Effect of different oxide layer shares on the upsetting of titanium aluminide specimens

Effect of different oxide layer shares on the upsetting of titanium aluminide specimens


download PDF

Abstract. By ball milling in a low-oxygen atmosphere, it was possible to show that titanium aluminides (TiAl) can be processed into components by pressing and sintering in the same atmosphere. The properties (e.g. hardness and density) that can be realised with established processes such as field-assisted sintering (FAST) or hot isostatic pressing (HIP) were not achieved. Pores in the component are closed by forming processes, which improves the mechanical properties. In this work, powder-metallurgically processed TiAl was hot-formed in a low-oxygen atmosphere. The forging parameters and pre-consolidation were characterised with regard to their effect on the component properties. Force, hardness and porosity measurements as well as metallographic analyses were used to evaluate the process and the resulting specimens. It was found that a pre-consolidation and a higher degree of deformation lead to a lower porosity and a higher hardness.

Powder Metallurgy, Lightweight Materials, Hot Forming

Published online 4/24/2024, 10 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: DÖRING Sebastian, PEDDINGHAUS Julius, BRUNOTTE Kai, BEHRENS Bernd-Arno, Effect of different oxide layer shares on the upsetting of titanium aluminide specimens, Materials Research Proceedings, Vol. 41, pp 958-967, 2024

DOI: https://doi.org/10.21741/9781644903131-105

The article was published as article 105 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] Mphahlele M. R.; Olubambi, P. A.; Olevsky, E.A. Advances in Sintering of Titanium Aluminide: A Review. JOM 2023, 75, 2877–2896. https://doi.org/10.1007/s11837-022-05664-8
[2] B. P. Bewlay, S. Nag, A. Suzuki, M. J. Weimer, TiAl alloys in commercial aircraft engines, 2016. https://doi.org/10.1080/09603409.2016.1183068
[3] Clemens, H.; Mayer, S. Design, Processing, Microstructure, Properties, and Applications of Advanced Intermetallic TiAl Alloys. Adv. Eng. Mater. 2013, 15, 191–215. https://doi.org/10.1002/adem.201200231
[4] Clemens, H.; Mayer, S.; Heilmaier, M. Pulvermetallurgische Herstellung von innovativen Hochtemperaturwerkstoffen. BHM Berg-Und Hüttenmännische Monatshefte 2021, 166, 1–7. https://doi.org/10.1007/s00501-018-0704-1
[5] L. Jiao, Q. Feng, S. He, B. Duan, Z. Dou, C. Li, X. Lu, Direct oxygen removal from titanium aluminide scraps by yttrium reduction. 2021, Nonferrous Metals Society of China 32, pp. 2428-2437. https://doi.org/10.1016/S1003-6326(22)65958-2
[6] Groza, J.R.; Zavaliangos, A. Sintering activation by external electrical field. Mater. Sci. Eng. A 2000, 287, 171–177. https://doi.org/10.1016/S0921-5093(00)00771-1
[7] Kariya, S.; Issariyapat, A.; Bahador, A.; Umeda, J.; Shen, J.; Kondoh, K.: Ductility improvement of high-strength Ti–O material upon heteromicrostructure formation. 2022. https://doi.org/10.1016/j.msea.2022.143041
[8] B.-A. Behrens, K. Brunotte, J. Peddinghaus, J. Ursinus, S. Döring, W. Maus-Friedrichs, R. Gustus, M. Szafarska, Pressing and sintering of titanium aluminide powder after ball milling in silane-doped atmosphere (2023), Journal of Manufacturing and Materials Processing. https://doi.org/10.3390/jmmp7050171
[9] E. Doege, B.-A. Behrens, Handbuch Umformtechnik 2010, Springer-Verlag. https://doi.org/10.1007/978-3-642-04249-2
[10] P. Zhang, S.X. Li, Z.F. Zhang, General relationship between strength and hardness, 2011. https://doi.org/10.1016/j.msea.2011.08.061
[11] G. H. Meier, F. S. Pettit; S. Hu, Oxidation behavior of titanium aluminides. 1993, Journal de Physique, pp. 395-402. https://doi.org/10.1051/jp4:1993941
[12] N. F. Mogale, W. R. Matizamhuka, Spark Plasma Sintering of Titanium Aluminides: A Progress Review on Processing, Structure-Property Relations, Alloy Development and Challenges. 2020, metals. https://doi.org/10.3390/met10081080
[13] L. Wang, Y. Liu, W Zhang, H. Wang, Q. Li, Optimization of pack parameters for hot deformation of TiAl alloys, 2011, Intermetallics 19 (1), S. 68–74. https://doi.org/10.1016/j.intermet.2010.09.011
[14] J. Li, Y. Liu, B. Liu, Y. Wang, X. Liang, Y. He, Microstructure characterization and mechanical behaviors of a hot forged high Nb containing PM-TiAl alloy, 2014, Materials Characterization 95, S. 148–156. https://doi.org/10.1016/j.matchar.2014.06.015
[15] B.-A. Behrens, K. Brunotte, J. Peddinghaus, A. Heymann, Influence of dwell time and pressure on SPS process with titanium aluminides, 2021, metals. https://doi.org/10.3390/met12010083
[16] Q. Bai, J. Lin, J. Jiang, T.A. Dean, J. Zou, G. Tian, A study of direct forging process for powder superalloys, 2014. https://doi.org/10.1016/j.msea.2014.10.039
[17] S.L. Semiatin, V. Seetharaman, V.K. Jain, Microstructure Development during Conventional and Isothermal Hot Forging of a Near-Gamma Titanium Aluminide, 1994, Metallurgical and Materials Transactions A. https://doi.org/10.1007/BF02649227
[18] Schaeffler Technologies GmbH & Co. KG, Schaeffler Technisches Taschenbuch, 2014.
[19] A. Gökce, F. Findik, Mechanical and physical properties of sintered aluminum powders. J. Achievments Mater. Manuf. Eng. 2008, 30, 157–164.
[20] S. Bolz, Eigenschaftsoptimierung und Prozessfensterbestimmung der γ-(TiAl)-Schmiedelegierung TNB-V4, 2015
[21] V. Ventzke, Reibschweißen der γ-TiAl-Feingusslegierung Ti-47Al-3.5(Mn+Cr+Nb)-0.8(B+Si) und der Titanlegierung Ti6Al4V – Prozessentwicklung und Charakterisierung der mikrostrukturellen und mechanischen Eigenschaften, 2014.
[22] M. J. Blackburn, The Science, Technology and Applications of Titanium Alloys, Plenum Press, New York, 1970, p. 633. https://doi.org/10.1016/C2013-0-01574-5