Metal oxide/hydroxide based materials for supercapacitors


Metal oxide/hydroxide based materials for supercapacitors

S. Narayanan, R. Joseph

Supercapacitors are promising materials in energy storage and conversion devices with high power densities. They have emerged as significant and beneficial resource in daily life because of their potential applications in electric and hybrid electric vehicles owing to their better energy storage and ease of delivery of stored energy. In this chapter, we focus on advanced research steps towards the various metal oxide/hydroxide based supercapacitor materials. As electrode materials, transition metal oxides/hydroxides exhibit a high specific capacitance, leading to high energy densities make them viable candidates for supercapacitor applications.

Supercapacitor, Metal oxides, Hydroxides, Specific capacitance

Published online 1/15/2018, 48 pages


Part of Nanocomposites for Electrochemical Capacitors

[1] L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev. 38 (2009) 2520–2531.
[2] C. Largeot, C. Portet, J. Chmiola, P.L. Taberna, Y. Gogotsi, P. Simon, Relation between the ion size and pore size for an electric double-layer capacitor, J. Am. Chem. Soc. 130 (2008) 2730–2731.
[3] S.G. Kandalkar, D.S. Dhawale, C.-K. Kim, C.D. Lokhande, Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application, Synth. Met. 160 (2010) 1299–1302.
[4] P. Chen, G. Shen, Y. Shi, H. Chen, C. Zhou, Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes, ACS Nano. 4 (2010) 4403–4411.
[5] J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, Advanced asymmetric supercapacitors based on Ni(OH)2/Graphene and porous graphene electrodes with high energy density, Adv. Funct. Mater. 22 (2012) 1–10.
[6] X. Xia, D. Chao, Z. Fan, C. Guan, X. Cao, H. Zhang, H.J. Fan, A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: Structural design, fabrication, and full supercapacitor demonstrations, Nano Lett. 14 (2014) 1651–1658.
[7] P. Simon, Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater. 7 (2008) 845–854.
[8] J.R. Miller, P. Simon, S. Patrice, Electrochemical capacitors for energy management, Science 321 (2008) 651–652.
[9] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P.-L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon, Nat. Nanotechnol. 5 (2010) 651–654.
[10] G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev. 41 (2012) 797–828.
[11] B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications, 1999.
[12] A.G. Pandolfo, A.F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources 157 (2006) 11–27.
[13] M. Vangari, T. Pryor, L. Jiang, Supercapacitors: Review of materials and fabrication methods, J. Energy Eng. 139 (2013) 72–79.
[14] H. Xia, M.O. Lai, L. Lu, Nanostructured manganese oxide thin films as electrode material for supercapacitors, Jom. 63 (2011) 54–59.
[15] J.N. Broughton, M.J. Brett, Variations in MnO2 electrodeposition for electrochemical capacitors, Electrochim. Acta. 50 (2005) 4814–4819.
[16] R.N. Reddy, R.G. Reddy, Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material, J. Power Sources 132 (2004) 315–320.
[17] J. Gomez, E.E. Kalu, High-performance binder-free Co-Mn composite oxide supercapacitor electrode, J. Power Sources 230 (2013) 218–224.
[18] A.L.M. Reddy, F.E. Amitha, I. Jafri, S. Ramaprabhu, Asymmetric flexible supercapacitor stack, Nanoscale Res. Lett. 3 (2008) 145–151.
[19] C. Karunakaran, S. Narayanan, P. Gomathisankar, Photocatalytic degradation of 1-naphthol by oxide ceramics with added bacterial disinfection, J. Hazard. Mater. 181 (2010) 708–715.
[20] K. Lota, A. Sierczynska, G. Lota, Supercapacitors based on nickel oxide/carbon materials composites, Int. J. Electrochem. (2011) 1–6.
[21] J. Jiang, J. Liu, R. Ding, J. Zhu, Y. Li, A. Hu, X. Li, X. Huang, Large-scale uniform α-Co(OH)2 long nanowire arrays grown on graphite as pseudocapacitor electrodes, ACS Appl. Mater. Interfaces 3 (2011) 99–103.
[22] N. Behm, D. Brokaw, C. Overson, D. Peloquin, J.C. Poler, High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices, J. Mater. Sci. 48 (2013) 1711–1716.
[23] D. Antiohos, K. Pingmuang, M.S. Romano, S. Beirne, T. Romeo, P. Aitchison, A. Minett, G. Wallace, S. Phanichphant, J. Chen, Manganosite-microwave exfoliated graphene oxide composites for asymmetric supercapacitor device applications, Electrochim. Acta 101 (2013) 99–108.
[24] J. Fang, M. Li, Q. Li, W. Zhang, Q. Shou, F. Liu, X. Zhang, J. Cheng, Microwave-assisted synthesis of CoAl-layered double hydroxide/graphene oxide composite and its application in supercapacitors, Electrochim. Acta 85 (2012) 248–255.
[25] B. Ming, J. Li, F. Kang, G. Pang, Y. Zhang, L. Chen, J. Xu, X. Wang, Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode materials, J. Power Sources 198 (2012) 428–431.
[26] C.L. Liu, K.H. Chang, C.C. Hu, W.C. Wen, Microwave-assisted hydrothermal synthesis of Mn3O4/reduced graphene oxide composites for high power supercapacitors, J. Power Sources 217 (2012) 184–192.
[27] S.H. Jhung, T. Jin, Y.K. Hwang, J.S. Chang, Microwave effect in the fast synthesis of microporous materials: which stage between nucleation and crystal growth is accelerated by microwave irradiation, Chem. Eur. J. 13 (2007) 4410–4417.
[28] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, L. Zhang, Progress of electrochemical capacitor electrode materials: A review, Int. J. Hydrogen Energy 34 (2009) 4889–4899.
[29] K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors, Small 10 (2013) 1–18.
[30] S. Liu, S. Sun, X.-Z. You, Inorganic nanostructured materials for high performance electrochemical supercapacitors., Nanoscale 6 (2014) 2037–2045.
[31] N. Soin, S.S. Roy, S.K. Mitra, T. Thundat, J.A. McLaughlin, Nanocrystalline ruthenium oxide dispersed few layered graphene (FLG) nanoflakes as supercapacitor electrodes, J. Mater. Chem. 22 (2012) 14944-14950.
[32] Y.-M. Chen, J.-H. Cai, Y.-S. Huang, K.-Y. Lee, D.-S. Tsai, K.-K. Tiong, A nanostructured electrode of IrO(x) foil on the carbon nanotubes for supercapacitors, Nanotechnology 22 (2011) 355708-333715.
[33] W. Wei, X. Cui, W. Chen, D.G. Ivey, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev. 40 (2011) 1697–1721.
[34] Y. Cheng, S. Lu, H. Zhang, C.V. Varanasi, J. Liu, Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors, Nano Lett. 12 (2012) 4206-4211.
[35] X. Xia, J. Tu, Y. Zhang, Y. Mai, X. Wang, C. Gu, X. Zhao, Freestanding Co3O4 nanowire array for high performance supercapacitors, RSC Adv. 2 (2012) 1835–1841.
[36] X.H. Xia, J.P. Tu, X.L. Wang, C.D. Gu, X.B. Zhao, Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material, Chem Commun. 47 (2011) 5786–5788.
[37] X. Xia, J. Tu, Y. Mai, X. Wang, C. Gu, X. Zhao, Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance, J. Mater. Chem. 21 (2011) 9319-9325.
[38] Y.Q. Zhang, X.H. Xia, J.P. Tu, Y.J. Mai, S.J. Shi, X.L. Wang, C.D. Gu, Self-assembled synthesis of hierarchically porous NiO film and its application for electrochemical capacitors, J. Power Sources 199 (2012) 413–417.
[39] X. Xia, J. Tu, Y. Mai, R. Chen, X. Wang, C. Gu, X. Zhao, Graphene sheet/porous NiO hybrid film for supercapacitor applications, Chem. Eur. J. 17 (2011) 10898–10905.
[40] X.H. Xia, J.P. Tu, X.L. Wang, C.D. Gu, X.B. Zhao, Hierarchically porous NiO film grown by chemical bath deposition via a colloidal crystal template as an electrochemical pseudocapacitor material, J. Mater. Chem. 21 (2011) 671–679.
[41] T. Xue, X. Wang, J.M. Lee, Dual-template synthesis of Co(OH)2 with mesoporous nanowire structure and its application in supercapacitor, J. Power Sources 201 (2012) 382–386.
[42] X.H. Xia, J.P. Tu, Y.Q. Zhang, Y.J. Mai, X.L. Wang, C.D. Gu, X.B. Zhao, Three-dimentional porous nanoNi/Co(OH)2 nanoflake composite film : A pseudocapacitive material with superior performance, J. Phys. Chem. C 115 (2011) 22662–22668.
[43] J. Yan, W. Sun, T. Wei, Q. Zhang, Z. Fan, F. Wei, Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets, J. Mater. Chem. 22 (2012) 11494-11502.
[44] J. Yan, Q. Wang, T. Wei, Z. Fan, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater. 4 (2014) 1300816-1300859.
[45] J. Zhang, J. Jiang, H. Li, X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes, Energy Environ. Sci. 4 (2011) 4009-4015.
[46] H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials, Nano Res. 4 (2011) 729–736.
[47] Z.S. Wu, D. Wang, W. Ren, J. Zhao, G. Zhou, F. Li, H.-M. Cheng, Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors, Adv. Funct. Mater. (2010) 3595–3602.
[49] J.P. Zheng, P.J. Cygan, T.R. Jow, Hydrous ruthenium oxide as an electrode material for electrochemical capacitors, J. Electrochem. Soc. 142 (1995) 2699-2703.
[50] D.A. Mckeown, P.L. Hagans, L.P.L. Carette, A.E. Russell, K.E. Swider, D.R. Rolison, Structure of hydrous ruthenium oxides : Implications for charge storage, J. Phys. Chem. B 2 (1999) 4825–4832.
[51] SU, Yue-feng, WU, Feng, BAO. Li-ying, YABG, Zhao-hui, RuO2/activated carbon composites as a positive electrode in an alkaline electrochemical capacitor, New Carbon Mater. 22 (2007) 53–58.
[52] C. Hu, K. Chang, M. Lin, Y. Wu, Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors, Nano Lett. 6 (2006) 2690-2695.
[53] K.E. Swider, C.I. Merzbacher, P.L. Hagans, D.R. Rolison, Synthesis of ruthenium dioxide-titanium dioxide aerogels : Redistribution of electrical properties on the nanoscale, Chem. Mater. 9 (1997) 1248–1255.
[54] J. Zhang, J. Ma, L.L. Zhang, P. Guo, J. Jiang, X.S. Zhao, Template synthesis of tubular ruthenium oxides for supercapacitor applications, J. Phys. Chem. C (2010) 13608–13613.
[55] J.W. Long, K.E. Swider, C.I. Merzbacher, D.R. Rolison, Voltammetric characterization of ruthenium oxide-based aerogels and other RuO2 solids: The nature of capacitance in nanostructured materials, Langmuir 15 (1999) 780–785.
[56] Z.R. Cormier, H.A. Andreas, P. Zhang, Temperature-dependent structure and electrochemical behavior of RuO2/Carbon Nanocomposites, J. Phys. Chem. C 115 (2011) 19117–19128.
[57] H. Kim, B.N. Popov, Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method, J. Power Sources 104 (2002) 52-61.
[58] X. Chu, S. Zhou, W. Zhang, H. Shui, Trimethylamine sensing properties of nano-LaFeO3 prepared using solid-state reaction in the presence of PEG 400, Mater. Sci. Eng. B 164 (2009) 65–69.
[59] V.D. Patake, S.M. Pawar, V.R. Shinde, T.P. Gujar, C.D. Lokhande, The growth mechanism and supercapacitor study of anodically deposited amorphous ruthenium oxide films, Curr. Appl. Phys. 10 (2010) 99–103.
[60] B.C. Liu, F. Li, L. Ma, H. Cheng, Advanced materials for energy storage, Adv. Mater. 22 (2010) E28–E62.
[61] W. Sugimoto, K. Yokoshima, Y. Murakami, Y. Takasu, Charge storage mechanism of nanostructured anhydrous and hydrous ruthenium-based oxides, Angew. Chem. Int. Edit. 52 (2006) 1742–1748.
[62] A. Ananth, M.S. Gandhi, Y.S. Mok, A dielectric barrier discharge (DBD) plasma reactor : An efficient tool to prepare novel RuO2 nanorods, J. Phys. D: Appl. Phys. 46 (2013) 155202-155210.
[63] Y. Ke, D. Tsai, Y. Huang, Electrochemical capacitors of RuO2 nanophase grown on LiNbO3 (100) and sapphire (0001) substrates, J. Mater. Chem. 15 (2005) 2122–2127.
[64] J.–Y. Kim, K.–H. Kim, H.–K. Kim, S.–H. Park, K.Y. Chung, K.–B. Kim, Nanosheet-assembled 3D nanoflowers of ruthenium oxide with superior rate performance for supercapacitor applications, RSC Adv. 4 (2014) 16115-16120.
[65] W. Sugimoto, H. Iwata, Y. Yasunaga, Y. Murakami, Y. Takasu, Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage, Angew. Chem. Int. Edit. 42 (2003) 4092–4096.
[66] T. Hyun, J. Kang, H. Kim, J. Hong, I. Kim, Electrochemical properties of MnOx–RuO2 nanofiber mats synthesized by co-electrospinning, Electrochem. Solid-State Lett. 12 (2009) A225–A228.
[67] Y. Li, K. Huang, D. Zeng, S. Liu, Z. Yao, RuO2/Co3O4 thin films prepared by spray pyrolysis technique for supercapacitors, J. Solid State Electrochem. 12 (2010) 1205–1211.
[68] X. M. Liu, X.G. Zhang, NiO-based composite electrode with RuO2 for electrochemical capacitors, Electrochim. Acta 49 (2004) 229–232.
[69] F. Pico, J. Iba, T.A. Centeno, C. Pecharroman, R.M. Rojas, J.M. Amarilla, J.M. Rojo, RuO2·xH2O/NiO composites as electrodes for electrochemical capacitors: Effect of the RuO2 content and the thermal treatment on the specific capacitance, Electrochim. Acta 51 (2006) 4693–4700.
[70] W. Yong-gang, Z. Xiao-gang, Preparation and electrochemical capacitance of RuO2/TiO2 nanotubes composites, Electrochim. Acta 49 (2004) 1957–1962.
[71] C. Hu, K. Chang, C. Wang, Two-step hydrothermal synthesis of Ru–Sn oxide composites for electrochemical supercapacitors, Electrochim. Acta 52 (2007) 4411–4418.
[72] C. Hu, W. Chen, Effects of substrates on the capacitive performance of RuOx·nH2O and activated carbon–RuOx electrodes for supercapacitors, Electrochim. Acta 49 (2004) 3469–3477.
[73] L. Huang, H. Lin, T. Wen, A. Gopalan, Highly dispersed hydrous ruthenium oxide in supercapacitor electrode, Electrochim. Acta 52 (2006) 1058–1063.
[74] C. Zhang, H. Zhou, X. Yu, D. Shan, T. Ye, Z. Huang, Y. Kuang, Synthesis of RuO2 decorated quasi graphene nanosheets and their application in supercapacitors, RSC Adv. 4 (2014) 11197–11205.
[75] Z. Zhou, Y. Zhu, Z. Wu, F. Lu, M. Jing, X. Ji, Amorphous RuO2 coated on carbon spheres as excellent electrode materials for supercapacitors, RSC Adv. 2 (2014) 6927–6932.
[76] X.Y. Lang, H.T. Yuan, Y. Iwasa, M.W. Chen, Three-dimensional nanoporous gold for electrochemical supercapacitors, Scr. Mater. 64 (2011) 923–926.
[77] E.C. Rios, A.V Rosario, R.M.Q. Mello, L. Micaroni, Poly(3-methylthiophene)/ MnO2 composite electrodes as electrochemical capacitors, J. Power Sources 163 (2007) 1137–1142.
[78] S. Yan, H. Wang, P. Qu, Y. Zhang, Z. Xiao, RuO2/carbon nanotubes composites synthesized by microwave-assisted method for electrochemical supercapacitor, Synthetic Met. 159 (2009) 158–161.
[79] D.P. Dubal, N.R. Chodankar, R. Holze, D.-H. Kim, P. Gomez-Romero, Ultrathin mesoporous RuCo2O4 nanoflakes: An advanced electrode for high-performance asymmetric supercapacitors, ChemSusChem. 10 (2017) 1771 – 1782. https://doi. 10.1002/cssc.201700001
[81] F.Z. Amir, V.H. Pham, D.W. Mullinax, J.H. Dickerson, Enhanced performance of HRGO-RuO2 solid state flexible supercapacitors fabricated by electrophoretic deposition, Carbon (2016). https://doi.10.1016/j.carbon.2016.06.013
[82] H. Kwon, D. Hong, I. Ryu, S. Yim, Supercapacitive properties of 3D-arrayed polyaniline hollow nanospheres encaging RuO2 nanoparticles, ACS Appl. Mater. Interfaces, (2017). http//
[83] Z. Peng, X. Liu, H. Meng, Z. Li, B. Li, Z. Liu, S. Liu, Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors, ACS Appl. Mater. Interfaces, (2016). http//
[84] C. Zhang, T.M. Higgins, S.-H. Park, S.E. O’Brien, D. Long, J.N. Coleman, V. Nicolosi, Highly flexible and transparent solid-state supercapacitors based on RuO2/PEDOT:PSS conductive ultrathin films, Nano Energy, (2016). http//
[85] L. Li, K.H. Seng, Z. Chen, H.-K. Liu, I.P. Nevirkovets, Z. Guo, Synthesis of Mn3O4-encapsulated graphene sheet nanocomposites via a facile, fast microwave hydrothermal method and their supercapacitive behaviour, Electrochim. Acta 87 (2013) 801-808.
[86] F. Nâamoune, B. Messaoudi, A. Kahoul, N. Cherchour, A. Pailleret, H. Takenouti, A new sol-gel synthesis of Mn3O4 oxide and its electrochemical behavior in alkaline medium, Ionics 18 (2012) 365–370.
[87] J. Gao, M.A. Lowe, D. Abruna, Sponge like nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries, Chem. Mater. 23 (2011) 3223–3227.
[88] M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater. 16 (2004) 3184–3190.
[89] J. Zhu, W. Shi, N. Xiao, X. Rui, H. Tan, X. Lu, H.H. Huey, J. Ma, Q. Yan, Oxidation-etching preparation of MnO2 tubular nanostructures for high-performance supercapacitors, ACS Appl. Mater. Interf. 4 (2012) 2769–2774.
[90] G.A. Kriegsmann, G.A. Kriegsmann, Thermal runaway in microwave heated ceramics : A one dimensional model, J. Appl. Phys. 71 (1992) 1960-1966.
[91] P. Ragupathy, D.H. Park, G. Campet, H.N. Vasan, S. Hwang, J. Choy, N. Munichandraiah, Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor, J. Phys. Chem. C 113 (2009) 6303–6309.
[92] J. Zanga, X. Li, In-situ synthesis of ultrafine β-MnO2/polypyrrole nanorod composites for high-performance supercapacitors J. Mater. Chem. 21 (2011) 10965–10969.
[93] J.M. Ko, K.M. Kim, Electrochemical properties of MnO2/activated carbon nanotube composite as an electrode material for supercapacitor, Mater. Chem. Phys. 114 (2009) 837–841.
[94] X. Lang, A. Hirata, T. Fujita, M. Chen, Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors, Nature Nanotech. 6 (2011) 232–236.
[95] W. Yan, J.Y. Kim, W. Xing, K.C. Donavan, T. Ayvazian, R.M. Penner, Lithographically patterned gold/manganese dioxide core/shell nanowires for high capacity, high rate, and high cyclability hybrid electrical energy storage, Chem. Mater. 24 (2012) 2382–2390.
[96] Y. Gao, Y.S. Zhou, M. Qian, H.M. Li, J. Redepenning, L.S. Fan, X.N. He, W. Xiong, X. Huang, M. Majhouri-samani, L. Jiang, Y.F. Lu, High-performance flexible solid-state supercapacitors based on MnO2-decorated nanocarbon electrodes, RSC Adv. 3 (2013) 20613–20618.
[97] G. Yu, L. Hu, N. Liu, H. Wang, M. Vosgueritchian, Y. Yang, Y. Cui, Z. Bao, Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping, Nano Lett. 11 (2011) 4438–4442.
[98] D. Yang, Pulsed laser deposition of cobalt-doped manganese oxide thin films for supercapacitor applications, J. Power Sources 198 (2012) 416–422.
[99] H.N. Yoo, D.H. Park, S. Hwang, Effects of vanadium- and iron-doping on crystal morphology and electrochemical properties of 1D nanostructured manganese oxides, J. Power Sources 185 (2008) 1374–1379.
[100] L. Deng, G. Zhu, J. Wang, L. Kang, Z. Liu, Z. Yang, Z. Wang, Graphene-MnO2 and graphene asymmetrical electrochemical capacitor with a high energy density in aqueous electrolyte, J. Power Sources 196 (2011) 10782–10787.
[101] A.L.M. Reddy, M.M. Shaijumon, S.R. Gowda, P.M. Ajayan, Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications, J. Phys. Chem. C 114 (2010) 658–663.
[102] J. Wang, Y. Yang, Z. Huang, F. Kang, Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors, Electrochim. Acta 56 (2011) 9240–9247.
[103] Jaidev, R.I. Jafri, A.K. Mishra, S. Ramaprabhu, Polyaniline-MnO2 nanotube hybride nanocomposite as supercapacitor electrode material in acidic electrolyte, J. Mater. Chem. 21 (2011) 17601-17605.
[104] W. Chen, R.B. Rakhi, L. Hu, X. Xie, Y. Cui, H.N. Alshareef, High-performance nanostructured supercapacitors on a sponge, Nano Lett. 11 (2011) 5165–5172.
[105] B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, 3D Macroporous graphene frameworks for supercapacitors with high energy and power densities, ACS Nano 6 (2012) 4020–4028.
[106] Q. Cheng, J. Tang, Graphene and nanostructured MnO2 composite electrodes for supercapacitors, Carbon 49 (2011) 2917–2925.
[107] B. Snejana, B. Petr, G. Tomas, V. Petr, Reductive dissolution of microparticulate manganese oxides, J. Solid State Electrochem. 4 (2000) 306–313.
[108] S. Nijjer, J. Thonstad, G.M. Haarberg, Oxidation of manganese(II) and reduction of manganese dioxide in sulphuric acid, Electrochim. Acta 46 (2000) 395–399.
[109] Q. Lu, Y. Zhou, Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties, J. Power Sources 196 (2011) 4088–4094.
[110] J. Hao, M. Jan, C. Li, Polyanile-MnO2 coaxil nanofiber with hierarchical structure for high performance supercapacitors, J. Mater. Chem. 22 (2012) 16939–16942.
[111] J. Wang, Y. Yang, Z. Huang, F. Kang, Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors, J. Mater. Chem. 22 (2012) 16943–16949.
[112] Y. Yan, Q. Cheng, V. Pavlinek, P. Saha, C. Li, Fabrication of polyaniline/mesoporous carbon/MnO2 ternary nanocomposites and their enhanced electrochemical performance for supercapacitors, Electrochim. Acta 71 (2012) 27–32.
[113] Y. Hou, Y. Cheng, T. Hobson, J. Liu, Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composites for high performance electrochemical electrodes, Nano Lett. 10 (2010) 2727–2733.
[114] D. Zheng, Y. Qiang, S. Xu, W. Li, S. Yu, S. Zhang, Hierarchical MnO2 nanosheets synthesized via electrodepositionhydrothermal method for supercapacitor electrodes, Appl. Phys. A. 123 (2017) 123–133.
[115] M.P. Clark, W. Qu, D.G. Ivey, Nanostructured manganese oxide and manganese oxide/ polyethylenedioxythiophene rods electrodeposited onto nickel foam for supercapacitor applications, J. Appl. Electrochem. 47 (2017) 39–49.
[116] S. Xi, Y. Zhu, Y. Yang, S. Jiang, Z. Tang, Facile synthesis of free-standing NiO/MnO2 core-shell nanoflakes on carbon cloth for flexible supercapacitors, Nanoscale Res. Lett. 12 (2017) 171–181.
[117] H. Wang, Q. Ren, D.J.L. Brett, G. He, R. Wang, J. Key, S. Ji, Double-shelled tremella-like NiO@Co3O4@MnO2 as a highperformance cathode material for alkaline supercapacitors, J. Power Sources. 343 (2017) 76–82.
[118] N. Wu, Nanocrystalline oxide supercapacitors, Mater. Chem. Phys. 75 (2002) 6–11.
[119] M. Wu, Y. Huang, J. Jow, W. Yang, C. Hsieh, H. Tsai, Anodically potentiostatic deposition of flaky nickel oxide nanostructures and their electrochemical performances, Int. J. Hydrogen Energ. 33 (2008) 2921–2926.
[120] V. Srinivasan, J.W. Weidner, An electrochemical route for making porous nickel oxide electrochemical capacitors an electrochemical route for making porous nickel oxide electrochemical capacitors, J. Electrochem. Soc. 144 (1997) L210-L213.
[121] V. Srinivasan, J.W. Weidner, Studies on the capacitance of nickel oxide films: Effect of heating temperature and electrolyte concentration, J. Electrochem. Soc.147 (2000) 880–885.
[122] X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition, Sol. Energ. Mater. Sol. Cell 92 (2008) 628–633.
[123] Y. Zhang, Y. Gui, X. Wu, H. Feng, A. Zhang, L. Wang, T. Xia, Preparation of nanostructures NiO and their electrochemical capacitive behaviors, Int. J. Hydrogen Energ. 34 (2009) 2467–2470.
[124] X. Liu, X. Zhang, S. Fu, Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors, Mater. Res. Bull. 41 (2006) 620–627.
[125] R.L. Mccreery, J. Wu, R.P. Kalakodimi, Electron transport and redox reactions in carbon-based molecular electronic junctions, Phys. Chem. Chem. Phys. 8 (2006) 2572–2590.
[126] B. Tao, J. Zhang, F. Miao, S. Hui, L. Wan, Preparation and electrochemistry of NiO/SiNW nanocomposite electrodes for electrochemical capacitors, Electrochim. Acta 55 (2010) 5258–5262.
[127] J.B. Wu, Z.G. Li, Y. Lin, Porous NiO/Ag composite film for electrochemical capacitor application, Electrochim. Acta 56 (2011) 2116–2121.
[128] X. Ge, C.D. Gu, Y. Lu, L. Wang, A versatile protocol for the ionothermal synthesis of nanostructured nickel compounds as energy storage materials from a choline chloride-based ionic liquid, J. Mater. Chem. A 1 (2013) 13454–13461.
[129] M. Khairya, S.A. El-Safty, Mesoporous NiO nanoarchitectures for electrochemical energy storages: Influence of size, porosity, and morphology, RSC Adv. 3 (2013) 23801-23809.
[130] M. Wu, M. Wang, J. Jow, Fabrication of porous nickel oxide film with open macropores by electrophoresis and electrodeposition for electrochemical capacitors, J. Power Sources 195 (2010) 3950–3955.
[131] B. Wang, J.S. Chen, Z. Wang, S. Madhavi, X. Wen, D. Lou, Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties, Adv. Energy Mater. 2 (2012) 1188–1192.
[132] H. Pang, Q. Lu, Y. Zhang, F. Gao, Selective synthesis of nickel oxide nanowires and length effect on their electrochemical properties, Nanoscale 2 (2010) 920–922.
[133] Z. Lu, Z. Chang, J. Liu, X. Sun, Stable ultrahigh specific capacitance of NiO nanorod arrays, Nano Research 4 (2011) 658–665.
[134] C. Yuan, J. Li, L. Hou, L. Yang, L. Shen, X. Zhang, Facile growth of hexagonal NiO nanoplatelet arrays assembled by mesoporous nanosheets on Ni foam towards high-performance electrochemical capacitors, Electrochim. Acta 78 (2012) 532–538.
[135] C.-Y. Cao, W. Guo, Z.-M. Cui, W.-G. Song, W. Cai, Microwave-assisted gas/liquid interfacial synthesis of flowerlike NiO hollow nanosphere precursors and their application as supercapacitor electrodes, J. Mater. Chem. 21 (2011) 3204–3209.
[136] X.H. Xia, J.P. Tu, J. Zhang, X.L. Wang, W.K. Zhang, H. Huang, Morphology effect on the electrochromic and electrochemical performances of NiO thin films, Electrochim. Acta 53 (2008) 5721–5724.
[137] S. Ding, T. Zhu, S. Chen, Z. Wang, X. Wen, D. Lou, Controlled synthesis of hierarchical NiO nanosheet hollow spheres with enhanced supercapacitive performance, J. Mater. Chem. 21 (2011) 6602–6606.
[138] Q. Lu, M.W. Lattanzi, Y. Chen, X. Kou, W. Li, X. Fan, K.M. Unruh, J.G. Chen, J.Q. Xiao, Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites, Angew. Chem. Int. Ed. 50 (2011) 6847–6850.
[139] W. Lv, F. Sun, D.-M. Tang, H.-T. Fang, C. Liu, Q.-H. Yang, H.-M. Cheng, A sandwich structure of graphene and nickel oxide with excellent supercapacitive performance, J. Mater. Chem. 21 (2011) 9014–9019.
[140] X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Preparation of novel 3D graphene networks for supercapacitor applications, Small 7 (2011) 3163–3168.
[141] B. Gao, C. Yuan, L. Su, S. Chen, X. Zhang, High dispersion and electrochemical capacitive performance of NiO on benzenesulfonic functionalized carbon nanotubes, Electrochim. Acta 54 (2009) 3561–3567.
[142] Z. Ji, X. Shen, Y. Xu, H. Zhou, G. Zhu, A facile and general route for the synthesis of semiconductor quantum dots on reduced graphene oxide sheets, RSC Adv. 4 (2014) 13601–13609.
[143] Y.-G. Zhu, G.-S. Cao, C.-Y. Sun, J. Xie, S.-Y. Liu, T.-J. Zhu, X.B. Zhao, H.Y. Yang, Design and synthesis of NiO nanoflakes/graphene nanocomposite as high performance electrodes of pseudocapacitor, RSC Adv. 3 (2013) 19409–19415.
[144] K. Nam, K. Kim, E. Lee, W. Yoon, X. Yang, K. Kim, Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates, J. Power Sources 182 (2008) 642–652.
[145] G. Zhang, L. Yu, H.E. Hostera, X.W. (David) Lou, Synthesis of one-dimensional hierarchical NiO hollow nanostructure with enhanced supercapacitive performance, Nanoscale 5 (2013) 877-881.
[146] T. Liu, C. Jiang, B. Cheng, W. You, J. Yu, Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance, J. Power Sources. 359 (2017) 371–378.
[147] D. He, G. Liu, A. Pang, Y. Jiang, H. Suo, C. Zhao, High-performance supercapacitor electrode based on the tremella-like NiC2O4@NiO core/shell hierarchical nanostructures on nickel foam, Dalt. Trans. (2017). 10.1039/C6DT04500F
[148] P. Jiang, Q. Wang, J. Dai, W. Li, Z. Wei, Fabrication of NiO@Co3O4 core/shell nanofibres for high performance supercapacitors, Mater. Lett. (2016)
[149] H. Kahimbi, S.B. Hong, M. Yang, B.G. Choi, Simultaneous synthesis of NiO/reduced graphene oxide composites by ball milling using bulk Ni and graphite oxide for supercapacitor applications, J. Electroanal. Chem. 786 (2017) 14–19.
[150] Q. Liu, C. Lu, Y. Lid, Controllable synthesis of ultrathin nickel oxide sheets on carbon cloth for high-performance supercapacitors, RSC Adv. 7 (2017) 23143–23148.
[151] J. Zhang, L. Su, L. Ma, D. Zhao, C. Qin, Z. Jin, K. Zhao, Preparation of inflorescence-like ACNF/PANI/NiO composite with three-dimension nanostructure for high performance supercapacitors, J. Electroanal. Chem. (2017) doi: 10.1016/j.jelechem.2017.02.047.
[152] R.S. Jayashree, P.V. Kamath, Suppression of the α→β-nickel hydroxide transformation in concentrated alkali: Role of dissolved cations, J. Appl. Electrochem. 31 (2001) 1315–1320.
[153] J. Li, W. Zhao, F. Huang, A. Manivannan, N. Wu, Single-crystalline Ni(OH)2 and NiO nanoplatelet arrays as supercapacitor electrodes, Nanoscale 3 (2011) 5103–5109.
[154] U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, Characterization of honeycomb-like “β-Ni(OH)2” thin films synthesized by chemical bath deposition method and their supercapacitor application, J. Power Sources 188 (2009) 338–342.
[155] H. Du, L. Jiao, K. Cao, Y. Wang, H. Yuan, Polyol-mediated synthesis of mesoporous α-Ni(OH)2 with enhanced supercapacitance, ACS Appl. Mater. Interf. 5 (2013) 6643−6648.
[156] J. Lang, L. Kong, M. Liu, L. Kang, Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon, J. Solid State Electrochem. 14 (2010) 1533–1539.
[157] A.K. Mondal, D. Su, S. Chen, B. Sun, A simple approach to prepare nickel hydroxide nanosheets for enhanced pseudocapacitive, RSC Adv. 4 (2014) 19476–19481.
[158] G.-W. Yang, C.-L. Xu, H.-L. Li, Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance, Chem. Commun. 0 (2008) 6537–6539.
[159] H. Jiang, C. Li, T. Sun, J. Ma, High-performance supercapacitor material based on Ni(OH)2 nanowire-MnO2, Chem. Commun. 48 (2012) 2606–2608.
[160] H. Wang, H.S. Casalongue, Y. Liang, H. Dai, Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials, J. Am. Chem. Soc. 132 (2010) 7472–7477.
[161] S. Chen, J. Zhu, H. Zhou, X. Wang, One-step synthesis of low defect density carbon nanotube-doped Ni(OH)2 nanosheets with improved electrochemical performances, RSC Adv. 1 (2011) 484–489.
[162] H. Cheng, Z.G. Lu, J.Q. Deng, C.Y. Chung, K. Zhang, Y.Y. Li, A facile method to improve the high rate capability of Co3O4 nanowire array electrodes, Nano Res. 3 (2010) 895–901.
[163] D.X.Y. Qiu, L. Zhiyi, C. Zheng, Z. Wei, S. Jiaqiang, L. Junfeng, S. Xiaoming, Hierarchical Co3O4 nanosheet@nanowire arrays with enhanced pseudocapacitive performance, RSC Adv. 2 (2012) 1663–1668.
[164] X. Quing, S. Lui, K. Huang, K. Lv, Y. Yang, Z. Lu, D. Fang, X. Liang, Facile synthesis of Co3O4 nanoflowers grownon Ni foam with superior electrochemical performance, Electrochim. Acta 56 (2011) 4985–4991.
[165] V. Srinivasan, J.W. Weidner, Capacitance studies of cobalt oxide films formed via electrochemical precipitation, J. Power Sources 108 (2002) 15–20.
[166] P.J. Kulesza, S. Zamponi, M.A. Malik, M. Berrettoni, A. Wolkiewicz, R. Marassi, Spectroelectrochemical characterization of cobalt hexacyanoferrate films in potassium salt electrolyte, Electrochim. Acta 43 (1998) 919-923.
[167] Z. Xun, C. Cai, W. Xing, T. Lu, Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method, J. Electroanal. Chem. 545 (2003) 19–27.
[168] Y. Shan, L. Gao, Formation and characterization of multi-walled carbon nanotubes/Co3O4 nanocomposites for supercapacitors, Mater. Chem. Phys. 103 (2007) 206–210.
[169] H. Wang, C. Holt, Z. Li, D. Mitlin, Graphene–nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading, Nano Res. 5 (2012) 605–617.
[170] S.M. Kumar, G.R. Rao, Effect of microwave on the nanowire morphology, optical, magnetic, and pseudocapacitance behavior of Co3O4, J. Phys. Chem. C 115 (2011) 25543–25556.
[171] D. Wang, Q. Wang, T.Wang, Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors, Inorg. Chem. 50 (2011) 6482–6492.
[172] V. Eyert, R. Horny R, K.-H. Hock, S. Horn, Embedded Peierls instability and the electronic structure of MoO2, J. Phys. Condens. Matter. 12 (2000) 4923–4946.
[173] C. Yuan, L. Yang, L. Hou, L. Shen, X. Zhang, X.W. (David) Lou, Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors, Energy Environ. Sci. 5 (2012) 7883-7887.
[174] F. Zhang, C. Yuan, X. Lu, L. Zhang, Q. Che, X. Zhang, Facile growth of mesoporous Co3O4 nanowire arrays on Ni foam for high performance electrochemical capacitors, J. Power Sources 203 (2012) 250– 256.
[175] Y. Gao, S. Chen, D. Cao, G. Wang, J. Yin, Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam, J. Power Sources 195 (2010) 1757–1760.
[176] J. Xu, L. Gao, J. Cao, W. Wang, Z. Chen, Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material, Electrochim. Acta 56 (2010) 732–736.
[177] G.-J. Liu, L.-Q. Fan, F.-D. Yu, J.-H. Wu, L. Liu, Z.-Y. Qiu, Q. Liu, Facile one-step hydrothermal synthesis of reduced graphene oxide/Co3O4 composites for supercapacitors, J. Mater. Sci. 48 (2013) 8463–8470.
[178] R. Wang, X. Yan, J. Lang, Z. Zheng, P. Zhang, A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials, J. Mater. Chem. A. 2 (2014) 12724–12732.
[179] L. Yang, S. Cheng, Y. Ding, X. Zhu, Z. Lin Wang, M. Liu, Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors, Nano Lett. 12 (2012) 321−325.
[180] C. Yuan, L. Yang, L. Hou, J. Li, Y. Sun, X. Zhang, L. Shen, X. Lu, S. Xiong, X.W. (David) Lou, Flexible Hybrid Paper Made of Monolayer Co3O4 Microsphere arrays on rGO/CNTs and their application in electrochemical capacitors, Adv. Funct. Mater. 22 (2012) 2560–2566.
[181] J. Lang, X. Yan, Q. Xue, Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors, J. Power Sources 196 (2011) 7841–7846.
[182] J. Yan, T. Wei, W. Qiao, B. Shao, Q. Wei, L. Zhang, Z. Fan, Rapid microwave-assisted synthesis of graphene nanosheet/Co3O4 composite for supercapacitors, Electrochim. Acta 55 (2010) 6973–6978.
[183] X.-C. Dong, H. Xu, X.-W. Wang, Y.-X. Huang, M.B. Chan-Park, H. Zhang, L.-H. Wang, W. Huang, P. Chen, 3D Graphene cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection, ACS Nano. 6 (2012) 3206–3213.
[184] W. Shi, J. Zhu, D.H. Sim, Y.Y. Tay, Z. Lu, X. Zhang, Y. Sharma, M. Srinivasan, H. Zhang, H.H. Hng, Q. Yan, Achieving high specific charge capacitances in Fe3O4/reduced graphene oxide nanocomposites, J. Mater. Chem. 21 (2011) 3422–3427.
[185] X. Xia, H. Qingli, W. Lei, X. Wang, Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors, J. Mater. Chem. 22 (2012) 16844-16850.
[186] V.M. Gopalakrishnan, G. Srikesh, A. Mohan, Arivazhagan, In-situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications, Appl. Surf. Sci. (2017).
[187] Y. Liang, M.G. Schwab, L. Zhi, E. Mugnaioli, U. Kolb, X. Feng, K. Müllen, Direct access to metal or metal oxide nanocrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage, J. Am. Chem. Soc. 132 (2010) 15030–15037.
[188] D.T. Dam, X. Wang, J.-M. Lee, Fabrication of a mesoporous Co(OH)2/ITO nanowire composite electrode and its application in supercapacitors, RSC Adv. 2 (2012) 10512–10518.
[189] V. Gupta, T. Kusahara, H. Toyama, S. Gupta, N. Miura, Potentiostatically deposited nanostructured α-Co(OH)2: A high performance electrode material for redox-capacitors, Electrochem. Commun. 9 (2007) 2315–2319.
[190] X. Ge, C.D. Gu, X.L. Wang, J.P. Tu, Correlation between microstructure and electrochemical behavior of the mesoporous Co3O4 sheet and its ionothermal synthesized hydrotalcite-like α-Co(OH)2 precursor, J. Phys. Chem. C 118 (2014) 911–923.
[191] X. Xia, J. Tu, Y. Zhang, J. Chen, X. Wang, C. Gu, C. Guan, J. Luo, H.J. Fan, Porous hydroxide nanosheets on preformed nanowires by electrodeposition: branched nanoarrays for electrochemical energy storage, Chem. Mater. 24 (2012) 3793−3799.
[192] Y. Zhang, X. Xia, Xinhui, J. Kang, J. Tu, Hydrothermal synthesized porous Co(OH)2 nanoflake film for supercapacitor application, J. of Power Sources (2014) 1-6.
[193] Y. Chen, Z. Hu, Y. Chang, H. Wang, G. Fu, X. Jin, L. Xie, Layered Al-substituted cobalt hydroxides/GO composites for electrode materials of supercapacitors, Chinese J. Chem. 29 (2011) 2257–2262.
[194] A.D. Jagadale, V.S. Jamadade, S.N. Pusawale, C.D. Lokhande, Effect of scan rate on the morphology of potentiodynamically deposited β-Co(OH)2 and corresponding supercapacitive performance, Electrochim. Acta 78 (2012) 92–97.
[195] W. Zhou, M. Xu, D. Zhao, C. Xu, H. Li, Electrodeposition and characterization of ordered mesoporous cobalt hydroxide films on different substrates for supercapacitors, Microporous Mesoporous Mater. 117 (2009) 55–60.
[196] X. Xia, Y. Zhang, D. Chao, C. Guan, Y. Zhang, L. Li, X. Ge, I.M. Bacho, J. Tu, H.J. Fan, Solution synthesis of metal oxides for electrochemical energy storage applications, Nanoscale 6 (2014) 5008-5048.
[197] Q.-Q. Xiong, J.-P. Tu, Y. Lu, J. Chen, Y.-X. Yu, X.L. Wang, C. Gu, Three-dimensional porous nano-Ni/Fe3O4 composite film: enhanced electrochemical performance for lithium-ion batteries, J. Mater. Chem. 22 (2012) 18639–18645.
[198] J. Chen, K. Huang, S. Liu, Hydrothermal preparation of octadecahedron Fe3O4 thin film for use in an electrochemical supercapacitor, Electrochim. Acta 55 (2009) 1–5.
[199] K. Xie, J. Li, Y. Lai, W. Lu, Y. Liu, L. Zhou, H. Huang, Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage, Electrochem. Commun. 13 (2011) 657–660.
[200] S. Wang, K. Ho, S. Kuo, N. Wu, Investigation on capacitance mechanisms of Fe3O4 electrochemical capacitors, J. Electrochem. Soc. 153 (2006) A75–A80.
[201] X. Xia, Q. Hao, W. Lei, W. Wang, D. Suna, X. Wang, Nanostructured ternary composites of graphene/Fe2O3/polyaniline for high-performance supercapacitors, J. Mater. Chem. 22 (2012) 16844-16850.
[202] Y. Kim, S. Park, Roles of nanosized Fe3O4 on supercapacitive properties of carbon nanotubes, Curr. Appl. Phys. 11 (2011) 462–466.
[203] Y. Shi, B. Guo, S.A. Corr, Q. Shi, Y. Hu, K.R. Heier, L. Chen, R. Seshadri, G.D. Stucky, Ordered mesoporous metallic MoO2 materials with highly reversible lithium storage capacity, Nano Lett. 9 (2009) 4215–4220.
[204] H. Zhang, Y. Wang, E.R. Fachini, C.R. Cabrera, Electrochemically codeposited platinum/molybdenum oxide electrode for catalytic oxidation of methanol in acid solution, Electrochem. Solid-State Lett. 2 (1999) 437–439.
[205] J. Rajeswari, P.S. Kishore, B. Viswanathan, One-dimensional MoO2 nanorods for supercapacitor applications, Electrochem. Commun. 11 (2009) 572–575.
[206] G. Wee, H.Z. Soh, Y.L. Cheah, S.G. Mhaisalkar, M. Srinivasan, Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 6720–6725.
[207] S. Kuo, N. Wu, Composite supercapacitor containing tin oxide and electroplated ruthenium oxide, Electrochem. Solid-State Lett. 6 (2003) A85-A87.
[208] K.R. Prasad, N. Miura, Electrochemical synthesis and characterization of nanostructured tin oxide for electrochemical redox supercapacitors, Electrochem. Commun. 6 (2004) 849–852.
[209] M. Wu, L. Zhang, D. Wang, C. Xiao, S. Zhang, Cathodic deposition and characterization of tin oxide coatings on graphite for electrochemical supercapacitors, J. Power Sources 175 (2008) 669–674.
[210] R.S. Mane, J. Chang, D. Ham, B.N. Pawar, T. Ganesh, B. Won, J. Kee, S. Han, Dye-sensitized solar cell and electrochemical supercapacitor applications of electrochemically deposited hydrophilic and nanocrystalline tin oxide film electrodes, Curr. Appl. Phys. 9 (2009) 87–91.
[211] G. Wee, H.Z. Soh, Y.L. Cheah, S.G. Mhaisalkara, M. Srinivasan, Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes, J. Mater. Chem. 20 (2010) 6720–6725.
[212] K.R. Prasad, K. Koga, N. Miura, Electrochemical deposition of nanostructured indium oxide: High-performance electrode material for redox supercapacitors, Chem. Mater. 16 (2004) 1845–1847.
[213] S.S. Kale, R.S. Mane, C.D. Lokhande, K.C. Nandi, S.-H. Hana, A comparative photo-electrochemical study of compact In2O3/In2S3 multilayer thin films, Mater. Sci. Eng. B. 133 (2006) 222–225.
[214] G. Sberveglieri, C. Baratto, E. Comini, G. Faglia, M. Ferroni, A. Ponzoni, A. Vomiero, Synthesis and characterization of semiconducting nanowires for gas sensing, Sensor Actuator B Chem. 121 (2007) 208–213.
[215] T.P. Niesen, M.R.D. Guire, Review depositon of thin films at low temperature from aqueous solution, J. Electroceramics 6 (2001) 169-207.
[216] K.R. Prasad, K. Koga, N. Miura, Electrochemical deposition of nanostructured indium oxide: high-performance electrode material for redox supercapacitors, Chem. Mater. 16 (2004) 1845–1847.
[217] J. Chang, W. Lee, R.S. Mane, B.W. Cho, S.-H. Han, Morphology dependent electrochemical supercapacitor properties of indium oxide: Batteries and energy storage, Electrochem. Solid-State Lett. 11 (2008) A9–A11.
[218] T.P.Gujar, V.R. Shinde, C.D. Lokhande, S.-H. Han, Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors, J. Power Sources 161 (2006) 1479–1485.
[219] X. Chen, S. Chen, W. Huang, J. Zheng, Z. Li, Facile preparation of Bi nanoparticles by novel cathodic dispersion of bulk bismuth electrodes, Electrochim. Acta 54 (2009) 7370–7373.
[220] X. Liu, S. Shi, Q. Xiong, L. Li, Y. Zhang, H. Tang, C. Gu, X. Wang, J. Tu, Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials, ACS Appl. Mater. Interf. 5 (2013) 8790–8795.
[221] Z. Wang, X. Zhang, Y. Li, Z. Hao, Synthesis of graphene–NiFe2O4 nanocomposites and their electrochemical capacitive behavior, J. Mater. Chem. A. 1 (2013) 6393–6399.
[222] Q.Q. Xiong, J.P. Tu, S.J. Shi, X.Y. Liu, X.L.Wang, C.D. Gu, Ascorbic acid-assisted synthesis of cobalt ferrite (CoFe2O4) hierarchical flower-like microspheres with enhanced lithium storage properties, J. Power Sources 256 (2014) 153–159.
[223] S. Kim, H. Lee, P. Muralidharan, D. Seo, W. Yoon, D.K. Kim, K. Kang, Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries, Nano Res. 4 (2011) 505–510.
[224] G. Zhang, L. Yu, H.B. Wu, H.E. Hoster, X.W. (David) Lou, Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries, Adv. Mater. 24 (2012) 4609–4613.
[225] K. Karthikeyan, D. Kalpana, N.G. Renganathan, Synthesis and characterization of ZnCo2O4 nanomaterial for symmetric supercapacitor applications, Ionics 15 (2009) 107–110.
[226] B. Liu, B. Liu, Q. Wang, X. Wang, Q. Xiang, D. Chen, G. Shen, New energy storage option: Toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors, ACS Appl. Mater. Interfaces. 5 (2013) 10011–10017.
[227] L. Yu, L. Zhang, H.B. Wu, G. Zhang, X.W. (David) Lou, Controlled synthesis of hierarchical CoxMn3−xO4 array micro-/nanostructures with tunable morphology and composition as integrated electrodes for lithium-ion batteries, Energy Environ. Sci. 6 (2013) 2664–2671.
[228] C. An, Y. Wang, Y. Huang, Y. Xu, C. Xu, L. Jiao, H. Yuan, Novel three-dimensional NiCo2O4 hierarchitectures: Solvothermal synthesis and electrochemical properties, Cryst. Eng. Comm. 16 (2014) 385–392.
[229] L. Li, Y.Q. Zhang, X.Y. Liu, S.J. Shi, X.Y. Zhao, H. Zhang, X. Ge, G.F. Cai, C.D. Gu, X.L. Wang, J.P. Tu, One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage, Electrochim. Acta 116 (2014) 467–474.
[230] S.-L. Kuo, N.L. Wu, Electrochemical capacitor of MnFe2O4 with NaCl electrolyte, Electrochem. Solid-State Lett. 8 (2005) A495–A499.