[173] G. Li, N. Uppu, Shape memory polymer based self-healing syntactic foam: 3-D confined thermomechanical characterization, Composites Science and Technology 70 (2010) 1419-1427.
[174] J. Nji, G. Li, Damage healing ability of a shape-memory-polymer-based particulate composite with small thermoplastic contents, Smart Materials and Structures 21 (2012) 025011-1-025011-10.
[175] G.Z. Voyiadjis, A. Shojaei, G. Li, P.I. Kattan, A theory of anisotropic healing and damage mechanics of materials, Proceedings of the Royal Society A 468 (2012) 163-183.
[176] G. Li, H. Meng, J. Hu, Healable thermoset polymer composite embedded with stimuli-responsive fibres, Journal of Royal Society Interface 9 (2012) 3279-3287.
[177] J. Nji, G. Li, A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation, Smart Materials and Structures 19 (2010) 035007-1-035007-9.
[178] G.Z. Voyiadjis, A. Shojaei, G. Li, A thermodynamic consistent damage and healing model for self healing materials, International Journal of Plasticity 27 (2011) 1025-1044.
[179] M. John, G. Li, Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core, Smart Materials and Structures 19 (2010) 075013-1-075013-12.
[180] X. Xiao, T. Xie, Y.T. Cheng, Self-healable graphene polymer composites, Journal of Materials Chemistry 20 (2010) 3508-3514.