Bioinspired Nano-Engineering for Plasmon-Enhanced Biosensing Applications

$30.00

Bioinspired Nano-Engineering for Plasmon-Enhanced Biosensing Applications

Seemesh Bhaskar, Sai Sathish Ramamurthy

Recently, interdisciplinary applications are being benefited from functional nanomaterials synthesized using pragmatic bioinspired approaches. Although such bioinspired nano-engineering is gaining the interest of the scientific community, their relevance in the development of plasmon-enhanced biosensing frameworks is seldom discussed. In this chapter, the utility of biopolymers and proteins as excellent candidates for nano-engineering is presented. Case studies where the resulting nanomaterials via frugal approaches are used for surface plasmon-coupled emission (SPCE) based biosensing technologies are highlighted. The advantages of biopolymers such as lycoat, kollidon® and gelucire® as well as proteins such as sesame, castor, sericin and silkworm protein for nanofabrication is presented along with their potential towards development of SPCE based biosensing platforms.

Keywords
Nanomaterials, Bioinspired Nanosynthesis, Plasmonics, Surface Plasmon-Coupled Emission, Biosensing

Published online 2/10/2024, 29 pages

Citation: Seemesh Bhaskar, Sai Sathish Ramamurthy, Bioinspired Nano-Engineering for Plasmon-Enhanced Biosensing Applications, Materials Research Foundations, Vol. 161, pp 153-181, 2024

DOI: https://doi.org/10.21741/9781644902998-6

Part of the book on Nanoparticle Toxicity and Compatibility

References
[1] S. Malik, K. Muhammad, Y. Waheed, Nanotechnology: A Revolution in Modern Industry, Molecules. 28 (2023). https://doi.org/10.3390/molecules28020661
[2] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine, Molecules. 25 (2020). https://doi.org/10.3390/molecules25010112
[3] P. Thakur, A. Thakur, Introduction to Nanotechnology, in: Synthesis and Applications of Nanoparticles, 2022. https://doi.org/10.1007/978-981-16-6819-7_1
[4] M.T. Barako, V. Gambin, J. Tice, Integrated nanomaterials for extreme thermal management: A perspective for aerospace applications, Nanotechnology. 29 (2018). https://doi.org/10.1088/1361-6528/aaabe1
[5] H. Xin, B. Namgung, L.P. Lee, Nanoplasmonic optical antennas for life sciences and medicine, Nat Rev Mater. (2018). https://doi.org/10.1038/s41578-018-0033-8
[6] W.J. Stark, P.R. Stoessel, W. Wohlleben, A. Hafner, Industrial applications of nanoparticles, Chem Soc Rev. 44 (2015) 5793–5805. https://doi.org/10.1039/c4cs00362d
[7] I. Khan, K. Saeed, I. Khan, Nanoparticles: Properties, applications and toxicities, Arabian Journal of Chemistry. (2017). https://doi.org/10.1016/j.arabjc.2017.05.011
[8] F.J. Heiligtag, M. Niederberger, The fascinating world of nanoparticle research, Materials Today. 16 (2013) 262–271. https://doi.org/10.1016/j.mattod.2013.07.004
[9] A. Rai, S. Bhaskar, K.M. Ganesh, S.S. Ramamurthy, Hottest Hotspots from the Coldest Cold: Welcome to Nano 4.0, ACS Appl Nano Mater. 5 (2022). https://doi.org/10.1021/acsanm.2c02556
[10] M. Moronshing, S. Bhaskar, S. Mondal, S.S. Ramamurthy, C. Subramaniam, Surface-enhanced Raman scattering platform operating over wide pH range with minimal chemical enhancement effects: Test case of tyrosine, Journal of Raman Spectroscopy. 50 (2019). https://doi.org/10.1002/jrs.5587
[11] P.J. Arathi, B. Seemesh, R.K.R. G., S.K. P., V. Ramanathan, Disulphide linkage: To get cleaved or not? Bulk and nano copper based SERS of cystine, Spectrochim Acta A Mol Biomol Spectrosc. 196 (2018). https://doi.org/10.1016/j.saa.2018.02.010
[12] S.A. Mazari, E. Ali, R. Abro, F.S.A. Khan, I. Ahmed, M. Ahmed, S. Nizamuddin, T.H. Siddiqui, N. Hossain, N.M. Mubarak, A. Shah, Nanomaterials: Applications, waste-handling, environmental toxicities, and future challenges – A review, J Environ Chem Eng. 9 (2021). https://doi.org/10.1016/j.jece.2021.105028
[13] M. Aflori, Smart nanomaterials for biomedical applications—a review, Nanomaterials. 11 (2021). https://doi.org/10.3390/nano11020396
[14] M. Freeda, T.D. Subash, Comparision of Photoluminescence studies of Lanthanum, Terbium doped Calcium Aluminate nanophosphors (CaAl2O4: La, CaAl2O4: Tb) by sol-gel method., in: Mater Today Proc, 2017. https://doi.org/10.1016/j.matpr.2017.02.134
[15] K. Shahane, M. Kshirsagar, S. Tambe, D. Jain, S. Rout, M.K.M. Ferreira, S. Mali, P. Amin, P.P. Srivastav, J. Cruz, R.R. Lima, An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L., Pharmaceuticals. 16 (2023) 611. https://doi.org/10.3390/ph16040611
[16] K.M. Ganesh, A. Rai, S. Bhaskar, N. Reddy, S.S. Ramamurthy, Plasmon-enhanced fluorescence from synergistic engineering of graphene oxide and sharp-edged silver nanorods mediated with castor protein for cellphone-based attomolar sensing, J Lumin. 260 (2023). https://doi.org/10.1016/j.jlumin.2023.119835
[17] S. Bhaskar, Biosensing Technologies: A Focus Review on Recent Advancements in Surface Plasmon Coupled Emission, Micromachines (Basel). 14 (2023). https://doi.org/10.3390/mi14030574
[18] S.A. Maier, Plasmonics: Fundamentals and applications, 2007. https://doi.org/10.1007/0-387-37825-1
[19] E. Ozbay, Plasmonics: Merging photonics and electronics at nanoscale dimensions, Science (1979). 311 (2006). https://doi.org/10.1126/science.1114849
[20] S.A. Maier, H.A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J Appl Phys. 98 (2005). https://doi.org/10.1063/1.1951057
[21] D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nat Photonics. 4 (2010). https://doi.org/10.1038/nphoton.2009.282
[22] S. Bhaskar, S.M. Lis S, S. Kanvah, S. Bhaktha B. N., S.S. Ramamurthy, Single-Molecule Cholesterol Sensing by Integrating Silver Nanowire Propagating Plasmons and Graphene Oxide π-Plasmons on a Photonic Crystal-Coupled Emission Platform, ACS Applied Optical Materials. 1 (2023). https://doi.org/10.1021/acsaom.2c00026
[23] S. Bhaskar, M. Moronshing, V. Srinivasan, P.K. Badiya, C. Subramaniam, S.S. Ramamurthy, Silver Soret Nanoparticles for Femtomolar Sensing of Glutathione in a Surface Plasmon-Coupled Emission Platform, ACS Appl Nano Mater. 3 (2020). https://doi.org/10.1021/acsanm.0c00470
[24] J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation, Nat Mater. 9 (2010). https://doi.org/10.1038/nmat2630
[25] A. Rai, S. Bhaskar, K.M. Ganesh, S.S. Ramamurthy, Engineering of coherent plasmon resonances from silver soret colloids, graphene oxide and Nd2O3 nanohybrid architectures studied in mobile phone-based surface plasmon-coupled emission platform, Mater Lett. 304 (2021). https://doi.org/10.1016/j.matlet.2021.130632
[26] G. V. Naik, V.M. Shalaev, A. Boltasseva, Alternative plasmonic materials: Beyond gold and silver, Advanced Materials. 25 (2013). https://doi.org/10.1002/adma.201205076
[27] J.R. Lakowicz, Plasmonics in biology and plasmon-controlled fluorescence, Plasmonics. 1 (2006). https://doi.org/10.1007/s11468-005-9002-3
[28] J.R. Lakowicz, Radiative decay engineering 5: Metal-enhanced fluorescence and plasmon emission, Anal Biochem. 337 (2005). https://doi.org/10.1016/j.ab.2004.11.026
[29] J.R. Lakowicz, Principles of fluorescence spectroscopy, 2006. https://doi.org/10.1007/978-0-387-46312-4
[30] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructures, Phys Rev Lett. 76 (1996). https://doi.org/10.1103/PhysRevLett.76.4773
[31] S. Bhaskar, S.S. Ramamurthy, Performance Enhancement of Light Emitting Radiating Dipoles (LERDs) Using Surface Plasmon-Coupled and Photonic Crystal- Coupled Emission Platforms, in: Organic and Inorganic Light Emitting Diodes: Reliability Issues and Performance Enhancement, 2023. https://doi.org/10.1201/9781003340577-8
[32] A. Rai, S. Bhaskar, S.S. Ramamurthy, Plasmon-Coupled Directional Emission from Soluplus-Mediated AgAu Nanoparticles for Attomolar Sensing Using a Smartphone, ACS Appl Nano Mater. 4 (2021). https://doi.org/10.1021/acsanm.1c00841
[33] S. Bhaskar, V. Srinivasan, S.S. Ramamurthy, Nd2O3-Ag Nanostructures for Plasmonic Biosensing, Antimicrobial, and Anticancer Applications, ACS Appl Nano Mater. (2022). https://doi.org/10.1021/acsanm.2c04643
[34] A. Rai, S. Bhaskar, N. Reddy, S.S. Ramamurthy, Cellphone-Aided Attomolar Zinc Ion Detection Using Silkworm Protein-Based Nanointerface Engineering in a Plasmon-Coupled Dequenched Emission Platform, ACS Sustain Chem Eng. 9 (2021). https://doi.org/10.1021/acssuschemeng.1c05437
[35] Y. Zhang, K. Poon, G.S.P. Masonsong, Y. Ramaswamy, G. Singh, Sustainable Nanomaterials for Biomedical Applications, Pharmaceutics. 15 (2023). https://doi.org/10.3390/pharmaceutics15030922
[36] J.R. Lakowicz, Radiative decay engineering 3. Surface plasmon-coupled directional emission, Anal Biochem. 324 (2004). https://doi.org/10.1016/j.ab.2003.09.039
[37] S. Bhaskar, S.S. Ramamurthy, High refractive index dielectric TiO2and graphene oxide as salient spacers for > 300-fold enhancements, in: Proceedings of 2021 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience and Nanotechnology, 5NANO 2021, 2021. https://doi.org/10.1109/5NANO51638.2021.9491131
[38] S. Bhaskar, S.S. Ramamurthy, Mobile Phone-Based Picomolar Detection of Tannic Acid on Nd2O3 Nanorod-Metal Thin-Film Interfaces, ACS Appl Nano Mater. 2 (2019). https://doi.org/10.1021/acsanm.9b00987
[39] S. Bhaskar, D. Thacharakkal, S.S. Ramamurthy, C. Subramaniam, Metal-Dielectric Interfacial Engineering with Mesoporous Nano-Carbon Florets for 1000-Fold Fluorescence Enhancements: Smartphone-Enabled Visual Detection of Perindopril Erbumine at a Single-molecular Level, ACS Sustain Chem Eng. 11 (2023). https://doi.org/10.1021/acssuschemeng.2c04064
[40] A. Rai, S. Bhaskar, K.M. Ganesh, S.S. Ramamurthy, Gelucire®-mediated heterometallic AgAu nanohybrid engineering for femtomolar cysteine detection using smartphone-based plasmonics technology, Mater Chem Phys. 279 (2022). https://doi.org/10.1016/j.matchemphys.2022.125747
[41] C.D. Geddes, J.R. Lakowicz, Metal-Enhanced Fluorescence, in: J Fluoresc, 2002. https://doi.org/10.1023/A:1016875709579
[42] J.R. Lakowicz, K. Ray, M. Chowdhury, H. Szmacinski, Y. Fu, J. Zhang, K. Nowaczyk, Plasmon-controlled fluorescence: A new paradigm in fluorescence spectroscopy, Analyst. 133 (2008). https://doi.org/10.1039/b802918k
[43] S. Bhaskar, P. Das, V. Srinivasan, S. Bhaktha B. N., S.S. Ramamurthy, Bloch Surface Waves and Internal Optical Modes-Driven Photonic Crystal-Coupled Emission Platform for Femtomolar Detection of Aluminum Ions, Journal of Physical Chemistry C. 124 (2020). https://doi.org/10.1021/acs.jpcc.9b11092
[44] S. Bhaskar, A. Rai, K.M. Ganesh, R. Reddy, N. Reddy, S.S. Ramamurthy, Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface, Langmuir. 38 (2022). https://doi.org/10.1021/acs.langmuir.2c01894
[45] V.S.K. Cheerala, K.M. Ganesh, S. Bhaskar, S.S. Ramamurthy, S.C. Neelakantan, Smartphone-Based Attomolar Cyanide Ion Sensing Using Au-Graphene Oxide Cryosoret Nanoassembly and Benzoxazolium-Based Fluorophore in a Surface Plasmon-Coupled Enhanced Fluorescence Interface, Langmuir. (2023). https://doi.org/10.1021/acs.langmuir.3c00801
[46] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023) 710. https://doi.org/10.3390/molecules28020710
[47] J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors, Nat Mater. 7 (2008). https://doi.org/10.1038/nmat2162
[48] A. Rai, S. Bhaskar, G. Kalathur Mohan, S.S. Ramamurthy, Biocompatible Gellucire ® Inspired Bimetallic Nanohybrids for Augmented Fluorescence Emission Based on Graphene Oxide Interfacial Plasmonic Architectures , ECS Trans. 107 (2022). https://doi.org/10.1149/10701.4527ecst
[49] M. Nasrollahzadeh, M. Sajjadi, S.M. Sajadi, Z. Issaabadi, Green Nanotechnology, in: Interface Science and Technology, 2019. https://doi.org/10.1016/B978-0-12-813586-0.00005-5
[50] A. Gałuszka, Z. Migaszewski, J. Namieśnik, The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, TrAC – Trends in Analytical Chemistry. 50 (2013). https://doi.org/10.1016/j.trac.2013.04.010
[51] R.A. Soni, M.A. Rizwan, S. Singh, Opportunities and potential of green chemistry in nanotechnology, Nanotechnology for Environmental Engineering. 7 (2022). https://doi.org/10.1007/s41204-022-00233-5
[52] H.P.S. Abdul Khalil, A.H. Bhat, A.F. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: A review, Carbohydr Polym. 87 (2012). https://doi.org/10.1016/j.carbpol.2011.08.078
[53] F. Khan, M. Shariq, M. Asif, M.A. Siddiqui, P. Malan, F. Ahmad, Green Nanotechnology: Plant-Mediated Nanoparticle Synthesis and Application, Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12040673
[54] A. Rai, S. Bhaskar, K.M. Ganesh, S.S. Ramamurthy, Cellphone-based attomolar tyrosine sensing based on Kollidon-mediated bimetallic nanorod in plasmon-coupled directional and polarized emission architecture, Mater Chem Phys. 285 (2022). https://doi.org/10.1016/j.matchemphys.2022.126129
[55] A. Rai, S. Bhaskar, P. Battampara, N. Reddy, S. Sathish Ramamurthy, Integrated Photo-Plasmonic coupling of bioinspired Sharp-Edged silver Nano-particles with Nano-films in extended cavity functional interface for Cellphone-aided femtomolar sensing, Mater Lett. 316 (2022). https://doi.org/10.1016/j.matlet.2022.132025
[56] S. Bhaskar, R. Patra, N.C.S.S. Kowshik, K.M. Ganesh, V. Srinivasan, P. Chandran S, S.S. Ramamurthy, Nanostructure effect on quenching and dequenching of quantum emitters on surface plasmon-coupled interface: A comparative analysis using gold nanospheres and nanostars, Physica E Low Dimens Syst Nanostruct. 124 (2020). https://doi.org/10.1016/j.physe.2020.114276
[57] S. Kumar, Z. Wang, W. Zhang, X. Liu, M. Li, G. Li, B. Zhang, R. Singh, Optically Active Nanomaterials and Its Biosensing Applications—A Review, Biosensors (Basel). 13 (2023). https://doi.org/10.3390/bios13010085
[58] A.E. Nel, L. Mädler, D. Velegol, T. Xia, E.M.V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, M. Thompson, Understanding biophysicochemical interactions at the nano-bio interface, Nat Mater. 8 (2009). https://doi.org/10.1038/nmat2442
[59] K. Illath, S. Kar, P. Gupta, A. Shinde, S. Wankhar, F.G. Tseng, K.T. Lim, M. Nagai, T.S. Santra, Microfluidic nanomaterials: From synthesis to biomedical applications, Biomaterials. 280 (2022). https://doi.org/10.1016/j.biomaterials.2021.121247
[60] A.R. Sadrolhosseini, S. Shafie, Y.W. Fen, Nanoplasmonic sensor based on surface plasmon-coupled emission: Review, Applied Sciences (Switzerland). 9 (2019). https://doi.org/10.3390/app9071497
[61] Surface Plasmon Enhanced, Coupled and Controlled Fluorescence, 2017. https://doi.org/10.1002/9781119325161
[62] S. Bhaskar, A. Rai, G. Kalathur Mohan, S.S. Ramamurthy, Mobile Phone Camera-Based Detection of Surface Plasmon-Coupled Fluorescence from Streptavidin Magnetic Nanoparticles and Graphene Oxide Hybrid Nanointerface, ECS Trans. 107 (2022). https://doi.org/10.1149/10701.3223ecst
[63] S. Bhaskar, N.C.S.S. Kowshik, S.P. Chandran, S.S. Ramamurthy, Femtomolar Detection of Spermidine Using Au Decorated SiO2 Nanohybrid on Plasmon-Coupled Extended Cavity Nanointerface: A Smartphone-Based Fluorescence Dequenching Approach, Langmuir. 36 (2020). https://doi.org/10.1021/acs.langmuir.9b03869
[64] S. Bhaskar, A.K. Singh, P. Das, P. Jana, S. Kanvah, S. Bhaktha B N, S.S. Ramamurthy, Superior Resonant Nanocavities Engineering on the Photonic Crystal-Coupled Emission Platform for the Detection of Femtomolar Iodide and Zeptomolar Cortisol, ACS Appl Mater Interfaces. 12 (2020). https://doi.org/10.1021/acsami.0c07515
[65] Y. Xiong, S. Shepherd, J. Tibbs, A. Bacon, W. Liu, L.D. Akin, T. Ayupova, S. Bhaskar, B.T. Cunningham, Photonic Crystal Enhanced Fluorescence: A Review on Design Strategies and Applications, Micromachines (Basel). 14 (2023). https://doi.org/10.3390/mi14030668
[66] S. Bhaskar, P. Das, V. Srinivasan, S.B.N. Bhaktha, S.S. Ramamurthy, Plasmonic-Silver Sorets and Dielectric-Nd2O3 nanorods for Ultrasensitive Photonic Crystal-Coupled Emission, Mater Res Bull. 145 (2022). https://doi.org/10.1016/j.materresbull.2021.111558
[67] S. Rathnakumar, S. Bhaskar, P.K. Badiya, V. Sivaramakrishnan, V. Srinivasan, S.S. Ramamurthy, Electrospun PVA nanofibers doped with titania nanoparticles in plasmon-coupled fluorescence studies: An eco-friendly and cost-effective transition from 2D nano thin films to 1D nanofibers, MRS Commun. 13 (2023). https://doi.org/10.1557/s43579-023-00342-5
[68] S. Rathnakumar, S. Bhaskar, A. Rai, D.V.V. Saikumar, N.S.V. Kambhampati, V. Sivaramakrishnan, S.S. Ramamurthy, Plasmon-Coupled Silver Nanoparticles for Mobile Phone-Based Attomolar Sensing of Mercury Ions, ACS Appl Nano Mater. 4 (2021). https://doi.org/10.1021/acsanm.1c01347
[69] R.B.M. de Almeida, D.B. Barbosa, M.R. do Bomfim, J.A.O. Amparo, B.S. Andrade, S.L. Costa, J.M. Campos, J.N. Cruz, C.B.R. Santos, F.H.A. Leite, M.B. Botura, Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies, Pharmaceuticals. 16 (2023) 95. https://doi.org/10.3390/ph16010095
[70] S. Bhaskar, S.S. Ramamurthy, Synergistic coupling of titanium carbonitride nanocubes and graphene oxide for 800-fold fluorescence enhancements on smartphone based surface plasmon-coupled emission platform, Mater Lett. 298 (2021). https://doi.org/10.1016/j.matlet.2021.130008
[71] S. Bhaskar, P. Das, M. Moronshing, A. Rai, C. Subramaniam, S.B.N. Bhaktha, S.S. Ramamurthy, Photoplasmonic assembly of dielectric-metal, Nd2O3-Gold soret nanointerfaces for dequenching the luminophore emission, Nanophotonics. 10 (2021). https://doi.org/10.1515/nanoph-2021-0124
[72] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front Microbiol. 14 (2023) 1188743. https://doi.org/10.3389/fmicb.2023.1188743
[73] S. Bhaskar, N.S. Visweswar Kambhampati, K.M. Ganesh, M.S. Pa, V. Srinivasan, S.S. Ramamurthy, Metal-Free, Graphene Oxide-Based Tunable Soliton and Plasmon Engineering for Biosensing Applications, ACS Appl Mater Interfaces. 13 (2021). https://doi.org/10.1021/acsami.1c01024
[74] R. Dutta, T.D. Subash, N. Paitya, DC performance analysis of III–V/Si heterostructure double gate triple material PiN tunneling graphene nanoribbon FET circuits with quantum mechanical effects, J Comput Electron. 20 (2021). https://doi.org/10.1007/s10825-020-01649-5
[75] R. Dutta, T.D. Subash, N. Paitya, InAs/Si Hetero-Junction Channel to Enhance the Performance of DG-TFET with Graphene Nanoribbon: an Analytical Model, Silicon. 13 (2021). https://doi.org/10.1007/s12633-020-00546-7
[76] A.N. Grigorenko, M. Polini, K.S. Novoselov, Graphene plasmonics, Nat Photonics. 6 (2012). https://doi.org/10.1038/nphoton.2012.262
[77] M. Jablan, H. Buljan, M. Soljačić, Plasmonics in graphene at infrared frequencies, Phys Rev B Condens Matter Mater Phys. 80 (2009). https://doi.org/10.1103/PhysRevB.80.245435
[78] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Graphene plasmonics for tunable terahertz metamaterials, Nat Nanotechnol. 6 (2011). https://doi.org/10.1038/nnano.2011.146
[79] F.S. Alves, J.N. Cruz, I.N. de Farias Ramos, D.L. do Nascimento Brandão, R.N. Queiroz, G.V. da Silva, G.V. da Silva, M.F. Dolabela, M.L. da Costa, A.S. Khayat, J. de Arimatéia Rodrigues do Rego, D. do Socorro Barros Brasil, Evaluation of Antimicrobial Activity and Cytotoxicity Effects of Extracts of Piper nigrum L. and Piperine, Separations. 10 (2023) 21. https://doi.org/10.3390/separations10010021
[80] V. Polshettiwar, R.S. Varma, Green chemistry by nano-catalysis, Green Chemistry. 12 (2010). https://doi.org/10.1039/b921171c
[81] V.C. Thipe, A.R. Karikachery, P. Çakılkaya, U. Farooq, H.H. Genedy, N. Kaeokhamloed, D.H. Phan, R. Rezwan, G. Tezcan, E. Roger, K. V. Katti, Green nanotechnology—An innovative pathway towards biocompatible and medically relevant gold nanoparticles, J Drug Deliv Sci Technol. 70 (2022). https://doi.org/10.1016/j.jddst.2022.103256
[82] S.S. Salem, A mini review on green nanotechnology and its development in biological effects, Arch Microbiol. 205 (2023). https://doi.org/10.1007/s00203-023-03467-2
[83] S. Karthick Raja Namasivayam, S. Srinivasan, K. Samrat, B. Priyalakshmi, R. Dinesh Kumar, A. Bharani, R. Ganesh Kumar, M. Kavisri, M. Moovendhan, Sustainable approach to manage the vulnerable rodents using eco-friendly green rodenticides formulation through nanotechnology principles – A review, Process Safety and Environmental Protection. 171 (2023). https://doi.org/10.1016/j.psep.2023.01.050
[84] S. Bognár, P. Putnik, D.Š. Merkulov, Sustainable Green Nanotechnologies for Innovative Purifications of Water: Synthesis of the Nanoparticles from Renewable Sources, Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12020263
[85] S. Trombino, R. Sole, M.L. Di Gioia, D. Procopio, F. Curcio, R. Cassano, Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis, Molecules. 28 (2023). https://doi.org/10.3390/molecules28052107