Other New Thermoelectric Compounds


Other New Thermoelectric Compounds

Uzma Hira, Adnan Khadim Bhutta and Asifa Safdar

Thermoelectric (TE) compounds have made contributions to solving the energy crisis problem of the globe by providing various sustainable energy solutions. TE materials can transform waste heat of thermal power plants, automobiles, incinerators and domestic cooking stoves into electricity production. TE gadgets consist of n & p-type semiconductors in which temperature changes on the two different sites cause the flow of charges i.e., electrons and holes which produce voltage difference through Seebeck effect. Conventional metal alloys, half-Heuslar, Skutterudite compounds and metal oxides (MO) are considered important TE compounds owing to their high value of electrical conductivity, thermal stability, tunable electron transport, and phonon properties. But due to their rigidity and expensiveness, these are being replaced by polymeric compounds, which show excellent thermoelectric properties and are less expensive as compared to corresponding inorganic materials. In this chapter, the thermal electric properties of various promising n and p-type polymeric compounds are discussed in detail. Moreover, emerging TE applications in different fields of life are also discussed.

Thermoelectric Compounds, p-type and n-type Semiconductors, Seebeck Effect, Half-Heuslar and Skutterudite Compounds

Published online 2/10/2024, 26 pages

Citation: Uzma Hira, Adnan Khadim Bhutta and Asifa Safdar, Other New Thermoelectric Compounds, Materials Research Foundations, Vol. 162, pp 118-143, 2024

DOI: https://doi.org/10.21741/9781644903018-7

Part of the book on Thermoelectric Polymers

[1] T. Cao, X.-L. Shi, J. Zou, Z.-G. Chen, Advances in conducting polymer-based thermoelectric materials and devices, Microstructures. 1 (2021) 1-33. https://doi.org/10.20517/microstructures.2021.06
[2] I. Petsagkourakis, E. Pavlopoulou, E. Cloutet, Y.F. Chen, X. Liu, M. Fahlman, M. Berggren, X. Crispin, S. Dilhaire, G. Fleury, G. Hadziioannou, Correlating the Seebeck coefficient of thermoelectric polymer thin films to their charge transport mechanism, Org. Electron. 52 (2018) 335-341. https://doi.org/10.1016/j.orgel.2017.11.018
[3] B.T. McGrail, A. Sehirlioglu, E. Pentzer, Polymer composites for thermoelectric applications, Angew. Chemie – Int. Ed. 54 (2015) 1710-1723. https://doi.org/10.1002/anie.201408431
[4] K. Yusupov, A. Zakhidov, S. You, S. Stumpf, P.M. Martinez, A. Ishteev, A. Vomiero, V. Khovaylo, U. Schubert, Influence of oriented CNT forest on thermoelectric properties of polymer-based materials, J. Alloys Compd. 741 (2018) 392-397. https://doi.org/10.1016/j.jallcom.2018.01.010
[5] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M.S. Dresselhaus, G. Chen, Z. Ren, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys, Science. 320 (2008) 634-638. https://doi.org/10.1126/science.1156446
[6] D. Wright, Thermoelectric properties of bismuth telluride and its alloys, Nature. 181 (1958) 834-834. https://doi.org/10.1038/181834a0
[7] L. Yang, J.S. Wu, L.T. Zhang, Microstructure evolvements of a rare-earth filled skutterudite compound during annealing and spark plasma sintering, Mater. Des. 25 (2004) 97-102. https://doi.org/10.1016/j.matdes.2003.10.005
[8] B. Gahtori, S. Bathula, K. Tyagi, M. Jayasimhadri, A.K. Srivastava, S. Singh, R.C. Budhani, A. Dhar, Giant enhancement in thermoelectric performance of copper selenide by incorporation of different nanoscale dimensional defect features, Nano Energy. 13 (2015) 36-46. https://doi.org/10.1016/j.nanoen.2015.02.008
[9] T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao, High efficiency half-heusler thermoelectric materials for energy harvesting, Adv. Energy Mater. 5 (2015) 1-13. https://doi.org/10.1002/aenm.201500588
[10] U. Hira, J.W.G. Bos, A. Missyul, F. Fauth, N. Pryds, F. Sher, Ba2- xBixCoRuO6 (0.0 ≤ x ≤ 0.6) hexagonal double-perovskite-type oxides as promising p-type thermoelectric materials, Inorg. Chem. 60 (2021) 17824-17836. https://doi.org/10.1021/acs.inorgchem.1c02442
[11] D. Beretta, N. Neophytou, J.M. Hodges, M.G. Kanatzidis, D. Narducci, M.M. Gonzalez, M. Beekman, B. Balke, G. Cerretti, W. Tremel, A. Zevalkink, A.I. Hofmann, C. Müller, B. Dörling, M.C. Quiles, M. Caironi, Thermoelectrics: From history, a window to the future, Mater. Sci. Eng. Reports. 138 (2019) 210-255. https://doi.org/10.1016/j.mser.2018.09.001
[12] E.M. Thomas, B.C. Popere, H. Fang, M.L. Chabinyc, R.A. Segalman, Role of disorder induced by doping on the thermoelectric properties of semiconducting polymers, Chem. Mater. 30 (2018) 2965-2972. https://doi.org/10.1021/acs.chemmater.8b00394
[13] A.C. Hinckley, S.C. Andrews, M.T. Dunham, A. Sood, M.T. Barako, S. Schneider, M.F. Toney, K.E. Goodson, Z. Bao, Achieving high thermoelectric performance and metallic transport in solvent-sheared PEDOT:PSS, Adv. Electron. Mater. 7 (2021) 1-9. https://doi.org/10.1002/aelm.202001190
[14] W. Zhao, J. Ding, Y. Zou, C.A. Di, D. Zhu, Chemical doping of organic semiconductors for thermoelectric applications, Chem. Soc. Rev. 49 (2020) 7210-7228. https://doi.org/10.1039/D0CS00204F
[15] Y. Yamashita, J. Tsurumi, M. Ohno, R. Fujimoto, S. Kumagai, T. Kurosawa, T. Okamoto, J. Takeya, S. Watanabe, Efficient molecular doping of polymeric semiconductors driven by anion exchange, Nature. 572 (2019) 634-638. https://doi.org/10.1038/s41586-019-1504-9
[16] M. Audenaert, G. Gusman, R. Deltour, Electrical conductivity of I2-doped polyacetylene, Phys. Rev. B. 24 (1981) 7380-7382. https://doi.org/10.1103/PhysRevB.24.7380
[17] © 1987 Nature Publishing Group, (1987)
[18] H. Naarmann, N. Theophilou, New process for the production of metal-like, stable polyacetylene, Synth. Met. 22 (1987) 1-8. https://doi.org/10.1016/0379-6779(87)90564-9
[19] H. Kaneko, T. Ishiguro, A. Takahashi, J. Tsukamoto, Magnetoresistance and thermoelectric power studies of metal-nonmetal transition in iodine-doped polyacetylene, Synth. Met. 57 (1993) 4900-4905. https://doi.org/10.1016/0379-6779(93)90836-L
[20] Y.W. Park, C.O. Yoon, B.C. Na, H. Shirakawa, K. Akagi, Metallic properties of transition metal halides doped polyacetylene: The soliton liquid state, Synth. Met. 41 (1991) 27-32. https://doi.org/10.1016/0379-6779(91)90989-I
[21] H. Gerhard, J. Friedrich, Poly(alkylenedioxythiophene)s – new, very stable conducting polymers, Adv. Mater. 4 (1992) 116-118. https://doi.org/10.1002/adma.19920040213
[22] F. Jonas, J.T. Morrison, 3,4-Polyethylenedioxythiophene (PEDT): Conductive coatings technical applications and properties, Synth. Met. 85 (1997) 1397-1398. https://doi.org/10.1016/S0379-6779(97)80290-1
[23] C. Ph, Significant different conductivities of the two grades of poly(3,4- ethylenedioxythiophene):poly(styrenesulfonate), Clevios P and Clevios PH1000, Arising from Different Molecular Weights, (2012). https://doi.org/10.1021/am300881m
[24] C.M. Palumbiny, J. Schlipf, A. Hexemer, C. Wang, P.M. Buschbaum, The morphological power of soap: How surfactants lower the sheet resistance of PEDOT:PSS by strong impact on inner film structure and molecular interface orientation, Adv. Electron. Mater. 2 (2016) 1-9. https://doi.org/10.1002/aelm.201500377
[25] S.R.S. Kumar, N. Kurra, H.N. Alshareef, Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films, J. Mater. Chem. C. 4 (2015) 215-221. https://doi.org/10.1039/C5TC03145A
[26] Q. Wei, M. Mukaida, Y. Naitoh, T. Ishida, Morphological change and mobility enhancement in PEDOT:PSS by adding co-solvents, Adv. Mater. 25 (2013) 2831-2836. https://doi.org/10.1002/adma.201205158
[27] N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng, Y.R. Jo, B.J. Kim, K. Lee, Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization, Adv. Mater. 26 (2014) 2268-2272. https://doi.org/10.1002/adma.201304611
[28] H. Park, S.H. Lee, F.S. Kim, H.H. Choi, I.W. Cheong, J.H. Kim, Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process, J. Mater. Chem. A. 2 (2014) 6532-6539. https://doi.org/10.1039/C3TA14960A
[29] O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene), Nat. Mater. 10 (2011) 429-433. https://doi.org/10.1038/nmat3012
[30] X. Hu, G. Chen, X. Wang, H. Wang, Tuning thermoelectric performance by nanostructure evolution of a conducting polymer, J. Mater. Chem. A. 3 (2015) 20896-20902. https://doi.org/10.1039/C5TA07381B
[31] K. Arlauskas, M. Viliu, K. Genevic, G. Jus, H. Stubb, Charge transport in π-conjugated polymers, Phys. Rev. B. 62 (2000) 235-238.
[32] C. Yu, K. Choi, L. Yin, J.C. Grunlan, Light-weight flexible carbon nanotube based organic composites with large thermoelectric power factors, ACS Nano. 5 (2011) 7885-7892. https://doi.org/10.1021/nn202868a
[33] K. Choi, C. Yu, Highly doped carbon nanotubes with gold nanoparticles and their influence on electrical conductivity and thermopower of nanocomposites, PLOS One. 7 (2012). https://doi.org/10.1371/journal.pone.0044977
[34] D. Kim, Y. Kim, K. Choi, J. Grunlan, C. Yu, Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate), ACS Nano. 4 (2010) 513-523. https://doi.org/10.1021/nn9013577
[35] G.P. Moriarty, S. De, P.J. King, U. Khan, M. Via, J.A. King, J.N. Coleman, J.C. Grunlan, Thermoelectric behavior of organic thin film nanocomposites, J. Polym. Sci. Part B Polym. Phys. 51 (2013) 119-123. https://doi.org/10.1002/polb.23186
[36] I. Imae, R. Akazawa, Y. Harima, Seebeck coefficients of regioregular poly(3-hexylthiophene) correlated with doping levels, Phys. Chem. Chem. Phys. 20 (2018) 738-741. https://doi.org/10.1039/C7CP07114K
[37] Y. Hu, H. Shi, H. Song, C. Liu, J. Xu, L. Zhang, Q. Jiang, Effects of a proton scavenger on the thermoelectric performance of free-standing polythiophene and its derivative films, Synth. Met. 181 (2013) 23-26. https://doi.org/10.1016/j.synthmet.2013.08.006
[38] L.A. Kehrer, S. Winter, R. Fischer, C. Melzer, H.V. Seggern, Temporal and thermal properties of optically induced instabilities in P3HT field-effect transistors, Synth. Met. 161 (2012) 2558-2561. https://doi.org/10.1016/j.synthmet.2011.08.007
[39] Z. Bao, A. Dodabalapur, A.J. Lovinger, Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility, Appl. Phys. Lett. 69 (1996) 4108-4110. https://doi.org/10.1063/1.117834
[40] Y. Du, J. Chen, X. Liu, C. Lu, J. Xu, B. Paul, P. Eklund, Flexible n-type tungsten carbide/polylactic acid thermoelectric composites fabricated by additive manufacturing, Coatings. 8 (2018). https://doi.org/10.3390/coatings8010025
[41] H. Sirringhaus, N. Tessler, R.H. Friend, Integrated optoelectronic devices based on conjugated polymers, Science. 280 (1998) 1741-1744. https://doi.org/10.1126/science.280.5370.1741
[42] R.J. Kline, M.D. McGehee, E.N. Kadnikova, J. Liu, J.M.J. Fréchet, M.F. Toney, Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight, Macromolecules. 38 (2005) 3312-3319. https://doi.org/10.1021/ma047415f
[43] Y. Xuan, X. Liu, S. Desbief, P. Leclère, M. Fahlman, R. Lazzaroni, M. Berggren, J. Cornil, D. Emin, X. Crispin, Thermoelectric properties of conducting polymers: The case of poly(3-hexylthiophene), Phys. Rev. B – Condens. Matter Mater. Phys. 82 (2010) 1-9. https://doi.org/10.1103/PhysRevB.82.115454
[44] Q. Zhang, Y. Sun, W. Xu, D. Zhu, Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions, Energy Environ. Sci. 5 (2012) 9639-9644. https://doi.org/10.1039/c2ee23006b
[45] H. Méndez, G. Heimel, S. Winkler, J. Frisch, A. Opitz, K. Sauer, B. Wegner, M. Oehzelt, C. Röthel, S. Duhm, D. Többens, N. Koch, I. Salzmann, Charge-transfer crystallites as molecular electrical dopants, Nat. Commun. 6 (2015). https://doi.org/10.1038/ncomms9560
[46] C. Wang, D.T. Duong, K. Vandewal, J. Rivnay, A. Salleo, Optical measurement of doping efficiency in poly(3-hexylthiophene) solutions and thin films, Phys. Rev. B – Condens. Matter Mater. Phys. 91 (2015) 1-7. https://doi.org/10.1103/PhysRevB.91.085205
[47] D.T. Duong, C. Wang, E. Antono, M.F. Toney, A. Salleo, The chemical and structural origin of efficient p-type doping in P3HT, Org. Electron. 14 (2013) 1330-1336. https://doi.org/10.1016/j.orgel.2013.02.028
[48] G. Zuo, Z. Li, O. Andersson, H. Abdalla, E. Wang, M. Kemerink, Molecular doping and trap filling in organic semiconductor host-guest systems, J. Phys. Chem. C. 121 (2017) 7767-7775. https://doi.org/10.1021/acs.jpcc.7b01758
[49] M.T. Fontana, D.A. Stanfield, D.T. Scholes, K.J. Winchell, S.H. Tolbert, B.J. Schwartz, Evaporation vs solution sequential doping of conjugated polymers: F4TCNQ doping of micrometer-thick P3HT films for thermoelectrics, J. Phys. Chem. C. 123 (2019) 22711-22724. https://doi.org/10.1021/acs.jpcc.9b05069
[50] E. Lim, K.A. Peterson, G.M. Su, M.L. Chabinyc, Thermoelectric Properties of poly(3-hexylthiophene) (P3HT) doped with 2,3,5,6-Tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) by vapor-phase infiltration, Chem. Mater. 30 (2018) 998-1010. https://doi.org/10.1021/acs.chemmater.7b04849
[51] C. Bounioux, P.D. Chao, M.C. Quiles, M.S.M. González, A.R. Goñi, R.Y. Rozen, C. Müller, Thermoelectric composites of poly(3-hexylthiophene) and carbon nanotubes with a large power factor, Energy Environ. Sci. 6 (2013) 918-925. https://doi.org/10.1039/c2ee23406h
[52] W. Li, Z. Zhou, W. Zhou, H. Li, X. Zhao, G. Wang, G. Sun, Q. Xin, Preparation and characterization of Pt/C cathode catalysts for direct methanol fuel cells effect of different preparation and treatment methods, Chinese J. Catal. 24 (2003) 465-470.
[53] L. Wang, X. Jia, D. Wang, G. Zhu, J. Li, Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites, Synth. Met. 181 (2013) 79-85. https://doi.org/10.1016/j.synthmet.2013.08.011
[54] J.L. Banal, J. Subbiah, H. Graham, J.K. Lee, K.P. Ghiggino, W.W.H. Wong, Electron deficient conjugated polymers based on benzotriazole, Polym. Chem. 4 (2013) 1077-1083. https://doi.org/10.1039/C2PY20850D
[55] R. Schmidt, J.H. Oh, Y. Sen Sun, M. Deppisch, A.M. Krause, K. Radacki, H. Braunschweig, M. Könemann, P. Erk, Z. Bao, F. Würthner, High-performance air-stable n-channel organic thin film transistors based on halogenated perylene bisimide semiconductors, J. Am. Chem. Soc. 131 (2009) 6215-6228. https://doi.org/10.1021/ja901077a
[56] Y. Fukutomi, M. Nakano, J.Y. Hu, I. Osaka, K. Takimiya, Naphthodithiophenediimide (NDTI): Synthesis, structure, and applications, J. Am. Chem. Soc. 135 (2013) 11445-11448. https://doi.org/10.1021/ja404753r
[57] H. Park, S.H. Lee, F.S. Kim, H.H. Choi, I.W. Cheong, J.H. Kim, Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process, J. Mater. Chem. A. 2 (2014) 6532-6539. https://doi.org/10.1039/C3TA14960A
[58] M. Nakano, I. Osaka, K. Takimiya, Naphthodithiophene diimide (NDTI)-based semiconducting copolymers: From ambipolar to unipolar N-type polymers, Macromolecules. 48 (2015) 576-584. https://doi.org/10.1021/ma502306f
[59] F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors, J. Mater. Chem. C. 3 (2015) 10715-10722. https://doi.org/10.1039/C5TC02043C
[60] D. Moses, J. Chen, A. Denenstein, M. Kaveh, T.C. Chung, A.J. Heeger, A.G. MacDiarmid, Y.W. Park, Inter-soliton electron hopping transport in trans-(CH)x, Solid State Commun. 40 (1981) 1007-1010. https://doi.org/10.1016/0038-1098(81)90055-7
[61] T. Lei, J.H. Dou, X.Y. Cao, J.Y. Wang, J. Pei, Electron-deficient poly(p-phenylene vinylene) provides electron mobility over 1 cm2 V-1 s-1 under ambient conditions, J. Am. Chem. Soc. 135 (2013) 12168-12171. https://doi.org/10.1021/ja403624a
[62] X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C.A. Di, Y. Yi, Y. Sun, W. Xu, D. Zhu, A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour, Nat. Commun. 6 (2015) 6-13. https://doi.org/10.1038/ncomms8408
[63] W. Ma, K. Shi, Y. Wu, Z.Y. Lu, H.Y. Liu, J.Y. Wang, J. Pei, Enhanced molecular packing of a conjugated polymer with high organic thermoelectric power factor, ACS Appl. Mater. Interfaces. 8 (2016) 24737-24743. https://doi.org/10.1021/acsami.6b06899
[64] Z. Chen, Y. Zheng, H. Yan, A. Facchetti, Naphthalenedicarboximide- vs perylenedicarboximide-based copolymers, synthesis and semiconducting properties in bottom-gate N-channel organic transistors, J. Am. Chem. Soc. 131 (2009) 8-9. https://doi.org/10.1021/ja805407g
[65] Y. Sun, P. Sheng, C. Di, F. Jiao, W. Xu, D. Qiu, D. Zhu, Organic thermoelectric materials and devices based on p- and n-type poly (metal 1,1,2,2-ethene tetrathionate), Adv. Mater. 24 (2012) 932-937. https://doi.org/10.1002/adma.201104305
[66] Y. Wang, M. Nakano, T. Michinobu, Y. Kiyota, T. Mori, K. Takimiya, Naphthodithiophenediimide-Benzobisthiadiazole-based polymers: Versatile n-type materials for field-effect transistors and thermoelectric devices, Macromolecules. 50 (2017) 857-864. https://doi.org/10.1021/acs.macromol.6b02313
[67] J. Chen, J. Zhang, Y. Zou, W. Xu, D. Zhu, PPN (poly-: Peri-naphthalene) film as a narrow-bandgap organic thermoelectric material, J. Mater. Chem. A. 5 (2017) 9891-9896. https://doi.org/10.1039/C7TA02431B
[68] J.R. Reynolds, C.P. Lillya, J.C.W. Chien, Intrinsically electrically conducting poly(metal tetrathiooxalates), Macromolecules. 20 (1987) 1184-1191. https://doi.org/10.1021/ma00172a003
[69] J.R. Reynolds, C.A. Jolly, S. Krichene, P. Cassoux, C. Faulmann, Poly (metal tetrathiooxalates): A structural and charge-transport study, Synth. Met. 31 (1989) 109-126. https://doi.org/10.1016/0379-6779(89)90631-0
[70] K. Oshima, Y. Shiraishi, N. Toshima, Novel nanodispersed polymer complex, poly(nickel 1,1,2,2-ethene tetrathionate): Preparation and hybridization for n-type of organic thermoelectric materials, Chem. Lett. 44 (2015) 1185-1187. https://doi.org/10.1246/cl.150328
[71] Y. Sun, J. Zhang, L. Liu, Y. Qin, Y. Sun, W. Xu, D. Zhu, Optimization of the thermoelectric properties of poly(nickel-ethylene tetra thiolate) synthesized via potentiostatic deposition, Sci. China Chem. 59 (2016) 1323-1329. https://doi.org/10.1007/s11426-016-0175-9
[72] D. de C. C. Faulmann, J. Chahine, K. Jacob, Y. Coppel, L. Valade, Nickel ethylene tetrathiolate polymers as nanoparticles: a new synthesis for future applications?, J. Nanopart. Res. 15 (2013) 1586. https://doi.org/10.1007/s11051-013-1586-5
[73] C. Di L. Liu, Y. Sun, W. Li, J. Zhang, X. Huang, Z. Chen, Y. Sun, M.C.F. 2017. W. Xu, D. Zhu, No Title, (n.d.).
[74] X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C.A. Di, Y. Yi, Y. Sun, W. Xu, D. Zhu, A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour, Nat. Commun. 6 (2015) 6-13. https://doi.org/10.1038/ncomms8408
[75] A.K. Menon, S.K. Yee, Design of a polymer thermoelectric generator using radial architecture, J. Appl. Phys. 119 (2016). https://doi.org/10.1063/1.4941101
[76] M. Mukaida, K. Kirihara, Q. Wei, Enhanced power output in polymer thermoelectric devices through thermal and electrical impedance matching, ACS Appl. Energy Mater. 2 (2019) 6973-6978. https://doi.org/10.1021/acsaem.9b01342
[77] A. Malti, J. Edberg, H. Granberg, Z.U. Khan, J.W. Andreasen, X. Liu, D. Zhao, H. Zhang, Y. Yao, J.W. Brill, I. Engquist, M. Fahlman, L. Wågberg, X. Crispin, M. Berggren, An organic mixed ion-electron conductor for power electronics, Adv. Sci. 3 (2015) 1-9. https://doi.org/10.1002/advs.201500305
[78] Z.U. Khan, J. Edberg, M.M. Hamedi, R. Gabrielsson, H. Granberg, L. Wågberg, I. Engquist, M. Berggren, X. Crispin, Thermoelectric polymers and their elastic aerogels, Adv. Mater. 28 (2016) 4556-4562. https://doi.org/10.1002/adma.201505364
[79] S. Han, N.U.H. Alvi, L. Granlöf, H. Granberg, M. Berggren, S. Fabiano, X. Crispin, A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels, Adv. Sci. 6 (2019). https://doi.org/10.1002/advs.201802128
[80] M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A.M. Egbe, M.C. Miron, Z. Major, M.C. Scharber, T. Sekitani, T. Someya, S. Bauer, N.S. Sariciftci, Ultrathin, highly flexible and stretchable PLEDs, Nat. Photonics. 7 (2013) 811-816. https://doi.org/10.1038/nphoton.2013.188
[81] Y. Zhao, B. Zhang, B. Yao, Y. Qiu, Z. Peng, Y. Zhang, Y. Alsaid, I. Frenkel, K. Youssef, Q. Pei, X. He, Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors, Matter. 3 (2020) 1196-1210. https://doi.org/10.1016/j.matt.2020.08.024
[82] X. Fan, W. Nie, H. Tsai, N. Wang, H. Huang, Y. Cheng, R. Wen, L. Ma, F. Yan, Y. Xia, PEDOT:PSS for flexible and stretchable electronics: Modifications, strategies, and applications, Adv. Sci. 6 (2019). https://doi.org/10.1002/advs.201900813
[83] S. Savagatrup, E. Chan, S.M.R. Garcia, A.D. Printz, A. V. Zaretski, T.F. O’Connor, D. Rodriquez, E. Valle, D.J. Lipomi, Plasticization of PEDOT:PSS by common additives for mechanically robust organic solar cells and wearable sensors, Adv. Funct. Mater. 25 (2015) 427-436. https://doi.org/10.1002/adfm.201401758
[84] P. Li, D. Du, L. Guo, Y. Guo, J. Ouyang, Stretchable and conductive polymer films for high-performance electromagnetic interference shielding, J. Mater. Chem. C. 4 (2016) 6525-6532. https://doi.org/10.1039/C6TC01619G
[85] http://refhub.elsevier.com/S0079-6700(22)00046-6/sbref0257.
[86] M. He, Y.J. Lin, C.M. Chiu, W. Yang, B. Zhang, D. Yun, Y. Xie, Z.H. Lin, A flexible photo-thermoelectric nanogenerator based on MoS2/PU photothermal layer for infrared light harvesting, Nano Energy. 49 (2018) 588-595. https://doi.org/10.1016/j.nanoen.2018.04.072
[87] J.P. Jurado, B. Dörling, O.Z. Arteaga, A. Roig, A. Mihi, M.C. Quiles, Solar harvesting: A unique opportunity for organic thermoelectrics?, Adv. Energy Mater. 9 (2019). https://doi.org/10.1002/aenm.201902385
[88] J.P. Jurado, B. Dörling, O.Z. Arteaga, A.R. Goñi, M.C. Quiles, Comparing different geometries for photovoltaic-thermoelectric hybrid devices based on organics, J. Mater. Chem. C. 9 (2021) 2123-2132. https://doi.org/10.1039/D0TC05067A
[89] D.A. Fotouh, B. Dörling, O.Z. Arteaga, X.R. Martínez, A. Gómez, J.S. Reparaz, A. Laromaine, A. Roig, M.C. Quiles, Farming thermoelectric paper, Energy Environ. Sci. 12 (2019) 716-726. https://doi.org/10.1039/C8EE03112F