Polymer Electrolyte Membranes for Direct Methanol Fuel Cells


Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

S. Mehdipour-Ataei, M. Mohammadi

Fuel cells as a new source of energy generation are under the focus. According to research results, not only are polymer electrolyte fuel cells superior but also the use of methanol solution instead of hydrogen as a fuel will eliminate problems associated with the use of high purity hydrogen. So development and design of a polymeric membrane as a vital component which determines the performance is the priorities of research in this area. Although Nafion membranes are the most common, high permeability of these membranes to methanol lead to a significant loss of performance. To overcome this obstacle, modifying existing polymers or preparing new structures have been proposed. In this regard, this chapter introduces the polymeric membranes used in methanol fuel cells. Therefore, applied polymers in methanol fuel cells including perfluorinated ionomers; partially- and non-fluorinated polymers including polypropylene-based membranes, and the other polymer structures are described. Also, modified membranes based on these polymers with improved properties are presented. Finally, organic-inorganic composites, newly developed structures with high performance, and some common polymer electrolyte membranes are explained.

Direct Methanol Fuel Cell, Polymeric Membranes, Nafion, Hydrocarbon-Based Polymers, Organic-Inorganic Composites, Multilayer, Pore-Filled Structures

Published online 5/5/2019, 30 pages

Citation: S. Mehdipour-Ataei, M. Mohammadi, Polymer Electrolyte Membranes for Direct Methanol Fuel Cells, Materials Research Foundations, Vol. 49, pp 129-158, 2019

DOI: https://doi.org/10.21741/9781644900192-4

Part of the book on Nanomaterials for Alcohol Fuel Cells

[1] M. Sajgure, B. Kachare, P. Gawhale, S. Waghmare, G. Jagadale, Direct methanol fuel cell: A review, I.J.C.E.T. 6 (2016) 8-11.
[2] C.M. Branco, S. Sharma, M.M. de Camargo Forte, R. Steinberger-Wilckens, New approaches towards novel composite and multilayer membranes for intermediate temperature-polymer electrolyte fuel cells and direct methanol fuel cells, J. Power Sources. 316 (2016) 139-159. https://doi.org/10.1016/j.jpowsour.2016.03.052
[3] N. Awang, A. Ismail, J. Jaafar, T. Matsuura, H. Junoh, M. Othman, M. Rahman, Functionalization of polymeric materials as a high-performance membrane for direct methanol fuel cell: A review, React. Funct. Polym. 86 (2015) 248-258. https://doi.org/10.1016/j.reactfunctpolym.2014.09.019
[4] N.W. Deluca, Y.A. Elabd, Polymer electrolyte membranes for the direct methanol fuel cell: a review, J. Polymer Sci. B Polymer Phys. 44 (2006) 2201-2225. https://doi.org/10.1002/polb.20861
[5] V. Neburchilov, J. Martin, H. Wang, J. Zhang, A review of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources. 169 (2007) 221-238. https://doi.org/10.1016/j.jpowsour.2007.03.044
[6] T. Yamaguchi, F. Miyata, S.I. Nakao, Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell, J. Membr. Sci. 214 (2003) 283-292. https://doi.org/10.1016/s0376-7388(02)00579-3
[7] F. Lufrano, V. Baglio, P. Staiti, V. Antonucci, Performance analysis of polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources. 243 (2013) 519-534. https://doi.org/10.1016/j.jpowsour.2013.05.180
[8] Y.S. Kim, B.S. Pivovar, Polymer electrolyte membranes for direct methanol fuel cells, advances in fuel cells, Elsevier, 2007, pp. 187-234. https://doi.org/10.1016/s1752-301x(07)80009-3
[9] V. Baglio, A. Di Blasi, V. Antonucci, L. Cirillo, A. Ghielmi, V. Arcella, Proton exchange membranes based on the short-side-chain perfluorinated ionomer for high temperature direct methanol fuel cells, Desalination. 199 (2006) 271-273. https://doi.org/10.1016/j.desal.2006.03.065
[10] T. Xu, Ion exchange membranes: state of their development and perspective, J. Membr. Sci. 263 (2005) 1-29.
[11] N. Radenahmad, A. Afif, P.I. Petra, S.M. Rahman, S.G. Eriksson, A.K. Azad, Proton-conducting electrolytes for direct methanol and direct urea fuel cells–a state-of-the-art review, Renew. Sustain. Energ. Rev. 57 (2016) 1347-1358. https://doi.org/10.1016/j.rser.2015.12.103
[12] S.P. Jiang, Z. Liu, Z.Q. Tian, Layer‐by‐layer self‐assembly of composite polyelectrolyte–nafion membranes for direct methanol fuel cells, Adv. Mater. 18 (2006) 1068-1072. https://doi.org/10.1002/adma.200502462
[13] M. Smit, A. Ocampo, M. Espinosa-Medina, P. Sebastian, A modified nafion membrane with in situ polymerized polypyrrole for the direct methanol fuel cell, J. Power Sources. 124 (2003) 59-64. https://doi.org/10.1016/s0378-7753(03)00730-4
[14] Z.G. Shao, X. Wang, I.M. Hsing, Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell, J. Membr. Sci. 210 (2002) 147-153. https://doi.org/10.1016/s0376-7388(02)00386-1
[15] N.Y. Arnett, W.L. Harrison, A.S. Badami, A. Roy, O. Lane, F. Cromer, L. Dong, J.E. McGrath, Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells, J. Power Sources. 172 (2007) 20-29. https://doi.org/10.1016/j.jpowsour.2007.04.051
[16] T. Yamaguchi, H. Zhou, S. Nakazawa, N. Hara, An extremely low methanol crossover and highly durable aromatic pore‐filling electrolyte membrane for direct methanol fuel cells, Adv. Mater. 19 (2007) 592-596. https://doi.org/10.1002/adma.200601086
[17] L. Carrette, K.A. Friedrich, U. Stimming, Fuel cells: principles, types, fuels, and applications, ChemPhysChem 1 (2000) 162-193. https://doi.org/10.1002/1439-7641(20001215)1:4<162::aid-cphc162>3.3.co;2-q
[18] M. Oroujzadeh, S. Mehdipour-Ataei, M. Esfandeh, Preparation and properties of novel sulfonated poly (arylene ether ketone) random copolymers for polymer electrolyte membrane fuel cells, Eur. Polymer J. 49 (2013) 1673-1681. https://doi.org/10.1016/j.eurpolymj.2013.03.008
[19] V. Tricoli, N. Carretta, M. Bartolozzi, A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes, J. Electrochem. Soc. 147 (2000) 1286-1290. https://doi.org/10.1149/1.1393351
[20] K. Kreuer, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci. 185 (2001) 29-39. https://doi.org/10.1016/s0376-7388(00)00632-3
[21] X. Ren, P. Zelenay, S. Thomas, J. Davey, S. Gottesfeld, Recent advances in direct methanol fuel cells at Los Alamos National Laboratory, J. Power Sources. 86 (2000) 111-116. https://doi.org/10.1016/s0378-7753(99)00407-3
[22] J.T. Wang, J. Wainright, R. Savinell, M. Litt, A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte, J. Appl. Electrochem. 26 (1996) 751-756. https://doi.org/10.1007/bf00241516
[23] C. Karthikeyan, S. Nunes, L. Prado, M. Ponce, H. Silva, B. Ruffmann, K. Schulte, Polymer nanocomposite membranes for DMFC application, J. Membr. Sci. 254 (2005) 139-146. https://doi.org/10.1016/j.memsci.2004.12.048
[24] W.C. Choi, J.D. Kim, S.I. Woo, Modification of proton conducting membrane for reducing methanol crossover in a direct-methanol fuel cell, J. Power Sources. 96 (2001) 411-414. https://doi.org/10.1016/s0378-7753(00)00602-9
[25] W. Harrison, M. Hickner, Y. Kim, J. McGrath, Poly (arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks: synthesis, characterization, and performance–a topical review, Fuel cell. 5 (2005) 201-212. https://doi.org/10.1002/fuce.200400084
[26] Y.A. Elabd, C.W. Walker, F.L. Beyer, Triblock copolymer ionomer membranes: part II. Structure characterization and its effects on transport properties and direct methanol fuel cell performance, J. Membr. Sci. 231 (2004) 181-188. https://doi.org/10.1016/j.memsci.2003.11.019
[27] C. Manea, M. Mulder, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applications, J. Membr. Sci. 206 (2002) 443-453. https://doi.org/10.1016/s0376-7388(01)00787-6
[28] B.S. Pivovar, Y. Wang, E. Cussler, Pervaporation membranes in direct methanol fuel cells, J. Membr. Sci. 154 (1999) 155-162. https://doi.org/10.1016/s0376-7388(98)00264-6
[29] M. Shen, S. Roy, J. Kuhlmann, K. Scott, K. Lovell, J. Horsfall, Grafted polymer electrolyte membrane for direct methanol fuel cells, J. Membr. Sci. 251 (2005) 121-130. https://doi.org/10.1016/j.memsci.2004.11.006
[30] K. Scott, W. Taama, P. Argyropoulos, Performance of the direct methanol fuel cell with radiation-grafted polymer membranes, J. Membr. Sci. 171 (2000) 119-130. https://doi.org/10.1016/s0376-7388(99)00382-8
[31] T. Tamura, H. Kawakami, Aligned electrospun nanofiber composite membranes for fuel cell electrolytes, Nano Lett. 10 (2010) 1324-1328. https://doi.org/10.1021/nl1007079
[32] H. Zhang, P.K. Shen, Recent development of polymer electrolyte membranes for fuel cells, Chem. Rev. 112 (2012) 2780-2832. https://doi.org/10.1021/cr200035s
[33] S. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, K. Richau, Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells, J. Membr. Sci. 203 (2002) 215-225. https://doi.org/10.1016/s0376-7388(02)00009-1
[34] A. Arico, V. Baglio, A. Di Blasi, P. Creti, P. Antonucci, V. Antonucci, Influence of the acid–base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells, Solid State Ionics. 161 (2003) 251-265. https://doi.org/10.1016/s0167-2738(03)00283-2
[35] H. Thiam, W.R.W. Daud, S.K. Kamarudin, A. Mohammad, A.A.H. Kadhum, K.S. Loh, E. Majlan, Overview on nanostructured membrane in fuel cell applications, Int. J. Hydrogen Energ. 36 (2011) 3187-3205. https://doi.org/10.1016/j.ijhydene.2010.11.062
[36] M. Nasef, N.A. Zubir, A. Ismail, K. Dahlan, H. Saidi, M. Khayet, Preparation of radiochemically pore-filled polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources. 156 (2006) 200-210. https://doi.org/10.1016/j.jpowsour.2005.05.053
[37] A. Arico, V. Baglio, P. Cretı, A. Di Blasi, V. Antonucci, J. Brunea, A. Chapotot, A. Bozzi, J. Schoemans, Investigation of grafted ETFE-based polymer membranes as alternative electrolyte for direct methanol fuel cells, J. Power Sources. 123 (2003) 107-115. https://doi.org/10.1016/s0378-7753(03)00528-7