Effect of micro-plasto-hydrodynamic lubrication on strip surface in steel cold rolling

Effect of micro-plasto-hydrodynamic lubrication on strip surface in steel cold rolling

ELHAJJ Cynthia, LAHOUIJ Imène, LUONG Linh Phuong, MONTMITONNET Pierre

download PDF

Abstract. This study employs numerical calculations based on the micro-plasto-hydrodynamic lubrication (MPHDL) theory to analyze the evolution of oil pits during the stainless-steel cold rolling process. The model is enhanced by incorporating lubricant temperature variations caused by its contact with the heated roll and strip, as well as variations in pit slope. The findings show the significant impact and relevance of considering these additional parameters in assessing the performance of the MPHDL mechanism. Notably, the model demonstrates good agreement with experimental measurements conducted on a Stainless-Steel grade undergoing multiple passes.

Keywords
MPHDL Lubrication, Numerical Modelling, Steel Cold Rolling, Surface Finish

Published online 4/24/2024, 11 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: ELHAJJ Cynthia, LAHOUIJ Imène, LUONG Linh Phuong, MONTMITONNET Pierre, Effect of micro-plasto-hydrodynamic lubrication on strip surface in steel cold rolling, Materials Research Proceedings, Vol. 41, pp 1277-1287, 2024

DOI: https://doi.org/10.21741/9781644903131-142

The article was published as article 142 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M. Laugier, R. Boman and Y. Carretta, Micro-Plasto-Hydrodynamic Lubrication a Fundamental Mechanism in Cold Rolling, Adv. Mater. Res. 966–967 (2014) 228–241. https://doi.org/10.4028/www.scientific.net/AMR.966-967.228
[2] J. Bech, N. Bay and M. Eriksen, A Study of Mechanisms of Liquid Lubrication in Metal Forming, CIRP Ann. 47 (1998) 221–226. https://doi.org/10.1016/S0007-8506(07)62822-4.
[3] H. Kudo, M. Tsubouchi, H. Takada and K. Okamura, An Investigation into Plasto-Hydrodynamic Lubrication with a Cold Sheet Drawing Test, CIRP Ann. 31 (1982) 175–180. https://doi.org/10.1016/S0007-8506(07)63292-2
[4] J. Bech, N. Bay and M. Eriksen, Entrapment and escape of liquid lubricant in metal forming, Wear 232 (1999) 134–139. https://doi.org/10.1016/S0043-1648(99)00136-2
[5] N. Bay, J. I. Bech, J. L. Andreasen and I. Shimizu, Studies on Micro Plasto Hydrodynamic Lubrication in Metal Forming, Metal Forming Science and Practice, Elsevier, 2002, pp. 115–134. https://doi.org/10.1016/B978-008044024-8/50007-2
[6] R. Ahmed and M. P. F. Sutcliffe, An Experimental Investigation of Surface Pit Evolution During Cold-Rolling or Drawing of Stainless Steel Strip, J. Tribol. 123 (2001) 1–7. https://doi.org/10.1115/1.1327580
[7] R. Ahmed and M. P. F. Sutcliffe, Identification of surface features on cold-rolled stainless steel strip, Wear 244 (2000) 60-70. https://doi.org/10.1016/S0043-1648(00)00442-7
[8] M. P. F. Sutcliffe and F. Georgiades, Characterisation of pit geometry in cold-rolled stainless steel strip, Wear 253 (2002) 963–974. https://doi.org/10.1016/S0043-1648(02)00247-8
[9] A. Stephany, H. R. Le and M. P. F. Sutcliffe, An efficient finite element model of surface pit reduction on stainless steel in metal forming processes, J. Mater. Process. Technol. 170 (2005) 310–316. https://doi.org/10.1016/j.jmatprotec.2005.05.008
[10] Y. Carretta, J. Bech, N. Legrand, M. Laugier, J.-P. Ponthot and R. Boman, Numerical modelling of micro-plasto-hydrodynamic lubrication in plane strip drawing, Tribol. Int. 110 (2017) 378–391. https://doi.org/10.1016/j.triboint.2016.10.046
[11] S.-W. Lo and W. R. D. Wilson, A Theoretical Model of Micro-Pool Lubrication in Metal Forming, J. Tribol. 121 (1999) 731–738. https://doi.org/10.1115/1.2834129
[12] M.P.F Sutcliffe, H.R. Le and R. Ahmed, Modeling of Micro-Pit Evolution in Rolling or Strip-Drawing, J. Tribol. 123 (2001) 791-798. https://doi.org/10.1115/1.1352741
[13] W.R.D Wilson, Friction and Lubrication in Sheet Metal Forming, in: Koistinen, D.P., Wang, NM. (eds), Mechanics of Sheet Metal Forming. Springer, Boston, 1978, pp. 157-174. https://doi.org/10.1007/978-1-4613-2880-3_7
[14] D. A. Korzekwa, P. R. Dawson and W. R. D. Wilson, Surface asperity deformation during sheet forming, Int. J. Mech. Sci. 34 (1992) 521–539. https://doi.org/10.1016/0020-7403(92)90028-F.
[15] D. Adeleke, D. Kalumba, L. Nolutshungu, J. Oriokot and A. Martinez, The Influence of Asperities and Surface Roughness on Geomembrane/Geotextile Interface Friction Angle, Int. J. Geosynth. Ground Eng. 7 (2021). https://doi.org/10.1007/s40891-021-00265-y
[16] W. R. D. Wilson and S. Sheu, Real area of contact and boundary friction in metal forming, Int. J. Mech. Sci. 30 (1988) 475–489. https://doi.org/10.1016/0020-7403(88)90002-1
[17] M. P. F. Sutcliffe, Flattening of Random Rough Surfaces in Metal-Forming Processes, J. Tribol. 121 (1999) 433–440. https://doi.org/10.1115/1.2834086
[18] A. Azushima, Lubrication in steel strip rolling in Japan, Tribol. Int. 20 (1987) 316–321. https://doi.org/10.1016/0301-679X(87)90059-4
[19] A. A. Tseng, A Numerical Heat Transfer Analysis of Strip Rolling, J. Heat Transf. 106 (1984) 512–517. https://doi.org/10.1115/1.3246708
[20] R. Ahmed and M. P. F. Sutcliffe, Identification of surface features on cold-rolled stainless steel strip, Wear 244 (2000) 60–70. https://doi.org/10.1016/S0043-1648(00)00442-7