Fabrication of Polymer and Organic-Inorganic Composites


Fabrication of Polymer and Organic-Inorganic Composites

Moises Bustamante-Torres, Y. Aylin Esquivel-Lozano, Jorge Perea-Armijos, Emilio Bucio

Polymers are macromolecules that can be classified in many ways. There are natural or synthetic and organic or inorganic materials among these ways. These materials can form a cross-linking forming a network capable of incorporating reinforcement materials. Combining these two materials is known as a composite or hybrid material, which represents a significant advance in materials science due to the possibility of improving the properties of an organic matrix by incorporating an inorganic filler material into it. This chapter details the main characteristics of natural, synthetic, organic, and inorganic polymers. Besides, the synthesis pathways to synthesize organic-inorganic composites such as electrospinning, solution processing, hydrothermal, hot pressing, atomic layer deposition, and three-dimensional printing techniques are described. Finally, the characterization of these hybrid composites based on mechanical, thermal, and microscopy are mentioned.

Polymer, Composites, Organic-Inorganic Composites, Synthesis, Characterization

Published online 2/10/2024, 32 pages

Citation: Moises Bustamante-Torres, Y. Aylin Esquivel-Lozano, Jorge Perea-Armijos, Emilio Bucio, Fabrication of Polymer and Organic-Inorganic Composites, Materials Research Foundations, Vol. 162, pp 24-55, 2024

DOI: https://doi.org/10.21741/9781644903018-2

Part of the book on Thermoelectric Polymers

[1] B.A. Vera, L. Bastidas, M.B. Torres, P. Pinos, E. Bucio, Hyper-crosslinked Polymers, in: Inamuddin, M.I. Ahamed, R. Boddula (Eds.), Porous Polymer Science and Applications, 2022, CRC Press, pp. 7-36. https://doi.org/10.1201/9781003169604-2
[2] V. Vasiliev, E. Morozov, Advanced Mechanics of Composite Materials and Structures, Elsevier, 2018. https://doi.org/10.1016/B978-0-08-102209-2.00002-5
[3] V. Karbhari, Durability of Composites for Civil Structural Applications, CRC Press, 2007. https://doi.org/10.1533/9781845693565
[4] A. Afzal, Y. Nawab, Polymer composites, in Y. Nawab, S.M. Sapuan, K. Shaker (Eds.), Composite Solutions For Ballistics, Elsevier, 2021, pp. 139-152. https://doi.org/10.1016/B978-0-12-821984-3.00003-6
[5] A. Boccaccini, J. Blaker, Bioactive composite materials for tissue engineering scaffolds, Expert Review of Medical Devices 2 (2005) 03-317. https://doi.org/10.1586/17434440.2.3.303
[6] M. Reddy, D. Ponnamma, R. Choudhary, K. Sadasivuni, A comparative review of natural and synthetic biopolymer composite scaffolds, Polymers 13 (2021) 1105. https://doi.org/10.3390/polym13071105
[7] G. Markovic, P. Visakh, Recent Developments in Polymer Macro, Micro and Nano Blends, Woodhead Publishing, 2017.
[8] X. Sun, T. Zhang, H. Wang, Hemicelluloses-based hydrogels, in: T.K. Giri, B. Ghosh (Eds.), Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine, 2021, 181-216. https://doi.org/10.1016/B978-0-12-821649-1.00014-3
[9] X. Pei, K. Friedrich, Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
[10] M. Rahman, S. Hamdan, Study on physical, mechanical, morphological and thermal properties of styrene- co -glycidyl methacrylate/fumed silica/clay nanocomposites, in R. Rahman (Eds.), Silica and Clay Dispersed Polymer Nanocomposites, Elsevier, 2018, 71-85. https://doi.org/10.1016/B978-0-08-102129-3.00006-3
[11] J. Kenny, L. Nicolais, Comprehensive Polymer Science and Supplements, 1989, Pergamon.
[12] G. Tian, G. Han, F. Wang, J. Liang, J. Sepiolite nanomaterials: Structure, properties and functional applications, in A. Wang, W. Wang (Eds.), Nanomaterials from Clay Minerals, Elsevier, 2019, pp. 135-201. https://doi.org/10.1016/B978-0-12-814533-3.00003-X
[13] M. Tanzi, S. Farè, G. Candiani, Foundations of Biomaterials Engineering, Elsevier, 2019.
[14] G. Scheutz, J. Lessard, M. Sims, B. Sumerlin, Adaptable crosslinks in polymeric materials: Resolving the intersection of thermoplastics and thermosets, Journal of The American Chemical Society 141 (2019) 16181-16196. https://doi.org/10.1021/jacs.9b07922
[15] V. Kulkarni, C. Shaw, Essential Chemistry for Formulators of Semisolid and Liquid Dosages, Academic Press, 2016.
[16] M. Soroush, M. Grady, Polymers, Polymerization Reactions, and Computational Quantum Chemistry, in: J. Izaac, J. Wang (Eds.), Computational Quantum Chemistry, Springer International Publishing, 2019, pp. 1-16. https://doi.org/10.1016/B978-0-12-815983-5.00001-5
[17] C. Sarathchandran, Rheology of Polymer Blends and Nanocomposites, Elsevier, 2020. https://doi.org/10.1016/B978-0-12-816957-5.00006-9
[18] M.B. Torres, V.P. Ramos, D.R. Fierro, S.H. Bonilla, H. Magaña, E. Bucio, Synthesis and antimicrobial properties of highly cross-linked pH-sensitive hydrogels through gamma radiation, Polymers 13 (2021) 2223. https://doi.org/10.3390/polym13142223
[19] B. Bolto, Z. Xie, The use of polymers in the flotation treatment of wastewater, Processes 7 (2019) 374. https://doi.org/10.3390/pr7060374
[20] S. Guilbert, P. Feuilloley, H. Bewa, V. Bellonmaurel, Biodegradable polymers in agricultural applications, in: R. Smith (Eds.), Biodegradable Polymers for Industrial Applications, Woodhead Publishing, 2005, pp. 494-516. doi: 10.1533/9781845690762.4.494 https://doi.org/10.1533/9781845690762.4.494
[21] H. Brinson, L. Brinson, Polymer Engineering Science and Viscoelasticity, Springer New York, 2015. https://doi.org/10.1007/978-1-4899-7485-3
[22] N. Cheremisinoff, Condensed Encyclopedia of Polymer Engineering Terms, Butterworth-Heinemann, 2001, pp. 165-182. https://doi.org/10.1016/B978-0-08-050282-3.50018-4
[23] J. Aklonis, Mechanical properties of polymers, Journal of Chemical Education 58 (1981) 892. https://doi.org/10.1021/ed058p892
[24] W. Su, Polymer Size and Polymer Solutions, Lecture Notes in Chemistry, 2013, pp. 9-26. https://doi.org/10.1007/978-3-642-38730-2_2
[25] R. Hill, Polymers. Biomaterials, Artificial Organs and Tissue Engineering, Woodhead Publishing, 2005. https://doi.org/10.1201/9780203024065.ch4
[26] D. Jones, M. Ashby, Mechanisms of Creep, and Creep-Resistant Materials. Engineering Materials 1 (2019) 381-394. https://doi.org/10.1016/B978-0-08-102051-7.00022-1
[27] F. Qiu, Accelerated Predictive Stability, Academic Press, 2018. https://doi.org/10.1016/B978-0-12-802786-8.00001-2
[28] D. Eskin, Ultrasonic degassing of liquids, in: J.A.G. Juárez, K.F. Graff (Eds.), Power Ultrasonics, Woodhead Publishing, 2015, 611-631. https://doi.org/10.1016/B978-1-78242-028-6.00020-X
[29] M. Khan, A. Svedberg, A. Singh, M. Ansari, Z. Karim, Nanostructured Polymer Composites for Biomedical Applications, Elsevier, 2019.
[30] S. Gad, Encyclopedia of Toxicology, Academic Press, 2014. https://doi.org/10.1016/B978-0-12-386454-3.00823-X
[31] A. Yadav, N. Sinha, Organic Polymers for Drinking Water Purification. Reference Module In Materials Science And Materials Engineering, 2021. https://doi.org/10.1016/B978-0-12-820352-1.00140-1
[32] C. Donga, K. Mabape, S. Mishra, A. Mishra, Polymer-based engineering materials for removal of nano wastes from water, in: A.K. Mishra, H.M.D. Anawar, N. Drouiche (Eds.), Emerging and Nanomaterial Contaminants In Wastewater, Elsevier, 2019, pp. 217-243. https://doi.org/10.1016/B978-0-12-814673-6.00008-5
[33] A. Maiti, A. Mule, A. Kumar, A. Bhatnagar, P. Mondal, Polymers in Wastewater Treatment, Reference Module in Materials Science and Materials Engineering, 2021. https://doi.org/10.1016/B978-0-12-820352-1.00148-6
[34] P. Joseph, J. Ebdon, Recent developments in flame-retarding thermoplastics and thermosets, in: A.R. Horrocks, D. Price (Eds.), Fire Retardant Materials, Woodhead Publishing, 2001, 220-263. https://doi.org/10.1533/9781855737464.220
[35] R. Salunke, The sources of heavy metals, its impact on human life and the progress in electrochemical sensor, in: C.M. Hussain, S. Shukla, G. Joshi (Eds.), Functionalized Nanomaterials Based Devices for Environmental Applications, Elsevier, 2021, 349-378. https://doi.org/10.1016/B978-0-12-822245-4.00016-7
[36] E. Ivanova, K. Bazaka, R. Crawford, New Functional Biomaterials for Medicine and Healthcare, 2014, 100-120. https://doi.org/10.1533/9781782422662.100
[37] K. MacKenzie, Innovative applications of inorganic polymers (geopolymers), in: F. Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt (Eds.), Handbook of Alkali-Activated Cements, Mortars, and Concretes, Woodhead Publishing, 2015, 777-805. https://doi.org/10.1533/9781782422884.5.777
[38] Z. Mohamad, S. Man, N. Othman, N. Abdullah, M. Abdulwasiu, Reference Module In Materials Science And Materials Engineering, 2021.
[39] L. Ansaloni, Advances in polymer-inorganic hybrids as membrane materials, Recent Developments in Polymer Macro, Micro and Nano Blends, 2017, 163-206. https://doi.org/10.1016/B978-0-08-100408-1.00007-8
[40] J. Brauns, Reinforced materials: Elastic Properties and Strength Prediction, Encyclopedia of Materials: Science and Technology, 1-9. https://doi.org/10.1016/B0-08-043152-6/02137-9
[41] M. Sultan, Thermal properties of oil palm biomass-based composites, in: M. Jawaid, P.M. Tahir, N. Saba (Eds.), Lignocellulosic Fibre and Biomass-Based Composite Materials, Woodhead Publishing, 95-122.
[42] D. Sharma, Materials for Biomedical Engineering, Elsevier, 2019.
[43] P. Mallick, Materials, Design and Manufacturing for Lightweight Vehicles, Woodhead Publishing, 2010. https://doi.org/10.1533/9781845697822
[44] M. Asim, M. Jawaid, N. Saba, N. Ramengmawii, M. Nasir, M. Sultan, Processing of hybrid polymer composites-a review, in: V.K. Thakur, M.K. Thakur, A. Pappu (Eds.), Hybrid Polymer Composite Materials, Woodhead Publishing, 2017, pp.1-22. https://doi.org/10.1016/B978-0-08-100789-1.00001-0
[45] H. Yahyaei, M. Mohseni, Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites, 2021, 115-125. https://doi.org/10.1016/B978-0-12-821347-6.00013-5
[46] Yan, Y. Shi, Z. Li, Selective Laser Sintering Additive Manufacturing Technology, 2021, 667-712. https://doi.org/10.1016/B978-0-08-102993-0.00005-9
[47] T. Lee, F. Boey, K. Khor, On the determination of polymer crystallinity for a thermoplastic PPS composite by thermal analysis, Composites Science and Technology 53 (1995) 259-274. https://doi.org/10.1016/0266-3538(94)00070-0
[48] N. Yılmaz, A. Khan, Flexural behavior of textile-reinforced polymer composites, in: M. Jawaid, M. Thariq, N. Saba (Eds.), Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, 2019, pp. 13-42. https://doi.org/10.1016/B978-0-08-102292-4.00002-3
[49] M. Biron, Material Selection for Thermoplastic Parts, Elsevier Science, 2016. https://doi.org/10.1016/B978-0-7020-6284-1.00003-9
[50] A. Marques, Fibrous and Composite Materials for Civil Engineering Applications, Woodhead Publishing, 2011.
[51] S. Khatiwada, U. Gohs, R. Lach, G. Heinrich, R. Adhikari, A new way of toughening of thermoset by dual-cured thermoplastic/thermosetting blend. Materials 12 (2019), 548. https://doi.org/10.3390/ma12030548
[52] P. Khui, M. Rahman, E. Jayamani, Advances in Sustainable Polymer Composites, Elsevier, 2021. https://doi.org/10.1016/B978-0-12-820338-5.00012-6
[53] J. Greene, Automotive Plastics and Composites, William Andrew, 2021. https://doi.org/10.1016/B978-0-12-818008-2.00017-9
[54] S. Amir, M. Sultan, M. Jawaid, A. Ariffin, S. Mohd, K. Salleh, Nondestructive testing method for Kevlar and natural fiber and their hybrid composites, in: M. Jawaid, M. Thariq, N. Saba (Eds.), Durability and Life Prediction in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing, 2019, 367-388. https://doi.org/10.1016/B978-0-08-102290-0.00016-7
[55] S. Ogin, P. Brøndsted, J. Zangenberg, Modeling Damage, Fatigue and Failure of Composite Materials, Elsevier, 2016. https://doi.org/10.1016/B978-1-78242-286-0.00001-7
[56] M. Knight, D. Curliss, Composite Materials, in: R.A. Meyers (Eds.), Encyclopedia of Physical Science and Technology, Academic Press, 2003, pp. 455-468. https://doi.org/10.1016/B0-12-227410-5/00128-9
[57] D. Aleksendrić, P. Carlone, Soft Computing in The Design and Manufacturing of Composite Materials, 2015, 1-5. https://doi.org/10.1533/9781782421801.1
[58] X. Sun, T. Zhang, H. Wang, Plant and Algal Hydrogels for Drug Delivery and Regenerative Medicine, Woodhead Publishing, 2021.
[59] D. Baird, Polymer processing, in: R.A. Meyers (Eds.), Encyclopedia of Physical Science and Technology, Academic Press, 2003, 611-643. https://doi.org/10.1016/B0-12-227410-5/00593-7
[60] P. Gradin, R. Seldén, R. Brown, Dynamic-mechanical Properties, in: G. Allen, S.L. Aggarwal, S. Russo (Eds.), Comprehensive Polymer Science and Supplements, Pergamon, 1989, 533-569. https://doi.org/10.1016/B978-0-08-096701-1.00053-7
[61] L. McKeen, The Effect of Long-Term Thermal Exposure On Plastics And Elastomers, Kidlington: William Andrew, 2021.
[62] J. Pojman, Polymer Science: A Comprehensive Reference, Elsevier Science, 2012, 957-980. https://doi.org/10.1016/B978-0-444-53349-4.00124-2
[63] T. Naylor, Permeation properties, in: G. Allen, S.L. Aggarwal, S. Russo (Eds.), Comprehensive Polymer Science and Supplements, Pergamon, 1989, pp. 643-668. https://doi.org/10.1016/B978-0-08-096701-1.00057-4
[64] V. Vasiliev, E. Morozov, Introduction. Advanced Mechanics of Composite Materials, Elsevier Science, 2013. https://doi.org/10.1016/B978-0-08-098231-1.00001-7
[65] A.M. Taib, N. Julkapli, Mechanical And Physical Testing Of Biocomposites, Fibre-Reinforced Composites And Hybrid Composites, 61-79.
[66] Asthana, N., & Pal, K. (2020). Polymerized hybrid nanocomposite implementations of energy conversion cells device. Nanofabrication For Smart Nanosensor Applications, 349-397. https://doi.org/10.1016/B978-0-12-820702-4.00015-5
[67] O. Adekomaya, T. Majozi, Fiber Reinforced Composites, Elsevier, 2021.
[68] Cantor, K., & Watts, P. (2011). Plastics Processing. Applied Plastics Engineering Handbook, 195-203. https://doi.org/10.1016/B978-1-4377-3514-7.10012-1
[69] H. Dhakal, S. Ismail, Introduction to composite materials, in: H.N. Dhakal S.O. Ismail (Eds.), Sustainable Composites For Lightweight Applications, Woodhead Publishing, 2021, pp. 1-16. https://doi.org/10.1016/B978-0-12-818316-8.00001-3
[70] R. Guedes, J. Xavier, Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications, Woodhead Publishing, 2013. https://doi.org/10.1533/9780857098641.3.298
[71] J. Alemán, A. Chadwick, J. He, M. Hess, K. Horie, R. Jones, Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007), Pure and Applied Chemistry 79 (2007), 1801-1829. https://doi.org/10.1351/pac200779101801
[72] Ou, A. Sangle, A. Datta, Q. Jing, T. Busolo, T. Chalklen, Fully printed organic-inorganic nanocomposites for flexible thermoelectric applications, ACS Applied Materials &Amp. Interfaces 10 (2018) 19580-19587. https://doi.org/10.1021/acsami.8b01456
[73] B. McGrail, A. Sehirlioglu, E. Pentzer, Polymer composites for thermoelectric applications, Angewandte Chemie International Edition 54 (2014) 1710-1723. https://doi.org/10.1002/anie.201408431
[74] M. Dresselhaus, G. Chen, M. Tang, R. Yang, H. Lee, D. Wang, New directions for low-dimensional thermoelectric materials, Advanced Materials 19 (2007) 1043-1053. https://doi.org/10.1002/adma.200600527
[75] P. Palmero, Encyclopedia of Materials: Technical Ceramics And Glasses, 2021, 501-510. https://doi.org/10.1016/B978-0-12-818542-1.00013-8
[76] T. Miyazaki, K. Ishikawa, Y. Shirosaki, C. Ohtsuki, Organic-inorganic composites designed for biomedical applications, Biological and Pharmaceutical Bulletin 36 (2013) 1670-1675. https://doi.org/10.1248/bpb.b13-00424
[77] F. Mammeri, E. Bourhis, L. Rozes, C. Sanchez, Mechanical properties of hybrid organic-inorganic materials, Journal of Materials Chemistry 15 (2005) 3787. https://doi.org/10.1039/b507309j
[78] M. Virji, A. Stefaniak, A review of engineered nanomaterial manufacturing processes and associated exposures, in: S. Hashmi, G.F. Batalha, B. Yilbas (Eds.), Comprehensive Materials Processing, Elsevier, 2014, pp.103-125. https://doi.org/10.1016/B978-0-08-096532-1.00811-6
[79] A. Reddy, G. Reddy, V. Sivanjineyulu, J. Jayaramudu, K. Varaprasad, E. Sadiku, Design and Applications Of Nanostructured Polymer Blends And Nanocomposite Systems, William Andrew, 2016, 385-411. https://doi.org/10.1016/B978-0-323-39408-6.00016-9
[80] Wang, X. X., Yu, G. F., Zhang, J., Yu, M., Ramakrishna, S., & Long, Y. Z. (2021). Conductive Polymer Ultrafine Fibers via Electrospinning: Preparation, Physical Properties and Applications. Progress in Materials Science, 115, 100704. https://doi.org/10.1016/j.pmatsci.2020.100704
[81] D. Ficai, M. Albu, Advances in the field of soft tissue engineering. Nanobiomaterials In Soft Tissue Engineering, William Andrew, 2016, 355-386. https://doi.org/10.1016/B978-0-323-42865-1.00013-1
[82] Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, X. Zhang, Developments of advanced electrospinning techniques: A critical review. Advanced Materials Technologies, 6 (2021) 2100410. https://doi.org/10.1002/admt.202100410
[83] E. Uslu, Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA, and PVC nanofibers: A comparative study, Materials Today Communications 26 (2021) 101939. https://doi.org/10.1016/j.mtcomm.2020.101939
[84] J. Cui, Flexible and transparent composite nanofibre membrane that was fabricated via a “green” electrospinning method for efficient particulate matter 2.5 capture, Journal of Colloid and Interface Science 582 (2021) 506-514. https://doi.org/10.1016/j.jcis.2020.08.075
[85] K. Peranidze, T.V. Safronova, Fibrous polymer-based composites obtained by electrospinning for bone tissue engineering, Polymers 14 (2022) 1-19. https://doi.org/10.3390/polym14010096
[86] J. Yang, N. Li, J. Shi, W. Tang, G. Zhang, Introduction. Multimaterial 3D Printing Technology, 2021. https://doi.org/10.1016/B978-0-08-102991-6.00014-8
[87] R. Zhang, Development of polylactic acid/ZnO composite membranes prepared by ultrasonication and electrospinning for food packaging, Lwt 135 (2021) 110072. https://doi.org/10.1016/j.lwt.2020.110072
[88] C.L. McCarthy, R.L. Brutchey, Solution processing of chalcogenide materials using thiol-amine “alkahest” solvent systems, Chemical Communications 53 (2017), 4888-4902. https://doi.org/10.1039/C7CC02226C
[89] A.V. Rane, K. Kanny, V. Abitha, S. Thomas, Synthesis of Inorganic Nanomaterials, Woodhead Publishing, 2018.
[90] A.V. Rane, K. Kanny, V. Abitha, S. Patil, S. Thomas, Clay-Polymer Composites, in: K. Jlassi, M.M. Chehimi, S. Thomas (Eds.), Clay-Polymer Nanocomposites, Elsevier, 2017, 113-144. https://doi.org/10.1016/B978-0-323-46153-5.00004-5
[91] L. Tang, L. Zhao, F. Qiang, Q. Wu, L. Gong, J. Peng, Mechanical Properties of Rubber Nanocomposites Containing Carbon Nanofillers, in: S. Yaragalla (Eds.), Carbon-Based Nanofillers and Their Rubber Nanocomposites, Elsevier, 2019, 367-423. https://doi.org/10.1016/B978-0-12-817342-8.00012-3
[92] Deshmukh, K., Basheer Ahamed, M., Deshmukh, R., Khadheer Pasha, S., Bhagat, P., & Chidambaram, K. (2017). Biopolymer Composites with High Dielectric Performance: Interface Engineering. Biopolymer Composites in Electronics, 27-128. https://doi.org/10.1016/B978-0-12-809261-3.00003-6
[93] S. Feng, G. Li, Modern Inorganic Synthetic Chemistry, 2017.
[94] Z. Xu, C. Gao, In situ polymerization approach to graphene-reinforced nylon-6 composites, Macromolecules 43 (2010), 6716-6723. https://doi.org/10.1021/ma1009337
[95] Y. Chao, Y. Ge, Z. Chen, X. Cui, C. Zhao, C. Wang, G.G. Wallace, One-pot hydrothermal synthesis of solution-processable MoS2/PEDOT: PSS composites for high-performance supercapacitors, ACS Applied Materials and Interfaces, 13 (2021) 7285-7296. https://doi.org/10.1021/acsami.0c21439
[96] F.S. Kordshuli, F. Zabihi, Graphene-doped PEDOT: PSS nanocomposite thin films fabricated by conventional and substrate vibration-assisted spray coating (SVASC), Engineering Science and Technology 19 (2016) 1216-1223. https://doi.org/10.1016/j.jestch.2016.02.003
[97] A. Elzoghby, M. Elgohary, N. Kamel, Implications of protein- and peptide-based nanoparticles as potential vehicles for anticancer drugs, in: R. Donev (Eds.), Advances in Protein Chemistry and Structural Biology, Academic Press, 2015, 169-221. https://doi.org/10.1016/bs.apcsb.2014.12.002
[98] Ramos Avilez, H., Castilla Casadiego, D., Vega Avila, A., Perales Perez, O., & Almodovar, J. (2017). Production of chitosan coatings on metal and ceramic biomaterials. Chitosan Based Biomaterials Volume 1, 255-293. https://doi.org/10.1016/B978-0-08-100230-8.00011-X
[99] J. McCollum, S. Delgado, Manufacturing strategies in fluorinated polymers and composites, in: B. Ameduri, S. Fomin (Eds,), Opportunities for Fluoropolymers, Elsevier, 2020, 275-301. https://doi.org/10.1016/B978-0-12-821966-9.00010-9
[100] C. Cie, Theoretical foundations for inkjet technology, Ink Jet Textile Printing, 2015, 1-13. https://doi.org/10.1016/B978-0-85709-230-4.00001-7
[101] J. Perelaer, U. Schubert, Ink-Jet Printing of Functional Polymers for Advanced Applications, in: K. Matyjaszewski, M. Möller (Eds.), Polymer Science: A Comprehensive Reference, Elsevier, 2012, pp. 147-175. https://doi.org/10.1016/B978-0-444-53349-4.00205-3
[102] E. Loser, H. Tobler, Digital Printing of Textiles, Woodhead Publishing, 2006.
[103] H. Kobayashi, Industrial production printers – Mimaki’s Tx series, in: H Ujiie (Eds.), Digital Printing of Textiles, Woodhead Publishing, 2006, pp. 98-122. https://doi.org/10.1533/9781845691585.1.98
[104] A.S. Gorgani, Inkjet Printing, in: J. Izdebska, S. Thomas (Eds), Printing on Polymers, William Andrew, 2016, 231-246. https://doi.org/10.1016/B978-0-323-37468-2.00014-2
[105] J. Zhang, K. Hoshino, Fundamentals of Nano/Microfabrication and Effect of Scaling, in: J.X.J. Zhang, K. Hoshino (Eds.), Molecular Sensors and Nanodevices, Academic Press, 2014, pp. 43-101. https://doi.org/10.1016/B978-1-4557-7631-3.00002-8
[106] S. Ko, Advanced Inkjet Technology for 3D Micro-metal Structure Fabrication, in: Y. Qin (Eds.), Micromanufacturing Engineering and Technology, William Andrew, 2015, 425-439. https://doi.org/10.1016/B978-0-323-31149-6.00018-9
[107] K. Kato, H. Hagino, K. Miyazaki, Fabrication of bismuth telluride thermoelectric films containing conductive polymers using a printing method, Journal of Electronic Materials 42 (2013) 1313-1318. https://doi.org/10.1007/s11664-012-2420-z
[108] M. Mikolajek, T. Reinheimer, N. Bohn, C. Kohler, M. Hoffmann, J. Binder, Fabrication and characterization of fully inkjet printer capacitors based on ceramic/polymer composite dielectrics on flexible substrates. Scientific Reports 9 (2019) 1334. https://doi.org/10.1038/s41598-019-49639-3
[109] M. Klein, S. Steenhusen, P. Löbmann, Inorganic-organic hybrid polymers for printing of optical components: From digital light processing to inkjet 3D-printing, Journal of Sol-Gel Science and Technology 101 (2021) 649-654. https://doi.org/10.1007/s10971-022-05748-6
[110] J. Hostaša, Ceramics for Laser Technologies. Encyclopedia Of Materials: Technical Ceramics and Glasses, 2021, 110-124. https://doi.org/10.1016/B978-0-12-803581-8.11779-5
[111] J. Binner, Encyclopedia of Materials: Technical Ceramics and Glasses, 2021, 3-24. https://doi.org/10.1016/B978-0-12-818542-1.00067-9
[112] R. German, Sintering with External Pressure. Sintering: From Empirical Observations to Scientific Principles, 2014, 305-354. https://doi.org/10.1016/B978-0-12-401682-8.00010-0
[113] K. Shanmugam, Nanocellulose and its composite films: Applications, properties, fabrication methods, and their limitations. Nanoscale Processing, 2021, 247-297. https://doi.org/10.1016/B978-0-12-820569-3.00010-4
[114] B. Song, Microstructural characterization of TiB2-SiC-BN ceramics prepared by hot pressing. Ceramics International, 47 (2021) 29174-29182. https://doi.org/10.1016/j.ceramint.2021.07.080
[115] O. Güler, T. Varol, U. Alver, G. Kaya, F. Yıldız, Microstructure and wear characterization of Al2O3 reinforced silver coated copper matrix composites by electroless plating and hot-pressing methods, Materials Today Communications 27 (2021) 102205. https://doi.org/10.1016/j.mtcomm.2021.102205
[116] J. Hendrickson, A. Homyk, A. Scherer, T. Alasaarela, A. Säynätjoki, S. Honkanen, Quantum Optics with Semiconductor Nanostructures, Elsevier Science, 2012.
[117] S. Cho, M. Uddin, P. Alaboina, Review of nanotechnology for cathode materials in batteries, in: L.M.R. Martinez, N. Omar (Eds.), Emerging Nanotechnologies in Rechargeable Energy Storage Systems, Elsevier, 2017, pp. 83-129. https://doi.org/10.1016/B978-0-323-42977-1.00003-0
[118] M. Leskelä, J. Niinistö, M. Ritala, Comprehensive Materials Processing, Elsevier, 2014.
[119] P. Oviroh, R. Akbarzadeh, D. Pan, R. Coetzee, T. Jen, New development of atomic layer deposition: processes, methods and applications, Science And Technology Of Advanced Materials 20 (2019), 465-496. https://doi.org/10.1080/14686996.2019.1599694
[120] L. Zhang, Y. Feng, Y. Li, Y. Jiang, S. Wang, J. Xiang, J. Zhang, P. Cheng, N. Tang, Stable construction of superhydrophobic surface on polypropylene membrane via atomic layer deposition for high salt solution desalination, Journal of Membrane Science 647 (2022) 120289. https://doi.org/10.1016/j.memsci.2022.120289
[121] D. Guo, Z. Wan, Y. Li, B. Xi, C. Wang, TiN @ Co5.47N composite material constructed by atomic layer deposition as reliable electrocatalyst for oxygen evolution reaction, Advanced Functional Materials 31 (2020) 2008511. https://doi.org/10.1002/adfm.202008511
[122] J. Li, L. Hui, W. Zhang, J. Lu, Y. Yang, H. Feng, Scalable production of ultra-small TiO2 nanocrystal / activated carbon composites by atomic layer deposition for efficient removal of organic pollutants, Advanced Powder Technology 32 (2021) 728-739. https://doi.org/10.1016/j.apt.2021.01.013
[123] Z. Zhao, Y. Kong, C. Liu, G. Huang, Z. Xiao, H. Zhu, Z. Bao, Y. Mei, Atomic layer deposition-assisted fabrication of 3D Co-doped carbon framework for sensitive enzyme-free lactic acid sensor, Chemical Engineering Journal 417 (2021) 129285. https://doi.org/10.1016/j.cej.2021.129285
[124] H. Wang, M. Wei, Z. Zhong, Y. Wang, Atomic-layer-deposition-enabled thin-film composite membranes of polyimide supported on nanoporous anodized alumina, Journal of Membrane Science 535 (2017) 56-62. https://doi.org/10.1016/j.memsci.2017.04.026
[125] M. Somireddy, Fabrication of composite structures via 3D printing, in: J.P. Davim (Eds.), Materials Forming, Machining and Tribology, Springer, 2021, pp. 255-276. https://doi.org/10.1007/978-3-030-68024-4_14
[126] M. Kun, C. Chan, S. Ramakrishna, A. Kulkarni, K. Vadodaria, Textile-based scaffolds for tissue engineering, in: S. Rajendran (Eds.), Advanced Textiles for Wound Care, Woodhead Publishing, 2019, pp. 329-362. https://doi.org/10.1016/B978-0-08-102192-7.00012-6
[127] G. Goh, S. Sing, W. Yeong, A review on machine learning in 3D printing: Applications, potential, and challenges, Artificial Intelligence Review 54 (2020) 63-94. https://doi.org/10.1007/s10462-020-09876-9
[128] X. Tian, A. Todoroki, T. Liu, L. Wu, Z. Hou, M. Ueda, 3D printing of continuous fiber reinforced polymer composites: Development, application, and perspective, Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers 1 (2022) 100016. https://doi.org/10.1016/j.cjmeam.2022.100016
[129] Q. Jiang, J. Yang, P. Hing, H. Ye, Recent advances, design guidelines, and prospects of flexible organic/inorganic thermoelectric composites, Materials Advances, 1 (2020) 1038-1054. https://doi.org/10.1039/D0MA00278J
[130] C. Vyas, G. Poologasundarampillai, J. Hoyland, P. Bartolo, 3D printing of biocomposites for osteochondral tissue engineering, in: L. Ambrosio (Eds.), Biomedical Composites, Woodhead Publishing, 2017, pp. 261-302. https://doi.org/10.1016/B978-0-08-100752-5.00013-5
[131] R. Ni, B. Qian, C. Liu, X. Liu, J. Qiu, Three-dimensional printing of hybrid organic/inorganic composites with long persistence luminescence, Optical Materials Express, 8 (2018) 2823. https://doi.org/10.1364/OME.8.002823
[132] S. Shah, M. Shiblee, J. Rahman, S. Basher, S. Mir, M. Kawakami, 3D printing of electrically conductive hybrid organic-inorganic composite materials, Microsystem Technologies 24 (2018) 4341-4345. https://doi.org/10.1007/s00542-018-3781-x
[133] Kadkhodaie, A., & Kadkhodaie, R. (2022). Acoustic, density, and seismic attribute analysis to aid gas detection and delineation of reservoir properties. Sustainable Geoscience For Natural Gas Subsurface Systems, 51-92. https://doi.org/10.1016/B978-0-323-85465-8.00007-8
[134] R. Landel, L. Nielsen, Mechanical Properties of Polymers and Composites, CRC Press, 1993 https://doi.org/10.1201/b16929
[135] N. Morita, Finite Element Programming In Nonlinear Geomechanics And Transient Flow, Elsevier Science & Technology, 2021. https://doi.org/10.1016/B978-0-323-91112-2.00004-5
[136] B.V. Ramnath, V. Manickavasagam, S. Rajesh, A. Khan, A. Asiri, H.D. Cancar, Behavior of some natural fiber composites, in : A. Khan, S.M. Rangappa, S. Siengchin,
M. Jawaid, A.M. Asiri (Eds.), Hybrid Natural Fiber Composites, Woodhead Publishing, 2021, pp, 167-183.
[137] T. Pan, S. Mondal, Structural Properties and Sensing Characteristics of Sensing Materials. Comprehensive Materials Processing, (2014) 179-203. https://doi.org/10.1016/B978-0-08-096532-1.01306-6
[138] B. Yousif, A. Shalwan, C. Chin, K. Ming, Flexural properties of treated and untreated kenaf/epoxy composites, Materials &Amp; Design, 40 (2012) 378-385. https://doi.org/10.1016/j.matdes.2012.04.017
[139] A. Benkhelladi, H. Laouici, A. Bouchoucha, Tensile and flexural properties of polymer composites reinforced by flax, jute and sisal fibres, The International Journal Of Advanced Manufacturing Technology 108 (2020) 895-916. https://doi.org/10.1007/s00170-020-05427-2
[140] R. Christensen, (1983). Mechanical properties of composite materials. in: A. Kaw (Eds.), Mechanics of Composite Materials, 1997, pp. 1-16. https://doi.org/10.1016/B978-0-08-029384-4.50008-0
[141] M. Kamal, Scanning Electron Microscopy Study of Fiber Reinforced Polymeric Nanocomposites. Scanning Electron Microscopy, Intech Open, 2012. https://doi.org/10.5772/35494
[142] Z. Xu, C. Gao, In situ polymerization approach to graphene-reinforced nylon-6 composites, Macromolecules 43 (2010) 6716-6723. https://doi.org/10.1021/ma1009337
[143] Z. Ghalib, A.Al Jlaihawi, S. Ghani, A. Taher, Mechanical properties of composite materials epoxy/fiberglass/rubber, Journal Of Mechanical Engineering Research And Developments 24 (2021) 215-221
[144] B. Liu, L. Dong, Q. Xi, X. Xu, J. Zhou, B. Li, Thermal transport in organic/inorganic composites, Frontiers In Energy 12 (2018) 72-86. https://doi.org/10.1007/s11708-018-0526-6
[145] R. Seymour, C. Carraher, Thermal properties of polymers, in: R. Seymour, C. Carraher (Eds.), Structure-Property Relationships in Polymers, Springer, New York, 1984, pp. 83-93. https://doi.org/10.1007/978-1-4684-4748-4_7
[146] M. Umar, M. Ofem, A. Anwar, A. Salisu, Thermo gravimetric analysis (TGA) of PA6/G and PA6/GNP composites using two processing streams, Journal of King Saud University – Engineering Sciences, 34 (2022) 77-87. https://doi.org/10.1016/j.jksues.2020.09.003
[147] Z. Ali, Y. Gao, B. Tang, X. Wu, Y. Wang, M. Li, Preparation, properties and mechanisms of carbon fiber/polymer composites for thermal management applications, Polymers 13 (2021), 169. https://doi.org/10.3390/polym13010169
[148] R. Karoui, Chemical Analysis of Food: Techniques And Applications, Elsevier, 2012.
[149] M.B. Torres, V.P. Ramos, D.R. Fierro, S.H. Bonilla, H.S. Magaña, E. Bucio, Synthesis and antimicrobial properties of highly cross-linked ph-sensitive hydrogels through gamma radiation, Polymers 13 (2021) 2223. https://doi.org/10.3390/polym13142223
[150] B. Tomoda, P.Y. Cordeiro, J. Ernesto, P. Lopes, L. Péres, L., C. da Silva, M. de Moraes, Characterization of biopolymer membranes and films: Physicochemical, mechanical, barrier, and biological properties, Biopolymer Membranes and Films (2020) 67-95. https://doi.org/10.1016/B978-0-12-818134-8.00003-1
[151] D. Bolcu, M. Stănescu, A study of the mechanical properties of composite materials with a dammar-based hybrid matrix and two types of flax fabric reinforcement, Polymers 12 (2020) 1649. https://doi.org/10.3390/polym12081649
[152] T. Inan, Recent Developments in Polymer Macro, Micro and Nano Blends, Elsevier Science, 2017.
[153] S. Loganathan, R. Valapa, R. Mishra, G. Pugazhenthi, S. Thomas, Thermal and Rheological Measurement Techniques for Nanomaterials Characterization, Elsevier, 2017.
[154] K. Rajisha, B. Deepa, L. Pothan, S. Thomas, Interface Engineering of Natural Fibre Composites For Maximum Performance, Woodhead Publishing in Materials, pp. 241-274.
[155] J. Yang, N. Hedin, Low Carbon Stabilization and Solidification of Hazardous Wastes, Elsevier, 2022. https://doi.org/10.1016/B978-0-12-824004-5.00020-7
[156] M. Omidi, A. Fatehinya, M. Farahani, Z. Akbari, S. Shahmoradi, & F. Yazdian, Characterization of biomaterials, Biomaterials for Oral and Dental Tissue Engineering (2017) 97-115. https://doi.org/10.1016/B978-0-08-100961-1.00007-4
[157] B. Sabuncuoglu, S. Orlova, L. Gorbatikh, S. Lomov, & I. Verpoest, Micro-scale finite element analysis of stress concentrations in steel fiber composites under transverse loading, Journal of Composite Materials 49 (2014) 1057-1069. https://doi.org/10.1177/0021998314528826
[158] N. Altawell, Introduction to Machine Olfaction Devices, Academic Press, 2022. https://doi.org/10.1016/B978-0-12-822420-5.00004-0
[159] Q. Wu, M. Li, Y. Gu, S. Wang, & Z. Zhang, Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy, Chinese Journal of Aeronautics 28 (2015) 1529-1538. https://doi.org/10.1016/j.cja.2015.05.005
[160] L. Dobrzański, B. Tomiczek, M. Pawlyta, & P. Nuckowski, TEM and XRD Study of nanostructured composite materials reinforced with the halloysite particles, Materials Science Forum 783-786 (2014) 1591-1596. https://doi.org/10.4028/www.scientific.net/MSF.783-786.1591
[161] M. Nasrollahzadeh, M. Atarod, M. Sajjadi, S. Sajadi, & Z. Issaabadi, Plant-mediated green synthesis of nanostructures: Mechanisms, characterization, and applications, Interface Science and Technology (2019) 199-322. https://doi.org/10.1016/B978-0-12-813586-0.00006-7
[162] K.E. Sapsford, Analyzing nanomaterial bioconjugates: A review of current and emerging purification and characterization techniques, Analytical Chemistry 83 (2011) 4453-4488. https://doi.org/10.1021/ac200853a
[163] B.M. Torres, D.R. -Fierro, B.A. Vera, S. Pardo, & E. Bucio, Interaction between filler and polymeric matrix in nanocomposites: Magnetic approach and applications, Polymers 13 (2021) 2998. https://doi.org/10.3390/polym13172998