Preparation, Characterization and Applications of Visible Light Responsive Photocatalytic Materials


Preparation, Characterization and Applications of Visible Light Responsive Photocatalytic Materials

A. Pandey, S. Kalal, N. Salvi, C. Ameta, R. Ameta, P.B. Punjabi

Today, scientists all over the world are looking for eco-friendly methods to treat polluted water for its reuse. Photocatalytic activity (PCA) depends on the ability of the catalyst to create electron–hole pairs, which generate free radicals (e.g. hydroxyl radicals: •OH), which undergo in secondary reactions as efficient oxidant under irradiation of light. Various applications of visible light active (VLA) photocatalytic materials, in terms of environmental remediation are- Elimination of several pollutants (e.g. alkanes, alkenes, phenols, pesticides, etc.) particularly in water treatment, disinfection and air purification, self-cleaning glass, photocatalytic concrete and paints; photoreduction of carbon dioxide; outdoor and indoor coatings of photocatalysts for roads and buildings. Therefore, the main objective of this proposal is to review the eco-friendly heterogeneous catalytic systems with low cost starting compounds with the benefit that no sludge formation is there and catalysts are reusable too.

Photocatalyst, Semiconductor, Band Gap, Photocatalytic Degradation, Water Pollution, Advanced Oxidative Processes, Binary, Ternary and Quaternary Photocatalyst

Published online 2/25/2018, 42 pages


Part of Photocatalytic Nanomaterials for Environmental Applications

[1] E.J. Weber, R.L. Adams, Chemical and sediment mediated reduction of the azo dye: Disperse blue 79, Environ. Sci. Technol. 29 (1995) 1163-1170.
[2] C. Wang, A. Yediler, D. Linert, Z. Wang, A. Kettrup, Toxicity evaluation of reactive dye stuff, auxiliaries and selected effluents in textile finishing industry to luminescent bacteria vibrio fisheri, Chemosphere 46 (2002) 339-344.
[3] W.C. Tincher, J.R. Robertson, Analysis of dyes in textile dyeing waste water, Text. Chem. Color. 43 (1982) 269-275.
[4] World Health Organization, Phenol: Environmental Health Criteria 161, World Health Organization: Geneva, Switzerland (1994).
[5] World Health Organization, Cresols: Environmental Health Criteria 168, World Health Organization: Geneva, Switzerland (1995).
[6] European Union. The list of priority substances in the field of water policy and amending directive, Council directive 2455/2001/ECC. Official Journal of the European Communities L331, 20 November 2001, 1–5.
[7] Environment Canada, The Second Priority Substances List (PSL2) of the Canadian Environmental Protection Act (CEPA), Environment Canada: Gatineau, Canada (1995).
[8] United States Environmental Protection Agency (USEPA), Sampling and Analysis Procedure for Screening of Industrial Effluents for Priority Pollutants, Environment Monitoring and Support Laboratory: Cincinnati, OH, USA (1977).
[9] F.M. Pfeffer, The 1977 screening survey for measurement of organic priority pollutants in petroleum refinery wastewaters, ASTM Specif. Tech. Publ. 686 (1979) 181–190.
[10] L.H. Keith, Identification of organic compounds in unbleached treated kraft paper mill wastewaters, Environ. Sci. Technol. 10 (1976) 555–564.
[11] B.R. Parkhurst, A.S. Bradshaw, J.L. Forte, An evaluation of the acute toxicity to aquatic biota of a coal conversion effluent and it major components, Bull. Environ. Contam. Toxicol. 23 (1979) 349–356.
[12] G. Jungclaus, V. Avila, R. Hites, Organic compounds in an industrial wastewater: A case study of their environmental impact, Environ. Sci. Technol. 12 (1978) 88–96.
[13] I. Kamenev, R. Munter, L. Pikkov, L. Kekisheva, Wastewater treatment in oil shale chemical industry, Oil Shale 20 (2003) 443–457.
[14] Z. Guo, R. Ma, G. Li, Degradation of phenol by nanomaterial TiO2 in wastewater, Chem. Eng. J. 119 (2006) 55–59.
[15] M. Auriol, Y. Filali-Meknassi, R.D. Tyagi, C.D. Adams, R.Y. Surampalli, Endocrine disrupting compounds removal from wastewater, a new challenge, Process Biochem. 41 (2006) 525–539.
[16] P.R. Gogate, A.B. Pandit, A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions, Adv. Environ. Res. 8 (2004) 501–551.
[17] K.H. Wang, Y.H. Hsieh, L.J. Chen, The heterogeneous photocatalytic degradation, intermediates and mineralization for the aqueous solution of cresols and nitrophenols, J. Hazard. Mater. 59 (1998) 251–260.
[18] A. Matilainena, M. Sillanpaa, Removal of natural organic matter from drinking water by advanced oxidation processes, Chemosphere 80 (2010) 351–365.
[19] W.H. Glaze, J.W. Kang, D.H. Chapin, Chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation, Ozone Sci. Eng. 9 (1987) 335–352.
[20] K.Y. Jung, S.B. Park, Photoactivity of SiO2\TiO2 and ZrO2\TiO2 mixed oxide prepared by sol-gel method, Mater. Lett. 58 (2004) 2897-2900.
[21] Ch. Guillard, B. Beaugiraud, C. Dutriez, Physicochemical properties and photocatalytic activities of TiO2-films prepared by sol-gel methods, Appl. Catal. B: Environ. 39(4) (2002) 331-342.
[22] S.H. Oh, D. Jin Kim and S.H. Hahn, Comparison of optical and photocatalytic properties of TiO2 thin films prepared by electron-beam evaporation and sol–gel dip-coating, Mater. Lett. 57, 4151-4155 (2003).
[23] Y.R. Do, W. Lee, K. Dwight, A. Wold, The effect of WO3 on the photocatalytic activity of TiO2, J. Solid State Chem. 108 (1994) 198-201.
[24] J. Papa, S. Soled, K. Dwight, A. Wold, Surface acidity and photocatalytic activity of TiO2, WO3/TiO2, and MoO3/TiO2 photocatalysts, Chem. Mater 1994, 6, 496-500.
[25] Y. Oasawa, A. Gratzel, Effect of surface hydroxyl density on photocatalytic oxygen generation in aqueous TiO2 suspensions, J. Chem. Soc., Faraday Trans.1 84(1) (1998) 197-205.
[26] E. Ozensoy, J. Szanyi, C.H.F. Peden, Model NOx storage systems: storage capacity and thermal aging of BaO/ θ-Al2O3/NiAl (1 0 0), J. Catal. 243 (2006) 149–157.
[27] E. Kayhan, S. M. Andonova, G.S. Senturk, C.C. Chusuei, E. Ozensoy, Iron promoted NOx storage materials: Structural properties and NOx uptake, J. Phys. Chem. C 114 (2010) 357–369.
[28] E. Emmez, E.I. Vovk, V.I. Bukhtiyarov, E. Ozensoy, Direct evidence for the instability and deactivation of mixed-oxide systems: Influence of surface segregation and subsurface diffusion, J. Phys. Chem. C 115 (2011) 22438–22443.
[29] H. Zhang, Y. Zhu, Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization, J. Phys. Chem. C 114 (2010) 5822–5826.
[30] M. Zhong, J. Shi, F. Xiong, W. Zhang, C. Li, Enhancement of photoelectrochemical activity of nanocrystalline CdS photoanode by surface modification with TiO2 for hydrogen production and electricity generation, Sol. Energy 86 (2012) 756–763.
[31] X. Li, T. Xia, C. Xu, J. Murowchick, X. Chen, Synthesis and photoactivity of nanostructured CdS–TiO2 composite catalysts, Catal. Today 225 (2014) 64–73.
[32] D. He, M. Chen, F. Teng, G. Li, H. Shi, J. Wang, M. Xu, T. Lu, X. Ji, Y. Lv, Enhanced cyclability of CdS/TiO2 photocatalyst by stable interface structure, Superlattices Microstruct. 51 (2012) 799–808.
[33] S. Panigrahi, D. Basak, Morphology driven ultraviolet photosensitivity in ZnO–CdS composite, J. Colloid Interface Sci. 364 (2011) 10–17.
[34] T.K. Jana, A. Pal, K. Chatterjee, Self-assembled flower like CdS–ZnO nanocomposite and its photo catalytic activity, J. Alloys Compd. 583 (2014) 510–515.
[35] S. Liu, H. Li, L. Yan, Synthesis and photocatalytic activity of three-dimensional ZnS/CdS composites, Mater. Res. Bull. 48 (2013) 3328–3334.
[36] X. Liu, Y. Yan, Z. Da, W. Shi, C. Ma, P. Lv, Y. Tang, G. Yao, Y. Wu, P. Huo, Significantly enhanced photocatalytic performance of CdS coupled WO3 nanosheets and the mechanism study, Chem. Eng. J. 214 (2014) 243–250.
[37] X. Zong, H. Yan, G. Wu, G. Ma, F. Wen, L. Wang, C. Li, Enhancement photocatalytic H2 evolution on CdS by loading MoS2 as co-catalyst under visible light irradiation, J. Am. Chem. Soc. 130 (2008) 7176–7177.
[38] D.W. Bahnemann, D. Bockelmann, R. Goslich, M. Hilgendorff, D. Weichgrebe, in: D.F. Ollis et al. (Eds.), Photocatalytic purification and treatment of water and air, Elsevier, Amsterdam 22 (1993) 301-320.
[39] G.N. Schrauzer, T.D. Guth, Photocatalytic reactions: Photolysis of water and photoreduction of nitrogen on titanium dioxide, J. Am. Chem. Soc. 99(22) (1977) 7189-7193.
[40] M.I. Litter, J.A. Navio, Comparison of the photocatalytic efficiency of TiO2, iron oxides and mixed Ti (IV) and Fe (III) oxides: Photodegradation of oligocarboxylic acids, J. Photochem. Photobiol. A: Chem. 84(2) (1994) 183-193.
[41] L. Palmisano, M. Schiavello, A. Sclafani, C. Martin, I. Martin, V. Rives, Surface properties of iron-titania photocatalysts employed for 4-nitrophenol photodegradation in aqueous TiO2 dispersion, Catal. Lett. 24 (3-4) (1994) 303-315.
[42] W. Choi, A. Termin, M.R Hoffmann, Role of metal-ion dopants in quantum-sized TiO2 co-relation between photoreactivity and charge-carrier recombination dynamics, J. Phys. Chem. 98 (1994) 13669-13679.
[43] J.A. Navio, G. Colon, M.I. Litter, G.N. Bianco, Synthesis, characterization and photocatalytic properties of iron-doped titania semiconductors prepared from TiO2 and iron (III) acetylacetonate, J. Mol. Catal. A. Chem. 106(3) (1996) 267-276.
[44] M. Anpo, M. Che, Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis, Adv. Catal. 44 (2000) 119-257.
[45] M. Anpo, M. Tomonari, M.A. Fox, In situ photoluminescence of titania as a probe of photocatalytic reactions, J. Phys. Chem. 93(21) (1989) 7300-7302.
[46] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev. 93(1) (1993) 341-357.
[47] S.-I. Nishimoto, B. Ohtani, H. Kajiwara, T. Kagiya, Correlation of the crystal structure of titanium dioxide prepared from titanium tetra-2-propoxide with the photocatalytic activity for redox reactions in aqueous propan-2-ol and silver salt solutions, J. Chem. Soc. Faraday Trans. I, 81 (1985) 61-68.
[48] J. Yang, J. H. Swisher, The phase stabilization of Zn2Ti3O8, Mater. Charact. 37 (1996) 153-159.
[49] C. Wang, J. Zhao, X. Wang, B. Mai, G. Sheng P. Peng J. Fu, Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts, Appl. Catal., B: Environ. 39 (2002) 269–279.
[50] S. Liao, D. Huang, D. Yu, Y. Su, G. Yuan, Preparation and characterization of ZnO/TiO2, SO42-/ZnO/TiO2 photocatalyst and their photocatalysis, J. Photochem Photobiol., A: Chem. 168 (2004) 7-13.
[51] J.T. Zhang, Z.G. Xiong, X. S. Zhao, Graphene–metal–oxide composites for the degradation of dyes under visible light irradiation, J. Mater. Chem. 21 (2011) 3634–3640.
[52] C. Chen, W.M. Cai, M.C. Long, B.X. Zhou, Y.H. Wu, D.Y. Wu, Y.J. Feng, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction, ACS Nano 4(11) (2010) 6425–6432.
[53] Y. Lin, Z. Geng, H. Cai, L. Ma, J. Chen, J. Zeng, N. Pan, X. Wang, Ternary graphene–TiO2–Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability, Eur. J. Inorg. Chem. 28 (2012) 4439–4444.
[54] Castro, P. Begue, B. Jimenez, J. Ricote, R. Jimenez, J. Galy, New Bi2Mo1 xWxO6 solid solution: Mechanosynthesis, structural study, and ferroelectric properties of the x = 0.75 member, Chem. Mater. 15(17) (2003) 3395-3401.
[55] S. Luo, Y. Noguchi, M. Miyayama, T. Kudo, Rietveld analysis and dielectric properties of Bi2WO6–Bi4Ti3O12 ferroelectric system, Mater. Res. Bull. 36 (2001) 531-540.
[56] H.B. Fu, C.S. Pan, W.Q. Yao, Y.F. Zhu, Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6, J. Phys. Chem. B 109(47) (2005) 22432-22439.
[57] C. Zhang, Y.F. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mater. 17(13) (2005) 3537-3545.
[58] J.W. Tang, Z.G. Zou, J.H. Ye, Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation, Catal. Lett. 92(1-2) (2004) 53-56.
[59] T.S. Natarajan, H.C. Bajaj, R.J. Tayade, Synthesis of homogeneous sphere-like Bi2WO6 nanostructure by silica protected calcination with high visible-light-driven photocatalytic activity under direct sunlight, Cryst .Eng. Comm. 17(5) (2015) 1037-1049.
[60] R.J. Tayade, H.C. Bajaj, R.V. Jasra, Photocatalytic removal of organic contaminants from water exploiting tuned bandgap photocatalysts, Desalination 275(1) (2011) 160-165.
[61] T.K. Pathak, N.H. Vasoya, T.S. Natarajan, K.B. Modi, R.J. Tayade, Photocatalytic degradation of aqueous nitrobenzene solution using nanocrystalline Mg-Mn ferrites, Materials Sci. Forum 764 (2013) 116-129.
[62] S. Sadhu, A. Patra, Lattice strain controls the carrier relaxation dynamics in CdxZn1-x S alloy quantum dots, J. Phys. Chem. C 116(28) (2012) 15167–15173.
[63] X. Zhong, Y. Feng, Y. Zhang, Z. Gu, L. Zou, A facile route to violet- to orange-emitting CdxZn1−xSe alloy nanocrystals via cation exchange reaction, Nanotechnol. 18(38) (2007) 385606-385612.
[64] L.Y. Chen, P.A. Yang, C.H. Tseng, B.J. Hwang, C.H. Chen, Internal structure of tunable ternary CdSexS1-x quantum dots unraveled by X-ray absorption spectroscopy, App. Phys. Lett. 100(16) (2012) 163113-16116.
[65] G. Kartopu, A.J. Clayton, W.S.M. Brooks, S.D. Hodgson, V. Barrioz, A. Maertens, D.A. Lamb, S.J.C. Irvine, Effect of window layer composition in Cd1−x ZnxS/CdTe solar cells, Prog. Photovolt. Res. 22(1) (2012) 18-23.
[66] X. Wu, Y. Yu, Y. Liu, Y. Xu, C. Liu, B. Zhang, Synthesis of hollow CdxZn1−xSe nanoframes through the selective cation exchange of inorganic–organic hybrid ZnSe–amine nanoflakes with cadmium ions, Angew. Chem. Int. Ed. 51(13) (2012) 3211–3215.
[67] C.I. Wang, Z. Yang, A.P. Periasamy, H.T. Chang, Photoluminescent C-dots RGO probe for sensitive and selective detection of acetylinecholine, Anal. Chem. 85(6) (2013) 3263-3270.
[68] W.A. Tisdale, K.J. Williams, B.A. Timp, D.J. Norris, E.S. Aydil, X.Y. Zhu, Hot-electron transfer from semiconductor nanocrystals, Science 328 (2010) 1543–1547.
[69] P. Aguiar, D. Chadwick, L. Kershenbaum, Modelling of an indirect internal reforming solid oxide fuel cell, Chem. Eng. Sci. 57 (2002) 1665–1677.
[70] Q. Deng, S.L. Jiang, T.J. Cai, Z.S. Peng, Z.J. Fang, Selective oxidation of isobutane over HxFe0.12Mo11VPAs0.3Oy heteropoly compound catalyst, J. Mol. Catal. A: Chem. 229 (2005) 165–170.
[71] T.J. Cai, M. Yue, X.W. Wang, Q. Deng, Z.S. Peng, W.H. Zhou, Preparation, characterization and photocatalytic performance of NdPW12O40/TiO2 composite catalyst, Chin. J. Catal. 28(1) (2007) 10–16.
[72] X.J. Wu, Y.C. Liao, X.W. Wang, Z.S. Peng, Y.H. Jiang, X.Y. Liu, T.J. Cai, Microwave solid-phase synthesis of bismuth phosphotungstate nanoparticle catalysts and photocatalytic elimation of methanol, Acta Sci. Circumst. 28(5) (2008) 965–970.
[73] Q. Deng, W.H. Zhou, M. X. Li, Z.S. Peng, S.L. Jiang, M. Yue, T.J. Cai, Microwave radiation solid-phase synthesis of phosphotungstate nanoparticle catalysts and photocatalytic degradation of formaldehyde, J. Mol. Catal. A: Chem. 262 (2007) 149–155.
[74] H. Xue, Z.H. Li, L. Wu, Z.X. Ding, X.X. Wang, X.Z. Fu, Nanocrystalline ternary wide band gap p-block metal semiconductor Sr2Sb2O7:  Hydrothermal synthesis and photocatalytic benzene degradation, J. Phys. Chem. C 112(15) (2008) 5850-5855.
[75] Z. G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang, H. Stuart-Williams, H. Yang, J.Y. Cao, W.J. Luo, Z.S. Li, Y. Liu, R. Withers, An orthophosphate semiconductor with photooxidation properties under visible-light irradiation, Nat. Mater. 9 (2010) 559-564.
[76] N. Umezawa, S.X. Ouyang, J.H. Ye, Theoretical study of high photocatalytic performance of Ag3PO4, Phys. Rev. B 83(3-1) (2011) 035202.
[77] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8 (2009) 76-80.
[78] C.S. Pan, J. Xu, Y.J. Wang, D. Li, Y.F. Zhu, Dramatic activity of C3N4/BiPO4 photocatalyst with core/shell structure formed by self-assembly, Adv. Funct. Mater. 22(7) (2012) 1518-1524.
[79] Q.J. Xiang, J.G. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites, J. Phys. Chem. C 115 (2011) 7355-7363.
[80] L. Ge, C.C. Han, J. Liu, Novel visible light-induced g-C3N4/Bi2WO6 composite photocatalysts for efficient degradation of methyl orange, Appl. Catal. B 108-109 (2011) 100-107.
[81] G. Shiravand, A. Badiei, G.M. Ziarani, M. Jafarabadi, M. Hamzehloo, Photocatalytic synthesis of phenol by direct hydroxylation of benzene by modified nanoporous silica (LUS-1) under sunlight, Chin. J. Catal. 33 (2012) 1347-1353.
[82] H. Pan, X. K. Li, Z. J. Zhuang, C. Zhang, g-C3N4/SiO2–HNb3O8 composites with enhanced photocatalytic activities for rhodamine B degradation under visible light, J. Mol. Catal. A: Chem 345(1-2) (2011) 90-95.
[83] S.C. Yan, S.B. Lv, Z.S. Li, Z.G. Zou, Organic–inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities, Dalton Trans. J. Inorg. Chem. 39 (2010) 1488-1491.
[84] K. Shen, M.A. Gondal, R.G. Siddique, S. Shi, S. Wang, J. Sun, Q. Xu, Preparation of ternary Ag/Ag3PO4/g‐C3N4 hybrid photocatalysts and their enhanced photocatalytic activity driven by visible light, Chin. J. Catal. 35 (2014) 78–84.
[85] H.I. Kim, J. Kim, W. Kim, W. Choi, Enhanced photocatalytic and photoelectrochemical activity in the ternary hybrid of CdS/TiO2/WO3 through the cascadal electron transfer, J. Phys. Chem. C. 115 (2011) 9797–9805.
[86] C.J. Lin, Y.T. Lu, C.H. Hsieh, S.H. Chien, Surface modification of highly ordered TiO2 nanotube arrays for efficient photoelectrocatalytic water splitting, Appl. Phys. Lett. 94 (2009) 113102-113110.
[87] C. Chen, Y. Xie, G. Ali, S.H. Yoo, S.O. Cho, Improved conversion efficiency of CdS quantum dots-sensitized TiO2 nanotube array using ZnO energy barrier layer, Nanotechnol. 22 (2011) 015202-015210.
[88] A.J. Bwamba, N. Alu, A.K. Kenneth, Z. Abdullahi, I.U. Unwana, C.E. Augustine, O.A. Anthony, Characterization of CZTS absorbent material prepared by field assisted spray pyrolysis, Am. J. Mater. Sci. 4 (2014) 127-132.
[89] L.Y. Yeh, K.W. Cheng, Preparation of the Ag-Zn-Sn-S quaternary photoelectrodes using chemical bath deposition for photoelectrochemical applications, Thin Solid Films 558 (2014) 289-293.
[90] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414 (2001) 625-627.
[91] A. Kudo, H. Kato, Photocatalytic decomposition of water into H2 and O2 over novel photocatalyst K3Ta3Si2O13 with pillared structure consisting of three TaO6 chains, Chem. Lett. 20 (1997) 867-868.
[92] A. Ishikawa, T. Takata, J.N. Kondo, M. Hara, H. Kobayashi, K. Domen, K., Oxysulfide Sm2Ti2S2O5 as a stable photocatalyst for water oxidation and reduction under visible light irradiation (λ ≤ 650 nm), J. Am. Chem. Soc. 124(45) (2002) 13547-13553.
[93] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taqo, Visible-light photocatalysis in nitrogen-doped titanium oxides, Sci. 293 (2001) 269-271.
[94] G. Hitoki, T. Takata, J. Kondo, M. Hara, H. Kobayashi, K. Domen, An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light, Chem. Commun. 21(16) (2002) 1698-1699.
[95] K. Maeda, K. Teramura D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Photocatalyst releasing hydrogen from water, Nature 440 (2006) 295-305.
[96] K. Vijayasankara, N.Y. Hebalkara, H.G. Kimb, P.H. Borse, Controlled band energetics in Pb-Fe-Nb-O metal oxide composite system to fabricate efficient visible light photocatalyst, J. Ceram. Process. Res. 14(4) (2013) 557-562.
[97] M. Cherevatskaya, M. Neumann, S. Füldner, C. Harlander, S. Kümmel, S. Dankesreiter, A. Pfitzner, K. Zeitler, B. König, Visible-light-promoted stereoselective alkylation by combining heterogeneous photocatalysis with organocatalysis, Angew. Chem. Int. Ed. 51(17) (2012) 4062-4066.
[98] A. Thibert, F. A. Frame, E. Busby, D.S. Larsen, Primary photodynamics of water-solubilized two-dimensional CdSe nanoribbons, J. Phys. Chem. C 115(40) (2011) 19647-19658.
[99] Y.-H. Liu, V.L. Wayman, P.C. Gibbons, R.A. Loomis, W.E. Buhro, Origin of high photoluminescence efficiencies in CdSe quantum belts, Nano Lett. 10(1) (2009) 352-357.
[100] T. Kako, Z. Zou, J. Ye, Photocatalytic oxidation of 2-propanol in the gas phase over cesium bismuth niobates under visible light irradiation, Res. Chem. Intermed. 31 (2005) 359–364.
[101] H.G. Kim, D.W. Hwang, J.S. Lee, An undoped, single-phase oxide photocatalyst working under visible light, J. Am. Chem. Soc. 126 (2004) 8912–8913.
[102] T. Kako, J. Ye, Photocatalytic decomposition of acetaldehyde over rubidium bismuth niobates under visible light irradiation, Mater. Trans. 46 (2005) 2699–2703.
[103] B. Muktha, M.H. Priya, G. Madras, T.N. Guru Row, Synthesis, structure, and photocatalysis in a new structural variant of the aurivillius phase: LiBi4M3O14 (M = Nb, Ta), J. Phys. Chem. B 109 (2005) 11442–11449.
[104] L.M. Torres-Martínez, I. Juárez-Ramírez, J.S. Ramos-Garza, F. Vázquez-Acosta, S.W. Lee, Sol-gel preparation of Bi2InTaO7 and its photocatalytic behavior for organic compounds degradation, Mater. Sci. Forum 658 (2010) 491–494.
[105] X. Li, S. Ouyang, N. Kikugawa, J. Ye, Novel Ag2ZnGeO4 photocatalyst for dye degradation under visible light irradiation, Appl. Catal. A: Gen. 334 (2008) 51–58.
[106] Z. Shan, W. Wang, X. Lin, H. Ding, F. Huang, Photocatalytic degradation of organic dyes on visible-light responsive photocatalyst PbBiO2Br, J. Solid State Chem. 181 (2008) 1361–1366.
[107] F. Mei, C. Liu, Effect of annealing temperature on binary TiO2:SiO2 nanocrystalline thin films, J. Korean Phys. Soc. 48(6) (2006) 1509-1513.
[108] K.Y. Jung, S.B. Park, Photoactivity of SiO2/TiO2 and ZrO2/TiO2 mixed oxides prepared by sol-gel method, Mater. Lett. 58(22-23) (2004) 2897-2900.
[109] A.M. Soylu, M. Polat, D.A. Erdogan, Z. Say, C. Yıldırım, Ö. Birer, E. Ozensoy, TiO2–Al2O3 binary mixed oxide surfaces for photocatalytic NOx abatement, Appl. Surf. Sci. 318 (2014) 142–149.
[110] S.M. Andonova, G.S. Senturk, E. Kayhan, E. Ozensoy, Nature of the Ti–Ba inter-actions on the BaO/TiO2/Al2O3 NOx storage system, J. Phys. Chem. C 113 (2009) 11014–11026.
[111] S.M. Andonova, G.S. Senturk, E. Ozensoy, Fine-tuning the dispersion and the mobility of BaO domains on NOx storage materials via TiO2 anchoring sites, J. Phys. Chem. C 114 (2010) 17003–17016.
[112] D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci. 46 (2011) 855–874.
[113] B. Bajorowicz, A. Cybula, M. J. Winiarski, T. Klimczuk, A. Zaleska, Surface properties and Photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites, Molecules 19 (2014)15339-15360.
[114] S. Zhong, L. Zhang, Z. Huang, S. Wang, Mixed-solvothermal synthesis of CdS micro/nanostructures and their optical properties, Appl. Surf. Sci. 257 (2011) 2599–2603.
[115] Y. Liu, H. Yu, X. Quan, S. Chen, Green synthesis of feather-shaped MoS2/CdS photocatalyst for effective hydrogen production, Int. J. Photoenergy (2013) 247516–24752.
[116] Y. Lin, Z. Geng, H. Cai, L. Ma, J. Chen, J. Zeng, N. Pan, X. Wang, Ternary graphene–TiO2–Fe3O4 nanocomposite as a recollectable photocatalyst with enhanced durability, Eur. J. Inorg. Chem. (2012) 4439–4444.
[117] L. Zhang, Y. Zhu, A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts, Catal. Sci. Technol. 2 (2012) 694–706.
[118] C. Zhang,Y. F. Zhu, Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts, Chem. Mater. 17(13) (2005) 3537-3545.
[119] H.B. Fu, L.W. Zhang, W.Q. Yao, Y.F. Zhu, Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process, Appl. Catal. B 66 (2006) 100-110.
[120] L. Zhang, W. Wang, Z. Chen, L. Zhou, H. Xu, W. Zhu, Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts, J. Mater. Chem. 17 (2007) 2526-2532.
[121] L. Zhang, H. Wang, Z. Chen, P.K. Wong, J. Liu, Bi2WO6 micro/nano-structures: Synthesis, modifications and visible-light-driven photocatalytic applications, Appl. Catal., B 106(1-2) (2011) 1-13.
[122] L. Zhang, W.Z. Wang, L. Zhou, H.L. Xu, Bi2WO6 nano-and microstructures: shape control and associated visible-light-driven photocatalytic activities, Small 23(9) (2007) 1618-1624.
[123] K. Vijayasankar, N.Y. Hebalkar, H.G. Kim, P.H. Borse, Controlled band energetics in Pb-Fe-Nb-O metal oxide composite system to fabricate efficient visible light photocatalyst, J. Ceram. Process. Res. 14(4) (2013) 557-562.
[124] S.P. Singh, A.K. Singh, D. Pandeya, H. Sharma, and Om Parkash, Crystallographic phases, phase transitions and barrier layer formation in (1-x)[Pb(Fe1/2Nb1/2)O3]-xPbTiO3, J. Mater. Res. 18 (2003) 2677-2687.
[125] R. Sun, W. Tan, B. Fang, Perovskite phase formation and electrical properties of Pb(Fe1/2Nb1/2)O3 ferroelectric ceramicse, Phys. Status Solidi A. 206(2) (2009) 326-331.
[126] R.R. Schaller, Technological innovation in the semiconductor industry: a case study of the international technology roadmap for semiconductors (ITRS), George Mason University (2004).
[127] G.D. Wilk, R.M. Wallace, J.M. Anthony, High-κ gate dielectrics: current status and materials properties considerations, J. Appl. Phys. 89 (2001) 5243-5249.
[128] F.B. Ergin, R. Turan, S.T. Shishiyanu, Effect of γ-radiation on HfO2 based MOS capacitor, Nucl. Inst. Meth. Phys. Res. B: Beam Interactions with Materials and Atoms 268 (2010) 1482-1485.
[129] M.A. Khaskheli, P. Wu, A.M. Soomro, M. Khan, M.E. Asadullah, M.S. Kalhoro, Fabrication and electrical characteristic of quaternary ultrathin HfTiErO thin films for MOS devices grown by RF sputtering, Chem. Mater. Res. 3(4) (2013) 41-47.
[130] Q. Tao, A. Kueltzo, M. Singh, Atomic layer deposition of HfO2, TiO2, and HfxTi1 xO2 using metal (diethylamino) precursors and HfO2, J. Electrochem. Soc. 158 (2008) G27-G33.
[131] D.Y. Cho, S.J. Oh, Y. Chang Y, Role of oxygen vacancy in HfO2/SiO2/Si (100) interfaces. Appl. Phys. Lett. 88 (2006) 193502-193503.
[132] F.Y. Xiao, J. Xing, L. Wu, Z.P. Chen, X.L. Wang, H.G. Yang, Assembly ultrathin PbBiO2Br nanosheets with enhanced visible light Photocatalytic property, R. Soc. Chem. (2013).
[133] Z. Deng, D. Chen, B. Peng, F. Tang, From bulk metal Bi to two-dimensional well-crystallized BiOX (X = Cl, Br) micro-and nanostructures: Synthesis and characterization, Cryst. Growth Des. 8(8) (2008) 2995-3003.
[134] F.Y. Xiao, J. Xing, L. Wu, Z.P. Chen, X.L. Wanga, H. G. Yang, Assembly ultrathin PbBiO2Br nanosheets with enhanced visible light photocatalytic property, RSC Adv. 3(27) (2013) 10687-10690.
[135] L. Cademartiri, G.A. Ozin, Ultrathin nanowires—A materials chemistry perspective, Adv. Mater. 21(9) (2009) 1013-1020.
[136] K. Richardson, W. Steffen, H.J. Schellnhuber, J. Alcamo, T. Barker, D.M. Kammen, R. Leemans, D. Liverman, M. Munasinghe, B. Osman-Elsha, N. Stern, O. Waever, Synthesis report from climate change: global risks, Challenges & Decisions, University of Copenhagen (2009).
[137] G.A. Olah, A. Goeppert, G.K.S. Prakash, Beyond oil and gas: The methanol economy, Wiley-VCH, Weinheim (2006) 212.
[138] K. Oppelt, D.A.M. Egbe, U. Monkowius, M. List, M. Zabel, N.S. Sariciftci, G. Knör, Luminescence and spectroscopic studies of organometallic rhodium and rhenium multichromophore systems carrying polypyridyl acceptor sites and phenylethynyl antenna subunits, J. Organomet. Chem. 696 (2011) 2252-2258.
[139] E. Portenkirchner, K. Oppelt, C. Ulbricht, A.M. Egbe , H. Neugebauer, G. Knör, N. S. Sariciftci, Electrocatalytic and photocatalytic reduction of carbon dioxide to carbon monoxide using the alkynyl-substituted rhenium(I) complex (5,50-bisphenylethynyl-2,20-bipyridyl)Re(CO)3Cl, J. Organomet. Chem. 716 (2012) 19-25.
[140] J. Hawecker, J.M. Lehn, R. Ziessel, H. Chim, Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2, 2′-Bipyridine) tricarbonylchlororhenium(I) and related complexes as homogeneous catalysts, Acta 69(8) (1986) 1990-2012.
[141] K. Koike, H. Hori, M. Ishizka, J.R. Westwell, K. Takeuchi, T. Ibusuki, K. Enjouji, H. Konno, K. Sakamoto, O. Ishitani, Key process of the photocatalytic reduction of CO2 using [Re(4,4‘-X2-bipyridine)(CO)3PR3]+ (X = CH3, H, CF3; PR3 = phosphorus ligands):  dark reaction of the one-electron-reduced complexes with CO2, Organomet. 16(26) (1997) 5724-5729.
[142] A. Fujishima, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1971) 37–38.
[143] F. Del Valle, F. Del Valle, J.A. Villoria De La Mano, M. C. Álvarez-Galván, J.L. G. Fierro, Photocatalytic water splitting under visible light: concept and materials requirements, Adv. Chem. Eng. 36 (2009) 111–143.
[144] H. Kato, K. Asakura, A. Kudo, Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO photocatalysts with high crystallinity and surface nanostructure, J. Am. Chem. Soc. 125 (2003) 3082-3092.
[145] D. Yokoyama, H. Hashiguchi, K. Maeda, T. Minegishi, T. Takata, R. Abe, J. Kubota, K. Domen, Ta3N5 photoanodes for water splitting prepared by sputtering, Thin Solid Films 519(7) (2011) 2087–2092.
[146] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN: ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting, J. Am. Chem. Soc. 127 (2005) 8286-8287.
[147] K. Maeda, K. Domen, New non-oxide photocatalysts designed for overall water splitting under visible light, J. Phys. Chem. C 111(22) (2007) 7851-7861.
[148] T. Mishima, M. Matsuda, M. Miyake, Visible-light photocatalytic properties and electronic structure of Zr-based oxynitride, Zr2ON2, derived from nitridation of ZrO2, Appl. Catal. A: Gen. 324(1-2) (2007) 77–82.
[149] M.M. Hassan, H. Dylla, L.N. Mohammad, T. Rupnow, Effect of application methods on the effectiveness of titanium dioxide as a photocatalyst compound to concrete pavement, Presented at 89th Annual Meeting of the Transportation Research Board, Washington, D.C. (2010).
[150] J. Yang, G. Jiang, G, Experimental study on properties or pervious concrete pavement materials. Cem. Concr. Res. 33 (2003) 381-386.
[151] M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films, Chem. Mater. 14 (2002) 2812–2816.
[152] S. Navarro, J. Fenoll, N. Vela, E. Ruiz, G. Navarro, Photocatalytic degradation of eight pesticides in leaching water by use of ZnO under natural sunlight, J. Hazard. Mater. 172 (2009) 1303–1310.
[153] A.A. Abdel, S.A. Mahmoud, A.K. Aboul-Gheit, Sol-gel and thermally evaporated nanostructured thin ZnO films for photocatalytic degradation of trichlorophenol, Nanoscale Res. Lett. 4 (2009) 627–634.
[154] C.C. Chen, Degradation pathways of ethyl violet by photocatalytic reaction with ZnO dispersions, J. Mol. Catal. A: Chem. 264 (2006) 82–92.
[155] H. Xu, W. Wang, W. Zhu, Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties, J. Phys. Chem. B 110 (2006) 13829–13834.
[156] J.-Y Ho, M.H. Huang, Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity, J. Phys. Chem. C 113 (2009) 14159–14164.
[157] L. Huang, F. Peng, H. Yu, H. Wang, Preparation of cuprous oxides with different sizes and their behaviours of adsorption, visible-light driven photocatalysis and photocorrosion, Solid State Sci. 11 (2009) 129–138.
[158] A. Watcharenwong, W. Chanmanee, N.R. de Tacconi, C.R. Chenthamarakshan, P. Kajitvichyanukul, K. Rajeshwar, Anodic growth of nanoporous WO3 films: morphology, photoelectrochemical response and photocatalytic activity for methylene blue and hexavalent chrome conversion, J. Electroanal. Chem. 612 (2008) 112–120.
[159] J. Luo, M. Hepel, Photoelectrochemical degradation of naphthol blue black diazo dye on WO3 film electrode, Electrochim. Acta 46 (2001) 2913–2922.
[160] Y. Bessekhouad, D. Robert, J.-V. Weber, Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions, Catal. Today 101 (2005) 315–321.
[161] Z. Ai, Y. Huang, S. Lee, L. Zhang, Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation, J. Alloys Compd. 509 (2011) 2044–2049.
[162] S. Kohtani, J. Hiro, N. Yamamoto, A. Kudo, K. Tokumura, R. Nakagaki, Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the degradation of 4-n-alkylphenols under visible light irradiation, Catal. Commun. 6 (2005) 185-195.
[163] X. Hu, C. Hu, Preparation and visible-light photocatalytic activity of Ag3VO4 powders, J. Solid State Chem. 180 (2007) 725–732.
[164] D. Ye, D. Li, W. Zhang, M. Sun, Y. Hu, Y. Zhang, X. Fu, A new photocatalyst CdWO4 prepared with a hydrothermal method, J. Phys. Chem. C 112 (2008) 17351–17356.
[165] T. Yan, L. Li, W. Tong, J. Zheng, Y. Wang, G. Li, CdWO4 polymorphs: Selective preparation, electronic structures, and photocatalytic activities, J. Solid State Chem. 184 (2011) 357–364.
[166] X. Lin, T. Huang, F. Huang, W. Wang, J. Shi, Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl, J. Mater. Chem. 17 (2007) 2145–2150.