Thermoelectric Conversion Efficiency and Figure of Merit


Thermoelectric Conversion Efficiency and Figure of Merit

Bhavya Padha, Sonali Verma, Sandeep Arya

Thermoelectric (TE) materials are useful in renewable energy applications because they can transform waste heat into electricity. To accomplish large-scale thermoelectric applications, materials must have high thermoelectric conversion efficiency, be inexpensive, and operate within a specific temperature range. The high and low temperatures at the junction, as well as a parameter called the figure of merit, are related to the coefficient of performance (COP) of a thermoelectric heat pump and efficiency of a thermoelectric generator. By enhancing electrical behavior and lowering thermal conductivity, a high dimensionless figure of merit (z) value can be achieved.

Thermoelectric Materials, Thermoelectric Generator, Thermoelectric Conversion Efficiency, Figure of Merit, Seebeck Coefficient

Published online 2/10/2024, 19 pages

Citation: Bhavya Padha, Sonali Verma, Sandeep Arya, Thermoelectric Conversion Efficiency and Figure of Merit, Materials Research Foundations, Vol. 162, pp 99-117, 2024


Part of the book on Thermoelectric Polymers

[1] T.W. Lan, K.H. Su, C.C. Chang, C.L. Chen, M.N. Ou, D.Z. Wu, P.M. Wu, C.Y. Su, M.K. Wu, Y.Y. Chen, Enhancing the figure of merit in thermoelectric materials by adding silicate aerogel, Mater. Today Phys. 13 (2020) 100215.
[2] E. Altenkirch, Uber den Nutzeffekt der Thermosaulen, Phys. Z. 10 (1909) 560-568.
[3] A.F. Ioffe, L.S. Stil’Bans, E.K. Iordanishvili, T.S. Stavitskaya, A. Gelbtuch, G. Vineyard, Semiconductor thermoelements and thermoelectric cooling, Phys. Today. 12 (1959) 42.
[4] S.W. Angrist, Direct Energy Conversion, Allyn and Bacon, Inc., Boston, 1965, p. 431.
[5] H.J. Goldsmid, A.R. Sheard, D.A. Wright, The performance of bismuth telluride thermojunctions, Br. J. Appl. Phys. 9 (1958) 365-370.
[6] H.J. Wu, L.D. Zhao, F.S. Zheng, D. Wu, Y.L. Pei, X. Tong, M.G. Kanatzidis, J.Q. He, Broad temperature plateau for thermoelectric figure of merit ZT>2 in phase-separated PbTe0.7S0.3, Nat. Commun. 5 (2014) 4515.
[7] S.D. Bhame, D. Pravarthana, W. Prellier, J.G. Noudem, Enhanced thermoelectric performance in spark plasma textured bulk n-type BiTe2.7Se0.3 and p-type Bi0.5Sb1.5Te3, Appl. Phys. Lett. 102 (2013) 211901.
[8] Q. Zhang, E.K. Chere, K. McEnaney, M. Yao, F. Cao, Y. Ni, S. Chen, C. Opeil, G. Chen, Z. Ren, Enhancement of thermoelectric performance of n-type PbSe by Cr doping with optimized carrier concentration, Adv. Energy. Mater. 5 (2015) 1401977.
[9] H.S. Kim, W. Liu, G. Chen, C.W. Chu, Z. Ren, Relationship between thermoelectric figure of merit and energy conversion efficiency, Proc. Natl. Acad. Sci. 112 (2015) 8205-8210.
[10] R.E. Simons, M.J. Ellsworth, R.C. Chu, An assessment of module cooling enhancement with thermoelectric coolers, J. Heat Transfer Trans. ASME. 127 (2005) 76-84.
[11] T.C Cheng, C.H. Cheng, Z.Z. Huang, G.C. Liao, Development of an energy-saving module via a combination of solar cells and thermoelectric coolers for green building applications, Energy. 36 (2011) 133-140.
[12] D. Enescu, Thermoelectric refrigeration principle, in: P. Aranguren (Eds.), Bringing Thermoelectricity into Reality, INTECH publishing, 2018, pp. 221-246.
[13] L.B. Kong, T. Li, H.H. Hng, F. Boey, T. Zhang, S. Li, Waste Energy Harvesting: Mechanical and Thermal Energies, Verlag Berlin Heidelberg, Germany, Springer, 2014.
[14] D. Champier, J.P. Bedecarrats, T. Kousksou, M. Rivaletto, F. Strub, P. Pignolet, Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove, Energy. 36 (2011) 1518-1526.
[15] D. Champier, J.P. Bedecarrats, M. Rivaletto, F. Strub, Thermoelectric power generation from biomass cook stoves, Energy. 35 (2010) 935-942.
[16] H.J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration, Br. J. Appl. Phys. 5 (1954) 386.
[17] E.M. Barber, Thermoelectric Materials: Advances and Applications, NY, USA: Taylor & Francis Group, Pan Stanford, 2015.
[18] G. Neeli, D.K. Behara, M.K. Kumar, State of the art review on thermoelectric materials, Int. J. Sci. Res. 5 (2016) 1833-1844.
[19] G.J. Snyder, Thermoelectric Power Generation: Efficiency and Compatibility, in: D.M. Rowe (Eds.), Thermoelectrics Handbook: Macro to Nano, CRC Press, 2006.
[20] R.R. Heikes, R.W. Ure, Thermoelectricity: Science and Engineering (Interscience, New York, 1961)
[21] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008) 105-114.
[22] G.J. Snyder, Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators, Appl. Phys. Lett. 84 (2004) 2436-2438.
[23] E. Müller, K. Zabrocki, C. Goupil, G.J. Snyder, W. Seifert, Functionally graded thermoelectric generator and cooler elements, in: D.M. Rowe (Eds.), Thermoelectrics and its Energy Harvesting, CRC Press, 2012.
[24] G.J. Snyder, A.H. Snyder, Figure of merit ZT of a thermoelectric device defined from materials properties, Energy Environ. Sci. 10 (2017) 2280-2283.
[25] B. Orr, A. Akbarzadeh, M. Mochizuki, R. Singh, A review of car waste heat recovery systems utilizing thermoelectric generators and heat pipes, Appl. Therm. Eng. 101 (2016) 490-495.
[26] B.S. Yilbas, A.Z. Sahin, Thermoelectric device and optimum external load parameter and slenderness ratio, Energy. 35 (2010) 5380-5384.
[27] G.J. Snyder, Thermoelectric energy harvesting, in: S. Priya, D.J. Inman (Eds.), Energy Harvesting Technologies. Boston, MA, USA: Springer; 2009) 325-336.
[28] M. Hodes, Optimal pellet geometries for thermoelectric power generation, IEEE Transactions on Components and Packaging 33 (2010) 307-318.
[29] D.M. Rowe, Handbook of Thermoelectrics. Introduction, Boca Raton, Fl, USA: CRC Press, Taylor & Francis Group (1995) 720.
[30] M.E. Kiziroglou, E.M. Yeatman, Materials and techniques for energy harvesting, In: Kilner JA, Skinner SJ, Irvine SJC, Edwards PP, editors. Woodhead Publishing Series in Energy, Functional Materials for Sustainable Energy Applications. Cambridge, UK: Woodhead Publishing; (2012) 541-572.
[31] H. Ali, A.Z. Sahin, B.S. Yilbas, Thermodynamic analysis of a thermoelectric power generator in relation to geometric configuration device pins, Energy Convers. Manag. 78 (2014) 634-640.
[32] O.H. Ando Junior, A.L.O. Maran, N.C. Henao, A review of the development and applications of thermoelectric microgenerators for energy harvesting, Renew. Sustain. Energy Rev. 91 (2018) 376-393.
[33] D.T. Crane, G.S. Jackson, Optimization of cross flow heat exchangers for thermoelectric waste heat recovery, Energy Convers. Manag. 45 (2004) 1565-1582.
[34] R.P. Chasmar, R. Stratton, The thermoelectric figure of merit and its relation to thermoelectric generators, J. Electron. Control. 7 (1959) 52-72.
[35] J.G. Stockholm, CRC Handbook of thermoelectric, ed. D.M. Rowe, CRC Press, Boca Raton, Florida, 1994, p. 657.
[36] H.J. Goldsmid, Improving the thermoelectric figure of merit, Sci. Technol. Adv. Mater., 22 (2021) 280-284.
[37] A. Muto, D. Kraemer, Q. Hao, Z.F. Ren, G. Chen, Thermoelectric properties and efficiency measurements under large temperature differences, Rev. Sci. Instrum. 80 (2009) 093901.