Mechanical and Thermal Properties of Goulmima’s Earth Bricks

Mechanical and Thermal Properties of Goulmima’s Earth Bricks


download PDF

Abstract. Earthen constructions are prevalent in the Drâa-Tafilalet region of Morocco, yet there is a notable absence of comprehensive studies on the mud bricks used in these structures. This research endeavors to characterize a quarry utilized by Goulmima residents for mud brick production. Various techniques, including physico-chemical analysis (XRD, IR, FX, etc.), microscopic examination (SEM), and geotechnical assessments (Atterberg limits, grain size, etc.), were employed to analyze samples from the site. The bricks, formed at different firing temperatures, were blended with naturally crushed date palm seeds. The chemical composition, firing temperatures, and organic matter percentage directly influence mechanical properties and thermal conductivity. Material compressive strength exhibited a proportional increase with rising firing temperatures, peaking at 850°C. Conversely, elevating the percentage of crushed palm seed had an adverse impact on mechanical strength.

Fired Clay Bricks, Date Palm Seed, Compressive Strength, Shrinkage

Published online 3/15/2024, 9 pages
Copyright © 2024 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: M. LECHHEB, M. CHRACHMY, M. BEN BAAZIZ, G. EL BOUKILI, H. OUALLAL, M. AZDOUZ, A. LAHMAR, A. BENAZZOUK, M. AZROUR, Mechanical and Thermal Properties of Goulmima’s Earth Bricks, Materials Research Proceedings, Vol. 40, pp 198-206, 2024


The article was published as article 21 of the book Mediterranean Architectural Heritage

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] M. Boumhaout, L. Boukhattem, H. Hamdi, B. Benhamou, F. Ait Nouh, Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date palm fibers mesh, Constr Build Mater. 135 (2017) 241–250.
[2] S. Muguda, G. Lucas, P.N. Hughes, C.E. Augarde, C. Perlot, A.W. Bruno, D. Gallipoli, Durability and hygroscopic behaviour of biopolymer stabilised earthen construction materials, (2020).
[3] The properties of earth as a building material, in: Building with Earth, Birkhäuser Basel, 2006: pp. 19–35.
[4] T. Morton, Earth masonry: Design and construction guidelines, IHS BRE Press, 2008.
[5] N. Jannat, A. Hussien, B. Abdullah, A. Cotgrave, Application of agro and non-agro waste materials for unfired earth blocks construction: A review, Constr Build Mater. 254 (2020) 119346.
[6] L. Pérez-Lombard, J. Ortiz, C. Pout, A review on buildings energy consumption information, Energy Build. 40 (2008) 394–398.
[7] P. Muñoz Velasco, M.P. Morales Ortíz, M.A. Mendívil Giró, L. Muñoz Velasco, Fired clay bricks manufactured by adding wastes as sustainable construction material – A review, Constr Build Mater. 63 (2014) 97–107.
[8] G.H.M.J.S. De Silva, B.V.A. Perera, Effect of waste rice husk ash (RHA) on structural, thermal and acoustic properties of fired clay bricks, Journal of Building Engineering. 18 (2018) 252–259.
[9] Standard – Specification for masonry units – Part 1: Clay masonry units SS-EN 771-1:2011 – Swedish Institute for Standards, SIS, (2011).
[10] D. Eliche-Quesada, M.A. Felipe-Sesé, J.A. López-Pérez, A. Infantes-Molina, Characterization and evaluation of rice husk ash and wood ash in sustainable clay matrix bricks, Ceram Int. 43 (2017) 463–475.
[11] Norme NF P94-056: Sols : reconnaissance et essais – Analyse granulométrique – Méthode par tamisage à sec après lavage., (1996).
[12] Norme NF P94-057: Sols : reconnaissance et essais – Analyse granulométrique des sols – Méthode par sédimentation, (1992).
[13] G. El Boukili, M. Lechheb, M. Ouakarrouch, A. Dekayir, F. Kifani-Sahban, A. Khaldoun, Mineralogical, physico-chemical and technological characterization of clay from Bensmim (Morocco): Suitability for building application, Constr Build Mater. 280 (2021) 122300.
[14] M. Lechheb, A. Harrou, G. El Boukili, M. Azrour, A. Lahmar, M. El Ouahabi, E.K. Gharibi, Physico-chemical, mineralogical, and technological characterization of stabilized clay bricks for restoration of Kasbah Ait Benhadou- Ouarzazate (south-east of Morocco), Mater Today Proc. 58 (2022).
[15] M. Hajjaji, S. Kacim, M. Boulmane, Mineralogy and firing characteristics of a clay from the valley of Ourika (Morocco), Appl Clay Sci. 21 (2002) 203–212.
[16] H. Zouaoui, J. Bouaziz, Performance enhancement of the ceramic products by adding the sand, chamotte and waste brick to a porous clay from Bir Mcherga (Tunisia), Appl Clay Sci. 143 (2017) 430–436.
[17] K.C.P. Faria, R.F. Gurgel, J.N.F. Holanda, Recycling of sugarcane bagasse ash waste in the production of clay bricks, (2012).
[18] D. Khoudja, B. Taallah, O. Izemmouren, S. Aggoun, O. Herihiri, A. Guettala, Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste h i g h l i g h t s, (2020).
[19] M.W. Tjaronge, M.A. Caronge, Physico-mechanical and thermal performances of eco-friendly fired clay bricks incorporating palm oil fuel ash, Materialia (Oxf). 17 (2021) 101130.
[20] A. Srisuwan, N. Phonphuak, Physical property and compressive strength of fired clay bricks incorporated with paper waste, Journal of Metals, Materials and Minerals. 30 (2020) 103–108.
[21] M. Sutcu, E. Erdogmus, O. Gencel, A. Gholampour, E. Atan, T. Ozbakkaloglu, Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production, (2019).
[22] J.A. De La Casa, E. Castro, Recycling of washed olive pomace ash for fired clay brick manufacturing, Constr Build Mater. 61 (2014) 320–326.
[23] J. Munir, M. Lachheb, N. Youssef, Z. Younsi, A Comprehensive Review of the Improvement of the Thermal and Mechanical Properties of Unfired Clay Bricks by Incorporating Waste Materials, Buildings 2023, Vol. 13, Page 2314. 13 (2023) 2314.
[24] O.J. Oyedepo, L.M. Olanitori, S.P. Akande, Performance of coconut shell ash and palm kernel shell ash as partial replacement for cement in concrete, Journal of Building Materials and Structures. 2 (2015) 18–24.
[25] M.I. Carretero, M. Dondi, B. Fabbri, M. Raimondo, The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays, (n.d.).
[26] G. El Boukili, M. Ouakarrouch, M. Lechheb, F. Kifani-Sahban, A. Khaldoune, Recycling of Olive Pomace Bottom Ash (by-Product of the Clay Brick Industry) for Manufacturing Sustainable Fired Clay Bricks, Silicon. 14 (2022) 4849–4863.
[27] L. Pérez-Villarejo, D. Eliche-Quesada, J. Martín-Pascual, M. Martín-Morales, M. Zamorano, Comparative study of the use of different biomass from olive grove in the manufacture of sustainable ceramic lightweight bricks, Constr Build Mater. 231 (2020) 117103.
[28] A. Bhatt, S. Priyadarshini, A. Acharath Mohanakrishnan, A. Abri, M. Sattler, S. Techapaphawit, Physical, chemical, and geotechnical properties of coal fly ash: A global review, Case Studies in Construction Materials. 11 (2019) e00263.
[29] EN 771-1:2011+A1:2015 – Specification for masonry units – Part 1: Clay masonry units, (n.d.).
[30] F. Pr, Experimental Investigation of the Effect of Fired Clay Brick on Partial Replacement of Rice Husk Ash (RHA) with Brick Clay, 2 (2017)
[31] Doat. P, Hays. A, Houben. H, Matuk. S, Vitoux. F, Construire En Terre, Ed Alte et Par, 1979.
[32] J. Morel, C. Kouakou, Performances mécaniques de l’adobe, 3èmes Échanges Transdisciplinaires Sur Les Constructions En Terre Crue. Table – Ronde de Toulouse. (2009) 17–26.
[33] M. Olivier, A.M.-Bull.L.Lab.P. et Chaussées, Le matériau terre: Essai de compactage statique pour la fabrication de briques de terre compressées, Bull. Liaison Lab. Ponts et Chaussées. (1986).