Strategies for Enhancing Biocompatibility of Nanoparticles

$30.00

Strategies for Enhancing Biocompatibility of Nanoparticles

Abhinay Thakur, Ashish Kumar

This book chapter explores the challenges of nanoparticles’ biocompatibility in cardiovascular applications and proposes strategies to enhance their safety profile. It discusses interactions between nanoparticles and biological systems, highlighting factors like size, surface charge, and functionalization. The chapter examines cardiovascular toxicity, including adverse effects on heart function and vascular integrity. Cutting-edge strategies, such as surface modification with polyethylene glycol (PEG) and targeted nanoparticles, are explored to improve biocompatibility and reduce immunogenicity. Stimuli-responsive systems for controlled drug release are also discussed to enhance specificity and minimize off-target effects. These innovations hold promise for advancing nanoparticle applications in medicine.

Keywords
Nanoparticles, Biocompatibility, Drug Delivery, Surface Modification, Targeted Nanoparticles

Published online 2/10/2024, 43 pages

Citation: Abhinay Thakur, Ashish Kumar, Strategies for Enhancing Biocompatibility of Nanoparticles, Materials Research Foundations, Vol. 161, pp 182-224, 2024

DOI: https://doi.org/10.21741/9781644902998-7

Part of the book on Nanoparticle Toxicity and Compatibility

References
[1] Z. Malanchuk, V. Moshynskyi, Y. Malanchuk, V. Korniienko, M. Koziar, Results of research into the content of rare earth materials in man-made phosphogypsum deposits, Key Eng. Mater. 844 (2020) 77–87. https://doi.org/10.4028/www.scientific.net/KEM.844.77
[2] R. Szőllősi, Á. Molnár, S. Kondak, Z. Kolbert, Dual effect of nanomaterials on germination and seedling growth: Stimulation vs. phytotoxicity, Plants. 9 (2020) 1–30. https://doi.org/10.3390/plants9121745
[3] W. Yin, L. Zhou, Y. Ma, G. Tian, J. Zhao, L. Yan, X. Zheng, P. Zhang, J. Yu, Z. Gu, Y. Zhao, Phytotoxicity, Translocation, and Biotransformation of NaYF4 Upconversion Nanoparticles in a Soybean Plant, Small. 11 (2015) 4774–4784. https://doi.org/10.1002/smll.201500701
[4] M. Alipanah, D.M. Park, A. Middleton, Z. Dong, H. Hsu-Kim, Y. Jiao, H. Jin, Techno-Economic and Life Cycle Assessments for Sustainable Rare Earth Recovery from Coal Byproducts using Biosorption, ACS Sustain. Chem. Eng. 8 (2020) 17914–17922. https://doi.org/10.1021/acssuschemeng.0c04415
[5] W. Gwenzi, L. Mangori, C. Danha, N. Chaukura, N. Dunjana, E. Sanganyado, Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants, Sci. Total Environ. 636 (2018) 299–313. https://doi.org/10.1016/j.scitotenv.2018.04.235
[6] V. Harish, D. Tewari, M. Gaur, A.B. Yadav, S. Swaroop, M. Bechelany, A. Barhoum, Review on Nanoparticles and Nanostructured Materials: Bioimaging, Biosensing, Drug Delivery, Tissue Engineering, Antimicrobial, and Agro-Food Applications, Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12030457
[7] T.N.V.K.V. Prasad, P. Sudhakar, Y. Sreenivasulu, P. Latha, V. Munaswamy, K. Raja Reddy, T.S. Sreeprasad, P.R. Sajanlal, T. Pradeep, Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut, J. Plant Nutr. 35 (2012) 905–927. https://doi.org/10.1080/01904167.2012.663443
[8] C. Panneerselvam, K. Murugan, M. Roni, A.T. Aziz, U. Suresh, R. Rajaganesh, P. Madhiyazhagan, J. Subramaniam, D. Dinesh, M. Nicoletti, A. Higuchi, A.A. Alarfaj, M.A. Munusamy, S. Kumar, N. Desneux, G. Benelli, Fern-synthesized nanoparticles in the fight against malaria: LC/MS analysis of Pteridium aquilinum leaf extract and biosynthesis of silver nanoparticles with high mosquitocidal and antiplasmodial activity, Parasitol. Res. 115 (2016) 997–1013. https://doi.org/10.1007/s00436-015-4828-x
[9] K. Shahane, M. Kshirsagar, S. Tambe, D. Jain, S. Rout, M.K.M. Ferreira, S. Mali, P. Amin, P.P. Srivastav, J. Cruz, R.R. Lima, An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L., Pharmaceuticals. 16 (2023) 611. https://doi.org/10.3390/ph16040611
[10] S. Dev, A. Sachan, F. Dehghani, T. Ghosh, B.R. Briggs, S. Aggarwal, Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review, Chem. Eng. J. 397 (2020) 124596. https://doi.org/10.1016/j.cej.2020.124596
[11] C. Krishnaraj, E.G. Jagan, R. Ramachandran, S.M. Abirami, N. Mohan, P.T. Kalaichelvan, Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism, Process Biochem. 47 (2012) 651–658. https://doi.org/10.1016/j.procbio.2012.01.006
[12] S.T. Khan, S.F. Adil, M.R. Shaik, H.Z. Alkhathlan, M. Khan, M. Khan, Engineered nanomaterials in soil: Their impact on soil microbiome and plant health, Plants. 11 (2022) 1–25. https://doi.org/10.3390/plants11010109
[13] C. Luo, Y. Deng, K. Inubushi, J. Liang, S. Zhu, Z. Wei, X. Guo, X. Luo, Sludge biochar amendment and alfalfa revegetation improve soil physicochemical properties and increase diversity of soil microbes in soils from a rare earth element mining wasteland, Int. J. Environ. Res. Public Health. 15 (2018). https://doi.org/10.3390/ijerph15050965
[14] F. Nkinahamira, A. Alsbaiee, Q. Zeng, Y. Li, Y. Zhang, M. Feng, C.P. Yu, Q. Sun, Selective and fast recovery of rare earth elements from industrial wastewater by porous β-cyclodextrin and magnetic β-cyclodextrin polymers, Water Res. 181 (2020) 115857. https://doi.org/10.1016/j.watres.2020.115857
[15] E.J. Lee, U. Song, M. Shin, G. Lee, J. Roh, Y. Kim, Functional analysis of TiO2 nanoparticle toxicity in three plant Species, Biol. Trace Elem. Res. 155 (2013) 93–103. https://doi.org/10.1007/s12011-013-9765-x
[16] X.Y. He, C.L. Zheng, X. Sui, Q.G. Jing, X. Wu, J.Y. Wang, W.T. Si, X.F. Zhang, Biological damage to Sprague-Dawley rats by excessive anions contaminated groundwater from rare earth metals tailings pond seepage, J. Clean. Prod. 185 (2018) 523–532. https://doi.org/10.1016/j.jclepro.2018.03.074
[17] J. Iqbal, B.A. Abbasi, T. Yaseen, S.A. Zahra, A. Shahbaz, S.A. Shah, S. Uddin, X. Ma, B. Raouf, S. Kanwal, W. Amin, T. Mahmood, H.A. El-Serehy, P. Ahmad, Green synthesis of zinc oxide nanoparticles using Elaeagnus angustifolia L. leaf extracts and their multiple in vitro biological applications, Sci. Rep. 11 (2021) 1–13. https://doi.org/10.1038/s41598-021-99839-z
[18] T. Sabo-Attwood, J.M. Unrine, J.W. Stone, C.J. Murphy, S. Ghoshroy, D. Blom, P.M. Bertsch, L.A. Newman, Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings, Nanotoxicology. 6 (2012) 353–360. https://doi.org/10.3109/17435390.2011.579631
[19] H. Fathollahzadeh, J.J. Eksteen, A.H. Kaksonen, E.L.J. Watkin, Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources, Appl. Microbiol. Biotechnol. 103 (2019) 1043–1057. https://doi.org/10.1007/s00253-018-9526-z
[20] W.A. Mohammad, S.M. Ali, N. Farhan, S.M. Said, The toxic effect of zinc oxide nanoparticles on the terrestrial slug Lehmannia nyctelia (Gastropoda-Limacidae), J. Basic Appl. Zool. 82 (2021) 1–9. https://doi.org/10.1186/s41936-021-00214-1
[21] A. Hussain, M. Priyadarshi, S. Dubey, Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater, Appl. Water Sci. 9 (2019) 1–11. https://doi.org/10.1007/s13201-019-0999-4
[22] N. Saha, S. Dutta Gupta, Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa, J. Hazard. Mater. 330 (2017) 18–28. https://doi.org/10.1016/j.jhazmat.2017.01.021
[23] N. Musee, M. Thwala, N. Nota, The antibacterial effects of engineered nanomaterials: Implications for wastewater treatment plants, J. Environ. Monit. 13 (2011) 1164–1183. https://doi.org/10.1039/c1em10023h
[24] J. Singh, V. Kumar, K.H. Kim, M. Rawat, Biogenic synthesis of copper oxide nanoparticles using plant extract and its prodigious potential for photocatalytic degradation of dyes, Environ. Res. 177 (2019) 108569. https://doi.org/10.1016/j.envres.2019.108569
[25] A. Singh, N.B. Singh, I. Hussain, H. Singh, Effect of biologically synthesized copper oxide nanoparticles on metabolism and antioxidant activity to the crop plants Solanum lycopersicum and Brassica oleracea var. botrytis, J. Biotechnol. 262 (2017) 11–27. https://doi.org/10.1016/j.jbiotec.2017.09.016
[26] Y. Yang, L. Zhang, X. Huang, Y. Zhou, Q. Quan, Y. Li, X. Zhu, Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata, PLoS One. 15 (2020) 1–16. https://doi.org/10.1371/journal.pone.0228563
[27] K. Kornarzyński, A. Sujak, G. Czernel, D. Wiącek, Effect of Fe3O4 nanoparticles on germination of seeds and concentration of elements in Helianthus annuus L. under constant magnetic field, Sci. Rep. 10 (2020) 1–10. https://doi.org/10.1038/s41598-020-64849-w
[28] R. Amooaghaie, M.R. Saeri, M. Azizi, Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles, Ecotoxicol. Environ. Saf. 120 (2015) 400–408. https://doi.org/10.1016/j.ecoenv.2015.06.025
[29] V. Shah, I. Belozerova, Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds, Water. Air. Soil Pollut. 197 (2009) 143–148. https://doi.org/10.1007/s11270-008-9797-6
[30] M. Edahbi, B. Plante, M. Benzaazoua, Environmental challenges and identification of the knowledge gaps associated with REE mine wastes management, J. Clean. Prod. 212 (2019) 1232–1241. https://doi.org/10.1016/j.jclepro.2018.11.228
[31] A.K. Sakr, M.M. Abdel Aal, K.A. Abd El-Rahem, E.M. Allam, S.M. Abdel Dayem, E.A. Elshehy, M.Y. Hanfi, M.S. Alqahtani, M.F. Cheira, Characteristic Aspects of Uranium(VI) Adsorption Utilizing Nano-Silica/Chitosan from Wastewater Solution, Nanomaterials. 12 (2022) 3866. https://doi.org/10.3390/nano12213866
[32] W.S. Choi, H.J. Lee, Nanostructured Materials for Water Purification: Adsorption of Heavy Metal Ions and Organic Dyes, Polymers (Basel). 14 (2022) 1–26. https://doi.org/10.3390/polym14112183
[33] A.M.E. Khalil, F.A. Memon, T.A. Tabish, B. Fenton, D. Salmon, S. Zhang, D. Butler, Performance evaluation of porous graphene as filter media for the removal of pharmaceutical/emerging contaminants from water and wastewater, Nanomaterials. 11 (2021) 1–24. https://doi.org/10.3390/nano11010079
[34] M.Z.A. Zaimee, M.S. Sarjadi, M.L. Rahman, Heavy metals removal from water by efficient adsorbents, Water (Switzerland). 13 (2021). https://doi.org/10.3390/w13192659
[35] A.T. Besha, Y. Liu, D.N. Bekele, Z. Dong, R. Naidu, G.N. Gebremariam, Sustainability and environmental ethics for the application of engineered nanoparticles, Environ. Sci. Policy. 103 (2020) 85–98. https://doi.org/10.1016/j.envsci.2019.10.013
[36] R.D. Handy, N. Van Den Brink, M. Chappell, M. Mühling, R. Behra, M. Dušinská, P. Simpson, J. Ahtiainen, A.N. Jha, J. Seiter, A. Bednar, A. Kennedy, T.F. Fernandes, M. Riediker, Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: What have we learnt so far?, Ecotoxicology. 21 (2012) 933–972. https://doi.org/10.1007/s10646-012-0862-y
[37] N. Haque, A. Hughes, S. Lim, C. Vernon, Rare earth elements: Overview of mining, mineralogy, uses, sustainability and environmental impact, Resources. 3 (2014) 614–635. https://doi.org/10.3390/resources3040614
[38] P. Pyšek, D.M. Richardson, Invasive species, environmental change and management, and health, Annu. Rev. Environ. Resour. 35 (2010) 25–55. https://doi.org/10.1146/annurev-environ-033009-095548
[39] X. Yin, C. Martineau, I. Demers, N. Basiliko, N.J. Fenton, The potential environmental risks associated with the development of rare earth element production in Canada, Environ. Rev. 29 (2021) 354–377. https://doi.org/10.1139/er-2020-0115
[40] G. V. Vimbela, S.M. Ngo, C. Fraze, L. Yang, D.A. Stout, Antibacterial properties and toxicity from metallic nanomaterials, Int. J. Nanomedicine. 12 (2017) 3941–3965. https://doi.org/10.2147/IJN.S134526
[41] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023) 710. https://doi.org/10.3390/molecules28020710
[42] M.L. Carmo Bastos, J.V. Silva-Silva, J. Neves Cruz, A.R. Palheta da Silva, A.A. Bentaberry-Rosa, G. da Costa Ramos, J.E. de Sousa Siqueira, M.R. Coelho-Ferreira, S. Percário, P. Santana Barbosa Marinho, A.M. do R. Marinho, M. de Oliveira Bahia, M.F. Dolabela, Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) Induce Apoptosis by Caspase Pathway in Human Gastric Cancer Cells, Pharmaceuticals. 16 (2023) 765. https://doi.org/10.3390/ph16050765
[43] J. Wei, C. Wang, S. Yin, X. Pi, L. Jin, Z. Li, J. Liu, L. Wang, C. Yin, A. Ren, Concentrations of rare earth elements in maternal serum during pregnancy and risk for fetal neural tube defects, Environ. Int. 137 (2020) 105542. https://doi.org/10.1016/j.envint.2020.105542
[44] M. Usman, M. Farooq, A. Wakeel, A. Nawaz, S.A. Cheema, H. ur Rehman, I. Ashraf, M. Sanaullah, Nanotechnology in agriculture: Current status, challenges and future opportunities, Sci. Total Environ. 721 (2020) 137778. https://doi.org/10.1016/j.scitotenv.2020.137778
[45] A. Thakur, A. Kumar, S. Sharma, R. Ganjoo, H. Assad, Computational and experimental studies on the efficiency of Sonchus arvensis as green corrosion inhibitor for mild steel in 0.5 M HCl solution, Mater. Today Proc. 66 (2022) 609–621. https://doi.org/10.1016/j.matpr.2022.06.479
[46] A. Thakur, A. Kumar, Recent trends in nanostructured carbon-based electrochemical sensors for the detection and remediation of persistent toxic substances in real-time analysis, Mater. Res. Express. 10 (2023) 034001. https://doi.org/10.1088/2053-1591/acbd1a
[47] C. Dhonchak, N. Agnihotri, A. Kumar, A. Thakur, A. Kumar, Computational Insights in the Spectrophotometrically Analyzed Niobium (V)-3-Hydroxy-2-(4-methylphenyl)-4H-chromen-4-one Complex using DFT Method, Biointerface Res. Appl. Chem. 13 (2023) 357. https://doi.org/10.33263/BRIAC134.357
[48] A. Thakur, A. Kumar, R. Zhang, Alcoholic Beverage Purification Applications of Activated Carbon, in: C. Verma, M.A. Quraishi (Eds.), Act. Carbon, The Royal Society of Chemistry, 2023: pp. 152–178. https://doi.org/10.1039/bk9781839169861-00152
[49] A. Thakur, S. Sharma, R. Ganjoo, H. Assad, A. Kumar, Anti-Corrosive Potential of the Sustainable Corrosion Inhibitors Based on Biomass Waste: A Review on Preceding and Perspective Research, J. Phys. Conf. Ser. 2267 (2022) 012079. https://doi.org/10.1088/1742-6596/2267/1/012079
[50] A. Thakur, A. Kumar, Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors, Sci. Total Environ. 834 (2022) 155219. https://doi.org/10.1016/j.scitotenv.2022.155219
[51] G. Parveen, S. Bashir, A. Thakur, S.K. Saha, P. Banerjee, A. Kumar, Experimental and computational studies of imidazolium based ionic liquid 1-methyl- 3-propylimidazolium iodide on mild steel corrosion in acidic solution, Mater. Res. Express. 7 (2019) 016510. https://doi.org/10.1088/2053-1591/ab5c6a
[52] A. Thakur, S. Kaya, A.S. Abousalem, S. Sharma, R. Ganjoo, H. Assad, A. Kumar, Computational and experimental studies on the corrosion inhibition performance of an aerial extract of Cnicus Benedictus weed on the acidic corrosion of mild steel, Process Saf. Environ. Prot. 161 (2022) 801–818. https://doi.org/10.1016/j.psep.2022.03.082
[53] A. Thakur, S. Kaya, A.S. Abousalem, A. Kumar, Experimental, DFT and MC simulation analysis of Vicia Sativa weed aerial extract as sustainable and eco-benign corrosion inhibitor for mild steel in acidic environment, Sustain. Chem. Pharm. 29 (2022) 100785. https://doi.org/10.1016/j.scp.2022.100785
[54] C. Dhonchak, N. Agnihotri, A. Kumar, R. Kamal, A. Thakur, A. Kumar, Spectrophotometric Investigation and Computational Studies of Zirconium(IV)-3-hydroxy-2-[1’-phenyl-3’-(p-methoxyphenyl)-4’-pyrazolyl]-4H-chromen-4-one Complex, J. Anal. Chem. 78 (2023) 856–865. https://doi.org/10.1134/S1061934823070055
[55] D. Sharma, A. Thakur, M.K. Sharma, R. Sharma, S. Kumar, A. Sihmar, H. Dahiya, G. Jhaa, A. Kumar, A.K. Sharma, H. Om, Effective corrosion inhibition of mild steel using novel 1,3,4-oxadiazole-pyridine hybrids: Synthesis, electrochemical, morphological, and computational insights, Environ. Res. 234 (2023) 116555. https://doi.org/10.1016/j.envres.2023.116555
[56] A. Thakur, S. Kaya, A. Kumar, Recent Innovations in Nano Container-Based Self-Healing Coatings in the Construction Industry, Curr. Nanosci. 18 (2021) 203–216. https://doi.org/10.2174/1573413717666210216120741
[57] S. Kaya, A. Thakur, A. Kumar, The role of in Silico/DFT investigations in analyzing dye molecules for enhanced solar cell efficiency and reduced toxicity, J. Mol. Graph. Model. 124 (2023) 108536. https://doi.org/10.1016/j.jmgm.2023.108536
[58] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front. Microbiol. 14 (2023) 1188743. https://doi.org/10.3389/fmicb.2023.1188743
[59] A. Thakur, A. Kumar, S. Kaya, D.V.N. Vo, A. Sharma, Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: A review, Fuel. 312 (2022) 122934. https://doi.org/10.1016/j.fuel.2021.122934
[60] C. Verma, A. Thakur, R. Ganjoo, S. Sharma, H. Assad, A. Kumar, M.A. Quraishi, A. Alfantazi, Coordination bonding and corrosion inhibition potential of nitrogen-rich heterocycles: Azoles and triazines as specific examples, Coord. Chem. Rev. 488 (2023) 215177. https://doi.org/10.1016/j.ccr.2023.215177
[61] D. Sharma, A. Thakur, M.K. Sharma, K. Jakhar, A. Kumar, A.K. Sharma, O.M. Hari, Synthesis, Electrochemical, Morphological, Computational and Corrosion Inhibition Studies of 3-(5-Naphthalen-2-yl-[1,3,4]oxadiazol-2-yl)-pyridine against Mild Steel in 1 M HCl, Asian J. Chem. 35 (2023) 1079–1088. https://doi.org/10.14233/ajchem.2023.27711
[62] A. Thakur, A. Kumar, S. Kaya, R. Marzouki, F. Zhang, L. Guo, Recent Advancements in Surface Modification, Characterization and Functionalization for Enhancing the Biocompatibility and Corrosion Resistance of Biomedical Implants, Coatings. 12 (2022) 1459. https://doi.org/10.3390/coatings12101459
[63] A. Thakur, A. Kumar, Computational insights into the corrosion inhibition potential of some pyridine derivatives: A DFT approach, Eur. J. Chem. 14 (2023) 246–253. https://doi.org/10.5155/eurjchem.14.2.246-253.2408
[64] A. Thakur, S. Kaya, A. Kumar, Recent Trends in the Characterization and Application Progress of Nano-Modified Coatings in Corrosion Mitigation of Metals and Alloys, Appl. Sci. 13 (2023) 730. https://doi.org/10.3390/app13020730
[65] K. Maguire, G. Sheriff, Comparing distributions of environmental outcomes for regulatory environmental justice analysis, Int. J. Environ. Res. Public Health. 8 (2011) 1707–1726. https://doi.org/10.3390/ijerph8051707
[66] T.E. Novotny, K. Lum, E. Smith, V. Wang, R. Barnes, Cigarettes butts and the case for an environmental policy on hazardous cigarette waste, Int. J. Environ. Res. Public Health. 6 (2009) 1691–1705. https://doi.org/10.3390/ijerph6051691
[67] K. Sexton, S.H. Linder, The role of cumulative risk assessment in decisions about environmental justice, Int. J. Environ. Res. Public Health. 7 (2010) 4037–4049. https://doi.org/10.3390/ijerph7114037
[68] J. Spengler, G. Adamkiewicz, Indoor air pollution: An old problem with new challenges, Int. J. Environ. Res. Public Health. 6 (2009) 2880–2882. https://doi.org/10.3390/ijerph6112880
[69] J. Stenlid, J. Oliva, J.B. Boberg, A.J.M. Hopkins, Emerging diseases in european forest ecosystems and responses in society, Forests. 2 (2011) 486–504. https://doi.org/10.3390/f2020486
[70] M.S. Hossain, M.A. Hossain, M.A. Rahman, M.M. Islam, M.A. Rahman, T.M. Adyel, Health risk assessment of pesticide residues via dietary intake of market vegetables from Dhaka, Bangladesh, Foods. 2 (2013) 64–75. https://doi.org/10.3390/foods2010064
[71] D. Siniscalco, A. Cirillo, J.J. Bradstreet, N. Antonucci, Epigenetic findings in autism: New perspectives for therapy, Int. J. Environ. Res. Public Health. 10 (2013) 4261–4273. https://doi.org/10.3390/ijerph10094261
[72] R. Arora, Nanocomposite polyaniline for environmental and energy applications, Mater. Today Proc. 44 (2021) 633–636. https://doi.org/10.1016/j.matpr.2020.10.603
[73] K. Wan, Y. Li, Y. Wang, G. Wei, Recent advance in the fabrication of 2d and 3d metal carbides-based nanomaterials for energy and environmental applications, Nanomaterials. 11 (2021) 1–34. https://doi.org/10.3390/nano11010246
[74] P.M.J. Bos, S. Gottardo, J.J. Scott-Fordsm, M. van Tongeren, E. Semenzin, T.F. Fernandes, D. Hristozov, K. Hund-Rinke, N. Hunt, M.A. Irfan, R. Landsiedel, W.J.G.M. Peijnenburg, A.S. Jiménez, P.C.E. van Kesteren, A.G. Oomen, The MARINA risk assessment strategy: A flexible strategy for efficient information collection and risk assessment of nanomaterials, Int. J. Environ. Res. Public Health. 12 (2015) 15007–15021. https://doi.org/10.3390/ijerph121214961
[75] M. Sarfraz, W. Qun, L. Hui, M.I. Abdullah, Environmental risk management strategies and the moderating role of corporate social responsibility in project financing decisions, Sustain. 10 (2018). https://doi.org/10.3390/su10082771
[76] Z. Feng, W. Chen, Environmental regulation, green innovation, and industrial green development: An empirical analysis based on the spatial Durbin model, Sustain. 10 (2018). https://doi.org/10.3390/su10010223
[77] J.Y. Heurtebise, Sustainability and ecological civilization in the age of Anthropocene: An epistemological analysis of the psychosocial and “culturalist” interpretations of global environmental risks, Sustain. 9 (2017). https://doi.org/10.3390/su9081331
[78] R. Licker, B. Ekwurzel, S.C. Doney, S.R. Cooley, I.D. Lima, R. Heede, P.C. Frumhoff, Attributing ocean acidification to major carbon producers, Environ. Res. Lett. 14 (2019) 124060. https://doi.org/10.1088/1748-9326/ab5abc
[79] A. Bhatnagar, F. Kaczala, W. Hogland, M. Marques, C.A. Paraskeva, V.G. Papadakis, M. Sillanpää, Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control-a review, 2014. https://doi.org/10.1007/s11356-013-2135-6
[80] R.H. Bradley, R.F. Corwyn, H.P. McAdoo, C. García Coll, The home environments of children in the United States Part I: Variations by age, ethnicity, and poverty status, Child Dev. 72 (2001) 1844–1867. https://doi.org/10.1111/1467-8624.t01-1-00382
[81] H. Peng, Y. Jia, C. Tague, P. Slaughter, An eco-hydrological model-based assessment of the impacts of soil and water conservation management in the Jinghe River Basin, China, Water (Switzerland). 7 (2015) 6301–6320. https://doi.org/10.3390/w7116301
[82] M. Cook, M. Webber, Food, fracking, and freshwater: The potential for markets and cross-sectoral investments to enable water conservation, Water (Switzerland). 8 (2016). https://doi.org/10.3390/w8020045
[83] R. Kumar, A. Verma, A. Shome, R. Sinha, S. Sinha, P.K. Jha, R. Kumar, P. Kumar, Shubham, S. Das, P. Sharma, P.V.V. Prasad, Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions, Sustain. 13 (2021) 1–40. https://doi.org/10.3390/su13179963
[84] J.P. Juanga-Labayen, I. V. Labayen, Q. Yuan, A Review on Textile Recycling Practices and Challenges, Textiles. 2 (2022) 174–188. https://doi.org/10.3390/textiles2010010
[85] X. Zhang, F. Sun, H. Wang, Y. Qu, Green biased technical change in terms of industrial water resources in china’s yangtze river economic belt, Int. J. Environ. Res. Public Health. 17 (2020). https://doi.org/10.3390/ijerph17082789
[86] A.K. Chapagain, A.Y. Hoekstra, The water footprint of coffee and tea consumption in the Netherlands, Ecol. Econ. 64 (2007) 109–118. https://doi.org/10.1016/j.ecolecon.2007.02.022
[87] A.K. Chapagain, S. Orr, An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes, J. Environ. Manage. 90 (2009) 1219–1228. https://doi.org/10.1016/j.jenvman.2008.06.006
[88] W. Gerbens-Leenes, A.Y. Hoekstra, The water footprint of sweeteners and bio-ethanol, Environ. Int. 40 (2012) 202–211. https://doi.org/10.1016/j.envint.2011.06.006
[89] J. Huang, H.L. Zhang, W.J. Tong, F. Chen, The impact of local crops consumption on the water resources in Beijing, J. Clean. Prod. 21 (2012) 45–50. https://doi.org/10.1016/j.jclepro.2011.09.014
[90] M.J. Blair, B. Gagnon, A. Klain, B. Kulišić, Contribution of biomass supply chains for bioenergy to sustainable development goals, Land. 10 (2021) 1–28. https://doi.org/10.3390/land10020181
[91] B. Wu, P. Wang, S. Xiao, X. Yu, W. Shu, H. Zhang, M. Ding, Effects of Soil and Water Conservation Measures on Soil Bacterial Community Structure in Citrus Orchards, Res. Environ. Sci. 34 (2021) 419–430. https://doi.org/10.13198/j.issn.1001-6929.2021.01.02
[92] A.Y. Hoekstra, A.K. Chapagain, P.R. van Oel, Advancing water footprint assessment research: Challenges in monitoring progress towards sustainable development goal 6, Water (Switzerland). 9 (2017). https://doi.org/10.3390/w9060438
[93] C. Guo, J. Gao, B. Zhou, J. Yang, Factors of the ecosystem service value in water conservation areas considering the natural environment and human activities: A case study of Funiu mountain, China, Int. J. Environ. Res. Public Health. 18 (2021). https://doi.org/10.3390/ijerph182111074
[94] L. Fang, F. Wu, Can water rights trading scheme promote regional water conservation in china? Evidence from a time-varying DID analysis, Int. J. Environ. Res. Public Health. 17 (2020) 1–14. https://doi.org/10.3390/ijerph17186679
[95] U. Shabbir, M. Rubab, A. Tyagi, D.H. Oh, Curcumin and its derivatives as theranostic agents in alzheimer’s disease: The implication of nanotechnology, Int. J. Mol. Sci. 22 (2021) 1–23. https://doi.org/10.3390/ijms22010196
[96] Q. Wang, Y. Zhu, B. Song, R. Fu, Y. Zhou, The In Vivo Toxicity Assessments of Water-Dispersed Fluorescent Silicon Nanoparticles in Caenorhabditis elegans, Int. J. Environ. Res. Public Health. 19 (2022) 4101. https://doi.org/10.3390/ijerph19074101
[97] M.N. Hassan, K.V.R. Corresponding, S.O. Abah, E.I. Ohimain, B. Nagaraju, P. Gv, P. Ds, S. Mp, S. Sp, Treatment and Disposal Technologies for Medical Wastes in Developing Countries Where do We Start ?, Int. J. Med. Biomed. Res. 3 (2013) 82–88
[98] V. Thakur, R. Anbanandam, Healthcare waste management: an interpretive structural modeling approach, Int. J. Health Care Qual. Assur. 29 (2016) 559–581. https://doi.org/10.1108/IJHCQA-02-2016-0010
[99] P. Wang, M. Wang, F. Zhou, G. Yang, L. Qu, X. Miao, Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection, Electrochem. Commun. 81 (2017) 74–78. https://doi.org/10.1016/j.elecom.2017.06.006
[100] C. Zhu, A. Hu, J. Cui, K. Yang, X. Zhu, Y. Liu, G. Deng, L. Zhu, A lab-on-a-chip device integrated DNA extraction and solid phase PCR array for the genotyping of high-risk HPV in clinical samples, Micromachines. 10 (2019). https://doi.org/10.3390/mi10080537
[101] J. Wu, M. Dong, S. Santos, C. Rigatto, Y. Liu, F. Lin, Lab-on-a-chip platforms for detection of cardiovascular disease and cancer biomarkers, Sensors (Switzerland). 17 (2017). https://doi.org/10.3390/s17122934
[102] M.Z. Hua, S. Li, S. Wang, X. Lu, Detecting chemical hazards in foods using microfluidic paper-based analytical devices (μPADs): The real-world application, Micromachines. 9 (2018). https://doi.org/10.3390/mi9010032
[103] R. Mazurczyk, J. Vieillard, A. Bouchard, B. Hannes, S. Krawczyk, A novel concept of the integrated fluorescence detection system and its application in a lab-on-a-chip microdevice, Sensors Actuators, B Chem. 118 (2006) 11–19. https://doi.org/10.1016/j.snb.2006.04.069
[104] C.A. Başar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard. Mater. 135 (2006) 232–241. https://doi.org/10.1016/j.jhazmat.2005.11.055
[105] M. Lewoyehu, Comprehensive review on synthesis and application of activated carbon from agricultural residues for the remediation of venomous pollutants in wastewater, J. Anal. Appl. Pyrolysis. 159 (2021) 105279. https://doi.org/10.1016/j.jaap.2021.105279
[106] I. Safarik, K. Horska, K. Pospiskova, M. Safarikova, Special Section on Open Door Initiative (ODI)-2 nd edition Magnetically Responsive Activated Carbons for Bio-and Environmental Applications, Int. Rev. Chem. Eng. 4 (2012) 346–352
[107] K.Y. Foo, B.H. Hameed, The environmental applications of activated carbon/zeolite composite materials, Adv. Colloid Interface Sci. 162 (2011) 22–28. https://doi.org/10.1016/j.cis.2010.09.003
[108] K.P. Gopinath, D.V.N. Vo, D. Gnana Prakash, A. Adithya Joseph, S. Viswanathan, J. Arun, Environmental applications of carbon-based materials: a review, Environ. Chem. Lett. 19 (2021) 557–582. https://doi.org/10.1007/s10311-020-01084-9
[109] J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J.J. Rodriguez, C. Belver, Review on Activated Carbons by Chemical Activation with FeCl3, C — J. Carbon Res. 6 (2020) 21. https://doi.org/10.3390/c6020021
[110] H.A.M. Bacelo, S.C.R. Santos, C.M.S. Botelho, Tannin-based biosorbents for environmental applications – A review, Chem. Eng. J. 303 (2016) 575–587. https://doi.org/10.1016/j.cej.2016.06.044
[111] M. Vohra, M. Al-Suwaiyan, M. Hussaini, Gas phase toluene adsorption using date palm-tree branches based activated carbon, Int. J. Environ. Res. Public Health. 17 (2020) 1–19. https://doi.org/10.3390/ijerph17249287
[112] A. Macías-García, J.P. Carrasco-Amador, V. Encinas-Sánchez, M.A. Díaz-Díez, D. Torrejón-Martín, Preparation of activated carbon from kenaf by activation with H3PO4. Kinetic study of the adsorption/electroadsorption using a system of supports designed in 3D, for environmental applications, J. Environ. Chem. Eng. 7 (2019) 103196. https://doi.org/10.1016/j.jece.2019.103196
[113] S. Banerjee, B. De, P. Sinha, J. Cherusseri, K.K. Kar, Applications of supercapacitors, 2020. https://doi.org/10.1007/978-3-030-43009-2_13
[114] R. Guillossou, J. Le Roux, R. Mailler, E. Vulliet, C. Morlay, F. Nauleau, J. Gasperi, V. Rocher, Organic micropollutants in a large wastewater treatment plant: What are the benefits of an advanced treatment by activated carbon adsorption in comparison to conventional treatment?, Chemosphere. 218 (2019) 1050–1060. https://doi.org/10.1016/j.chemosphere.2018.11.182
[115] A.J. Alkhatib, K. Al Zailaey, Medical and environmental applications of activated charcoal: review article, Eur. Sci. J. 11 (2015) 50–56
[116] X. Wang, N. Zhu, B. Yin, Preparation of sludge-based activated carbon and its application in dye wastewater treatment, J. Hazard. Mater. 153 (2008) 22–27. https://doi.org/10.1016/j.jhazmat.2007.08.011