Monitoring of the friction stir welding process: A preliminary study

Monitoring of the friction stir welding process: A preliminary study

SILVESTRI Alessia Teresa, COZZOLINO Ersilia, DE ALTERIIS Giorgio, ASTARITA Antonello, SCHIANO LO MORIELLO Rosario, SQUILLACE Antonino

download PDF

Abstract. Friction stir welding (FSW) has received great response in both academia and industry. Extensive research has been carried out to investigate the feasibility of the FSW process for different alloys and configurations. However, the growing demand for sustainable and cost-effective manufacturing, coupled with the pursuit of high-quality products, has led to the need for continuous monitoring of the manufacturing process and machine health. Therefore, the development of robust monitoring methods to assess the condition of the welding during the process becomes crucial for sustaining high production efficiency and ensuring quality standards. In this context, this study aims to provide methods for properly monitoring each phase characterizing the FSW process. Power consumption, vibrations, and temperatures were measured and evaluated in dissimilar friction stir lap welding of aluminum alloys.

Keywords
Friction Stir Welding, Monitoring, Aluminum Alloys

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: SILVESTRI Alessia Teresa, COZZOLINO Ersilia, DE ALTERIIS Giorgio, ASTARITA Antonello, SCHIANO LO MORIELLO Rosario, SQUILLACE Antonino, Monitoring of the friction stir welding process: A preliminary study, Materials Research Proceedings, Vol. 41, pp 2891-2900, 2024

DOI: https://doi.org/10.21741/9781644903131-316

The article was published as article 316 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] Thomas, W.M.; Nicholas, E.D.; Needham, J.C.; Murch, M.G.; Temple-Smith, P.; Dawes, C.J. Friction Stir Butt Welding, International Patent Application No. PCT/GB92 Patent application 1991.
[2] Thomas, W.M.; Nicholas, E.D.; Needham, J.C.; Murch, M.G.; Temple-Smith, P.; Dawes, C.J. Improvements Relating to Friction Welding 1993.
[3] Mishra, R.S.; Ma, Z.Y. Friction Stir Welding and Processing. Materials Science and Engineering: R: Reports 2005, 50, 1–78. https://doi.org/10.1016/J.MSER.2005.07.001
[4] Dwivedi, M.; Silvestri, A.T.; Franchitti, S.; Krishnaswamy, H.; Narayanaperumal, A.; Astarita, A. Friction Welding: An Effective Joining Process for Hybrid Additive Manufacturing. CIRP J Manuf Sci Technol 2021. https://doi.org/10.1016/j.cirpj.2021.07.016
[5] Nandan, R.; DebRoy, T.; Bhadeshia, H.K.D.H. Recent Advances in Friction-Stir Welding – Process, Weldment Structure and Properties. Prog Mater Sci 2008, 53.
[6] Jain, R.; Kumari, K.; Kesharwani, R.K.; Kumar, S.; Pal, S.K.; Singh, S.B.; Panda, S.K.; Samantaray, A.K. Friction Stir Welding: Scope and Recent Development. In; 2015.
[7] Impero, F.; Scherillo, F.; Silvestri, A.T.; Casarin, R.; Astarita, A.; Squillace, A. Stationary Shoulder Friction Stir Processing: Influence of Tool Wear on Surface Properties. In Proceedings of the Key Engineering Materials; 2019.
[8] Nandan, R.; DebRoy, T.; Bhadeshia, H.K.D.H. Recent Advances in Friction-Stir Welding – Process, Weldment Structure and Properties. Prog Mater Sci 2008, 53.
[9] Tucci, F.; Rubino, F.; Carlone, P. Strain and Temperature Measurement in Pultrusion Processes by Fiber Bragg Grating Sensors. In Proceedings of the AIP Conference Proceedings; 2018; Vol. 1960.
[10] Stavridis, J.; Papacharalampopoulos, A.; Stavropoulos, P. Quality Assessment in Laser Welding: A Critical Review. International Journal of Advanced Manufacturing Technology 2018, 94.
[11] Stournaras, A.; Stavropoulos, P.; Salonitis, K.; Chryssolouris, G. LASER PROCESS MONITORING: A CRITICAL. Advances in Manufacturing Technology–XXII 424.
[12] Sick, B. On-Line and Indirect Tool Wear Monitoring in Turning with Artificial Neural Networks: A Review of More than a Decade of Research. Mech Syst Signal Process 2002, 16.
[13] Dan, L.; Mathew, J. Tool Wear and Failure Monitoring Techniques for Turning-A Review. Int J Mach Tools Manuf 1990, 30. https://doi.org/10.1016/0890-6955(90)90009-8
[14] D’Emilia, G.; Di Gasbarro, D.; Natale, E. Optical System for On-Line Monitoring of Welding: A Machine Learning Approach for Optimal Set Up. Acta IMEKO 5.
[15] Shahabi, H.H.; Ratnam, M.M. In-Cycle Monitoring of Tool Nose Wear and Surface Roughness of Turned Parts Using Machine Vision. International Journal of Advanced Manufacturing Technology 2009, 40. https://doi.org/10.1007/s00170-008-1430-8
[16] Mazlan, A.; Daniyal, H.; Mohamed, A.I.; Ishak, M.; Hadi, A.A. Monitoring the Quality of Welding Based on Welding Current and Ste Analysis. In Proceedings of the IOP Conference Series: Materials Science and Engineering; 2017; Vol. 257.
[17] Huang, W.; Kovacevic, R. Feasibility Study of Using Acoustic Signals for Online Monitoring of the Depth of Weld in the Laser Welding of High-Strength Steels. Proc Inst Mech Eng B J Eng Manuf 2009, 223. https://doi.org/10.1243/09544054JEM1320
[18] Mishra, D.; Roy, R.B.; Dutta, S.; Pal, S.K.; Chakravarty, D. A Review on Sensor Based Monitoring and Control of Friction Stir Welding Process and a Roadmap to Industry 4.0. J Manuf Process 2018, 36, 373–397.
[19] Fleming, P.A.; Lammlein, D.H.; Wilkes, D.M.; Cook, G.E.; Strauss, A.M.; DeLapp, D.R.; Hartman, D.A. Misalignment Detection and Enabling of Seam Tracking for Friction Stir Welding. Science and Technology of Welding and Joining 2009, 14. https://doi.org/10.1179/136217108X372568
[20] Kumar, U.; Yadav, I.; Kumari, S.; Kumari, K.; Ranjan, N.; Kesharwani, R.K.; Jain, R.; Kumar, S.; Pal, S.; Chakravarty, D.; et al. Defect Identification in Friction Stir Welding Using Discrete Wavelet Analysis. Advances in Engineering Software 2015, 85. https://doi.org/10.1016/j.advengsoft.2015.02.001
[21] Kumari, S.; Jain, R.; Kumar, U.; Yadav, I.; Ranjan, N.; Kumari, K.; Kesharwani, R.K.; Kumar, S.; Pal, S.; Pal, S.K.; et al. Defect Identification in Friction Stir Welding Using Continuous Wavelet Transform. J Intell Manuf 2019, 30. https://doi.org/10.1007/s10845-016-1259-1
[22] Threadgill, P.L.; Leonard, A.J.; Shercliff, H.R.; Withers, P.J. Friction Stir Welding of Aluminium Alloys. International Materials Reviews 2009, 54, 49–93.
[23] Dubourg, L.; Merati, A.; Jahazi, M. Process Optimisation and Mechanical Properties of Friction Stir Lap Welds of 7075-T6 Stringers on 2024-T3 Skin. Mater Des 2010, 31, 3324–3330.
[24] Paniti, I.; Viharos, Z.J.; Harangozó, D.; Najm, S.M. Experimental and Numerical Investigation of Single Point Incremental Forming of Aluminium Alloy Foils. Acta Imeko 2020, 9, 25–31.
[25] Rubino, F.; Esperto, V.; Paulo, R.M.F.; Tucci, F.; Carlone, P. Integrated Manufacturing of AA6082 by Friction Stir Welding and Incremental Forming: Strain Analysis of Deformed Samples. In Proceedings of the Procedia Manufacturing; 2020; Vol. 47, pp. 440–444.
[26] de Alteriis, G.; Caputo, E.; Moriello, R.S. Lo On the Suitability of Redundant Accelerometers for the Implementation of Smart Oscillation Monitoring System: Preliminary Assessment. Acta IMEKO 2023, 12, 1–9. https://doi.org/https://doi.org/10.21014/actaimeko.v12i2.1532
[27] de Alteriis, G.; Silvestri, A.T.; Conte, C.; Bottino, V.; Caputo, E.; Squillace, A.; Accardo, D.; Schiano Lo Moriello, R. Innovative Fusion Strategy for MEMS Redundant-IMU Exploiting Custom 3D Components. Sensors 2023, 23.
[28] Astarita, A.; Tucci, F.; Silvestri, A.T.; Perrella, M.; Boccarusso, L.; Carlone, P. Dissimilar Friction Stir Lap Welding of AA2198 and AA7075 Sheets: Forces, Microstructure and Mechanical Properties. International Journal of Advanced Manufacturing Technology 2021. https://doi.org/10.1007/s00170-021-07816-7
[29] Tucci, F.; Carlone, P.; Silvestri, A.T.; Parmar, H.; Astarita, A. Dissimilar Friction Stir Lap Welding of AA2198-AA6082: Process Analysis and Joint Characterization. CIRP J Manuf Sci Technol 2021, 35, 753–764. https://doi.org/https://doi.org/10.1016/j.cirpj.2021.09.007
[30] Boccarusso, L.; Astarita, A.; Carlone, P.; Scherillo, F.; Rubino, F.; Squillace, A. Dissimilar Friction Stir Lap Welding of AA 6082 – Mg AZ31: Force Analysis and Microstructure Evolution. J Manuf Process 2019, 44, 376–388. https://doi.org/10.1016/j.jmapro.2019.06.022