Cardiovascular Toxicity of Nanoparticles


Cardiovascular Toxicity of Nanoparticles

Abhinay Thakur, Ashish Kumar

The integration of nanotechnology into various industries has raised concerns about potential health risks, particularly regarding cardiovascular toxicity. This book chapter comprehensively examines the impact of nanoparticles on the cardiovascular system, elucidating the underlying mechanisms and critical factors influencing toxicity. It reviews the current state of research on nanoparticle exposure via different routes, such as inhalation and ingestion, and their subsequent distribution in the cardiovascular system. Furthermore, the chapter delves into the cellular and molecular events triggering adverse cardiovascular effects, including oxidative stress, inflammation, and endothelial dysfunction. Understanding these toxicological aspects is crucial in developing effective safety guidelines and tailored nanomedical interventions for safer nanotechnology applications.

Nanoparticles, Cardiovascular, Toxicity, Health Risks, Nanotechnology

Published online 2/10/2024, 39 pages

Citation: Abhinay Thakur, Ashish Kumar, Cardiovascular Toxicity of Nanoparticles, Materials Research Foundations, Vol. 161, pp 83-121, 2024


Part of the book on Nanoparticle Toxicity and Compatibility

[1] S. Rizal, H.P.S. Abdul Khalil, A.A. Oyekanmi, N.G. Olaiya, C.K. Abdullah, E.B. Yahya, T. Alfatah, F.A. Sabaruddin, A.A. Rahman, Cotton wastes functionalized biomaterials from micro to nano: A cleaner approach for a sustainable environmental application, Polymers (Basel). 13 (2021) 1–36.
[2] I. Safarik, K. Horska, K. Pospiskova, M. Safarikova, Magnetically Responsive Activated Carbons for Bio – and Environmental Applications, Int. Rev. Chem. Eng. 4 (2012) 346–352
[3] M.. Tadda, A. Ahsan, A. Shifu, M. ElSergany, T. Arunkumar, B. Jose, M. Razzaque, Abdur, N.. Daud, Nik, A Review on Activated Carbon from Biowaste : Process , Application and Prospects, J. Adv. Civ. Eng. Pract. Res. 5 (2018) 82–83
[4] Y. Wang, J. Wang, X. Zhang, D. Bhattacharyya, E.M. Sabolsky, Quantifying Environmental and Economic Impacts of Highly Porous Activated Carbon from Lignocellulosic Biomass for High-Performance Supercapacitors, Energies. 15 (2022).
[5] M. Bernardo, N. Lapa, I. Matos, I. Fonseca, Critical discussion on activated carbons from bio-wastes – environmental risk assessment, Bol. Del Grup. Español Del Carbón. 40 (2011) 18–21.
[6] S. Lahreche, I. Moulefera, A. El Kebir, L. Sabantina, M. Kaid, A. Benyoucef, Application of Activated Carbon Adsorbents Prepared from Prickly Pear Fruit Seeds and a Conductive Polymer Matrix to Remove Congo Red from Aqueous Solutions, Fibers. 10 (2022) 1–19.
[7] N.D. Mu’azu, N. Jarrah, M. Zubair, O. Alagha, Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: A review, Int. J. Environ. Res. Public Health. 14 (2017) 1–34.
[8] L. Pan, Y. Cao, J. Zang, Q. Huang, L. Wang, Y. Zhang, S. Fan, J. Tang, Z. Xie, Preparation of iron-loaded granular activated carbon catalyst and its application in tetracycline antibiotic removal from aqueous solution, Int. J. Environ. Res. Public Health. 16 (2019) 5–7.
[9] K. Shahane, M. Kshirsagar, S. Tambe, D. Jain, S. Rout, M.K.M. Ferreira, S. Mali, P. Amin, P.P. Srivastav, J. Cruz, R.R. Lima, An Updated Review on the Multifaceted Therapeutic Potential of Calendula officinalis L., Pharmaceuticals. 16 (2023) 611.
[10] N.J. Riungu, M. Hesampour, A. Pihlajamaki, M. Manttari, H. Sirén, P.G. Home, G.M. Ndegwa, Investigating Removal of Pesticides From Water By Nanofiltration Membrane Technology, J. Eng. Comput. Appl. Sci. 1 (2012) 50–60
[11] H. Yu, Y.R. Son, H. Yoo, H.G. Cha, H. Lee, H.S. Kim, Chitosan-derived porous activated carbon for the removal of the chemical warfare agent simulant dimethyl methylphosphonate, Nanomaterials. 9 (2019).
[12] J.A. Damasco, S. Ravi, J.D. Perez, D.E. Hagaman, M.P. Melancon, Understanding nanoparticle toxicity to direct a safe-by-design approach in cancer nanomedicine, Nanomaterials. 10 (2020) 1–41.
[13] H. Soonmin, N.A. Kabbashi, Review on activated carbon: Synthesis, properties and applications, Int. J. Eng. Trends Technol. 69 (2021) 124–139.
[14] S. Muzammil, J. Neves Cruz, R. Mumtaz, I. Rasul, S. Hayat, M.A. Khan, A.M. Khan, M.U. Ijaz, R.R. Lima, M. Zubair, Effects of Drying Temperature and Solvents on In Vitro Diabetic Wound Healing Potential of Moringa oleifera Leaf Extracts, Molecules. 28 (2023) 710.
[15] S. Revel-Vilk, G. Chodick, V. Shalev, N. Gadir, Study Design: Development of an Advanced Machine Learning Algorithm for the Early Diagnosis of Gaucher Disease Using Real-World Data , Blood. 136 (2020) 13–14.
[16] A. Souri, M.Y. Ghafour, A.M. Ahmed, F. Safara, A. Yamini, M. Hoseyninezhad, A new machine learning-based healthcare monitoring model for student’s condition diagnosis in Internet of Things environment, Soft Comput. 24 (2020) 17111–17121.
[17] P. Gard, L. Lalanne, A. Ambourg, D. Rousseau, F. Lesueur, C. Frindel, A Secured Smartphone-Based Architecture for Prolonged Monitoring of Neurological Gait, 2018.
[18] B. Al-Salemi, S.A. Mohd Noah, M.J. Ab Aziz, RFBoost: An improved multi-label boosting algorithm and its application to text categorisation, Knowledge-Based Syst. 103 (2016) 104–117.
[19] T. Ha, Y. Jung, J.Y. Kim, S.Y. Park, D.K. Kang, T.H. Kim, Comparison of the diagnostic performance of abbreviated MRI and full diagnostic MRI using a computer-aided diagnosis (CAD) system in patients with a personal history of breast cancer: the effect of CAD-generated kinetic features on reader performance, Clin. Radiol. 74 (2019) 817.e15-817.e21.
[20] P. Chavan, A.K. Singh, G. Kaur, Recent progress in the utilization of industrial waste and by-products of citrus fruits: A review, J. Food Process Eng. 41 (2018).
[21] H.S. Ng, P.E. Kee, H.S. Yim, P.T. Chen, Y.H. Wei, J. Chi-Wei Lan, Recent advances on the sustainable approaches for conversion and reutilization of food wastes to valuable bioproducts, Bioresour. Technol. 302 (2020) 122889.
[22] S.K. Pramanik, F.B. Suja, S.M. Zain, B.K. Pramanik, The anaerobic digestion process of biogas production from food waste: Prospects and constraints, Bioresour. Technol. Reports. 8 (2019) 100310.
[23] R.I. Kosheleva, A.C. Mitropoulos, G.Z. Kyzas, Synthesis of activated carbon from food waste, Environ. Chem. Lett. 17 (2019) 429–438.
[24] G. Rekleitis, K.J. Haralambous, M. Loizidou, K. Aravossis, Utilization of agricultural and livestock waste in anaerobic digestion (A.D): Applying the biorefinery concept in a circular economy, Energies. 13 (2020).
[25] S. Dahiya, A.N. Kumar, J. Shanthi Sravan, S. Chatterjee, O. Sarkar, S.V. Mohan, Food waste biorefinery: Sustainable strategy for circular bioeconomy, Elsevier Ltd, 2018.
[26] W. Peng, A. Pivato, Sustainable Management of Digestate from the Organic Fraction of Municipal Solid Waste and Food Waste Under the Concepts of Back to Earth Alternatives and Circular Economy, Waste and Biomass Valorization. 10 (2019) 465–481.
[27] M.L. Carmo Bastos, J.V. Silva-Silva, J. Neves Cruz, A.R. Palheta da Silva, A.A. Bentaberry-Rosa, G. da Costa Ramos, J.E. de Sousa Siqueira, M.R. Coelho-Ferreira, S. Percário, P. Santana Barbosa Marinho, A.M. do R. Marinho, M. de Oliveira Bahia, M.F. Dolabela, Alkaloid from Geissospermum sericeum Benth. & Hook.f. ex Miers (Apocynaceae) Induce Apoptosis by Caspase Pathway in Human Gastric Cancer Cells, Pharmaceuticals. 16 (2023) 765.
[28] E.M. Meemken, M. Qaim, Organic Agriculture, Food Security, and the Environment, Annu. Rev. Resour. Econ. 10 (2018) 39–63.
[29] K. Spalvins, K. Ivanovs, D. Blumberga, Single cell protein production from waste biomass: Review of various agricultural by-products, Agron. Res. 16 (2018) 1493–1508.
[30] J. Kim, S. Rundle-Thiele, K. Knox, Systematic literature review of best practice in food waste reduction programs, J. Soc. Mark. 9 (2019) 447–466.
[31] Y. Li, Y. Jin, A. Borrion, H. Li, Current status of food waste generation and management in China, Bioresour. Technol. 273 (2019) 654–665.
[32] M.B. Baig, K.H. Al-Zahrani, F. Schneider, G.S. Straquadine, M. Mourad, Food waste posing a serious threat to sustainability in the Kingdom of Saudi Arabia – A systematic review, Saudi J. Biol. Sci. 26 (2019) 1743–1752.
[33] O. Obsa, M. Tadesse, D.G. Kim, Z. Asaye, F. Yimer, M. Gebrehiwot, N. Brüggemann, K. Prost, Organic Waste Generation and Its Valorization Potential through Composting in Shashemene, Southern Ethiopia, Sustain. 14 (2022) 1–19.
[34] N. Bhargava, V.S. Sharanagat, R.S. Mor, K. Kumar, Active and intelligent biodegradable packaging films using food and food waste-derived bioactive compounds: A review, Trends Food Sci. Technol. 105 (2020) 385–401.
[35] C.M. Galanakis, M. Rizou, T.M.S. Aldawoud, I. Ucak, N.J. Rowan, Innovations and technology disruptions in the food sector within the COVID-19 pandemic and post-lockdown era, Trends Food Sci. Technol. 110 (2021) 193–200.
[36] M. Bilal, H.M.N. Iqbal, Sustainable bioconversion of food waste into high-value products by immobilized enzymes to meet bio-economy challenges and opportunities – A review, Food Res. Int. 123 (2019) 226–240.
[37] S.K. Awasthi, S. Sarsaiya, M.K. Awasthi, T. Liu, J. Zhao, S. Kumar, Z. Zhang, Changes in global trends in food waste composting: Research challenges and opportunities, Bioresour. Technol. 299 (2020) 122555.
[38] M. Kumar, X. Xiong, M. He, D.C.W. Tsang, J. Gupta, E. Khan, S. Harrad, D. Hou, Y.S. Ok, N.S. Bolan, Microplastics as pollutants in agricultural soils, Environ. Pollut. 265 (2020).
[39] B. Sharma, B. Vaish, Monika, U.K. Singh, P. Singh, R.P. Singh, Recycling of Organic Wastes in Agriculture: An Environmental Perspective, Int. J. Environ. Res. 13 (2019) 409–429.
[40] A. Thakur, S. Kaya, A.S. Abousalem, S. Sharma, R. Ganjoo, H. Assad, A. Kumar, Computational and experimental studies on the corrosion inhibition performance of an aerial extract of Cnicus Benedictus weed on the acidic corrosion of mild steel, Process Saf. Environ. Prot. 161 (2022) 801–818.
[41] A. Thakur, S. Kaya, A.S. Abousalem, A. Kumar, Experimental, DFT and MC simulation analysis of Vicia Sativa weed aerial extract as sustainable and eco-benign corrosion inhibitor for mild steel in acidic environment, Sustain. Chem. Pharm. 29 (2022) 100785.
[42] C. Dhonchak, N. Agnihotri, A. Kumar, R. Kamal, A. Thakur, A. Kumar, Spectrophotometric Investigation and Computational Studies of Zirconium(IV)-3-hydroxy-2-[1’-phenyl-3’-(p-methoxyphenyl)-4’-pyrazolyl]-4H-chromen-4-one Complex, J. Anal. Chem. 78 (2023) 856–865.
[43] D. Sharma, A. Thakur, M.K. Sharma, R. Sharma, S. Kumar, A. Sihmar, H. Dahiya, G. Jhaa, A. Kumar, A.K. Sharma, H. Om, Effective corrosion inhibition of mild steel using novel 1,3,4-oxadiazole-pyridine hybrids: Synthesis, electrochemical, morphological, and computational insights, Environ. Res. 234 (2023) 116555.
[44] A. Thakur, S. Kaya, A. Kumar, Recent Innovations in Nano Container-Based Self-Healing Coatings in the Construction Industry, Curr. Nanosci. 18 (2021) 203–216.
[45] S. Kaya, A. Thakur, A. Kumar, The role of in Silico/DFT investigations in analyzing dye molecules for enhanced solar cell efficiency and reduced toxicity, J. Mol. Graph. Model. 124 (2023) 108536.
[46] A. Thakur, A. Kumar, Sustainable Inhibitors for Corrosion Mitigation in Aggressive Corrosive Media: A Comprehensive Study, J. Bio- Tribo-Corrosion. 7 (2021) 1–48.
[47] S. Bashir, A. Thakur, H. Lgaz, I.M. Chung, A. Kumar, Computational and experimental studies on Phenylephrine as anti-corrosion substance of mild steel in acidic medium, J. Mol. Liq. 293 (2019) 111539.
[48] Y. Zhou, N. Engler, M. Nelles, Symbiotic relationship between hydrothermal carbonization technology and anaerobic digestion for food waste in China, Bioresour. Technol. 260 (2018) 404–412.
[49] C. Zarbà, G. Chinnici, G. La Via, S. Bracco, B. Pecorino, M. D’amico, Regulatory elements on the circular economy: Driving into the agri-food system, Sustain. 13 (2021).
[50] A. Thakur, A. Kumar, S. Sharma, R. Ganjoo, H. Assad, Computational and experimental studies on the efficiency of Sonchus arvensis as green corrosion inhibitor for mild steel in 0.5 M HCl solution, Mater. Today Proc. 66 (2022) 609–621.
[51] A. Thakur, A. Kumar, Recent trends in nanostructured carbon-based electrochemical sensors for the detection and remediation of persistent toxic substances in real-time analysis, Mater. Res. Express. 10 (2023) 034001.
[52] C. Dhonchak, N. Agnihotri, A. Kumar, A. Thakur, A. Kumar, Computational Insights in the Spectrophotometrically Analyzed Niobium (V)-3-Hydroxy-2-(4-methylphenyl)-4H-chromen-4-one Complex using DFT Method, Biointerface Res. Appl. Chem. 13 (2023) 357.
[53] A. Thakur, A. Kumar, R. Zhang, Alcoholic Beverage Purification Applications of Activated Carbon, in: C. Verma, M.A. Quraishi (Eds.), Act. Carbon, The Royal Society of Chemistry, 2023: pp. 152–178.
[54] A. Thakur, S. Sharma, R. Ganjoo, H. Assad, A. Kumar, Anti-Corrosive Potential of the Sustainable Corrosion Inhibitors Based on Biomass Waste: A Review on Preceding and Perspective Research, J. Phys. Conf. Ser. 2267 (2022) 012079.
[55] A. Kumar, A. Thakur, Overview of the properties, applicability, and recent advancements of some natural products used as potential inhibitors in various corrosive systems, in: Handb. Res. Corros. Sci. Eng., 2023: pp. 275–310.
[56] A. Thakur, A. Kumar, Recent advances on rapid detection and remediation of environmental pollutants utilizing nanomaterials-based (bio)sensors, Sci. Total Environ. 834 (2022) 155219.
[57] G. Parveen, S. Bashir, A. Thakur, S.K. Saha, P. Banerjee, A. Kumar, Experimental and computational studies of imidazolium based ionic liquid 1-methyl- 3-propylimidazolium iodide on mild steel corrosion in acidic solution, Mater. Res. Express. 7 (2019) 016510.
[58] E. Saborowski, A. Dittes, T. Lindner, T. Lampke, Nickel-aluminum thermal spray coatings as adhesion promoter and susceptor for inductively joined polymer-metal hybrids, Polymers (Basel). 13 (2021).
[59] M. Nur‐e‐alam, M.K. Basher, M. Vasiliev, N. Das, Physical vapor‐deposited silver (Ag)‐based metal‐dielectric nanocomposites for thin‐film and coating applications, Appl. Sci. 11 (2021).
[60] S. Bagherifard, S. Slawik, I. Fernández-Pariente, C. Pauly, F. Mücklich, M. Guagliano, Nanoscale surface modification of AISI 316L stainless steel by severe shot peening, Mater. Des. 102 (2016) 68–77.
[61] A. Thakur, S. Kaya, A. Kumar, Recent Trends in the Characterization and Application Progress of Nano-Modified Coatings in Corrosion Mitigation of Metals and Alloys, Appl. Sci. 13 (2023) 730.
[62] S. Bashir, H. Lgaz, I.M. Chung, A. Kumar, Effective green corrosion inhibition of aluminium using analgin in acidic medium: an experimental and theoretical study, Chem. Eng. Commun. 208 (2021) 1121–1130.
[63] S. Bashir, A. Thakur, H. Lgaz, I.M. Chung, A. Kumar, Corrosion Inhibition Performance of Acarbose on Mild Steel Corrosion in Acidic Medium: An Experimental and Computational Study, Arab. J. Sci. Eng. 45 (2020) 4773–4783.
[64] A. Thakur, A. Kumar, Computational insights into the corrosion inhibition potential of some pyridine derivatives: A DFT approach, Eur. J. Chem. 14 (2023) 246–253.
[65] A. Thakur, A. Kumar, S. Kaya, R. Marzouki, F. Zhang, L. Guo, Recent Advancements in Surface Modification, Characterization and Functionalization for Enhancing the Biocompatibility and Corrosion Resistance of Biomedical Implants, Coatings. 12 (2022) 1459.
[66] S. Bashir, A. Thakur, H. Lgaz, I.M. Chung, A. Kumar, Corrosion inhibition efficiency of bronopol on aluminium in 0.5 M HCl solution: Insights from experimental and quantum chemical studies, Surfaces and Interfaces. 20 (2020) 100542.
[67] D. Sharma, A. Thakur, M.K. Sharma, K. Jakhar, A. Kumar, A.K. Sharma, O.M. Hari, Synthesis, Electrochemical, Morphological, Computational and Corrosion Inhibition Studies of 3-(5-Naphthalen-2-yl-[1,3,4]oxadiazol-2-yl)-pyridine against Mild Steel in 1 M HCl, Asian J. Chem. 35 (2023) 1079–1088.
[68] C. Verma, A. Thakur, R. Ganjoo, S. Sharma, H. Assad, A. Kumar, M.A. Quraishi, A. Alfantazi, Coordination bonding and corrosion inhibition potential of nitrogen-rich heterocycles: Azoles and triazines as specific examples, Coord. Chem. Rev. 488 (2023) 215177.
[69] A. Kumar, A. Thakur, Encapsulated nanoparticles in organic polymers for corrosion inhibition, Elsevier Inc., 2020.
[70] S. Sharma, R. Ganjoo, S. Kr. Saha, N. Kang, A. Thakur, H. Assad, V. Sharma, A. Kumar, Experimental and theoretical analysis of baclofen as a potential corrosion inhibitor for mild steel surface in HCl medium, J. Adhes. Sci. Technol. 36 (2022) 2067–2092.
[71] A. Thakur, A. Kumar, S. Kaya, D.V.N. Vo, A. Sharma, Suppressing inhibitory compounds by nanomaterials for highly efficient biofuel production: A review, Fuel. 312 (2022) 122934.
[72] S.K. Jaganathan, E. Supriyanto, S. Murugesan, A. Balaji, M.K. Asokan, Biomaterials in cardiovascular research: Applications and clinical implications, Biomed Res. Int. 2014 (2014).
[73] A. Kilic, Artificial Intelligence and Machine Learning in Cardiovascular Health Care, Ann. Thorac. Surg. 109 (2020) 1323–1329.
[74] K. Zhang, T. Liu, J.A. Li, J.Y. Chen, J. Wang, N. Huang, Surface modification of implanted cardiovascular metal stents: From antithrombosis and antirestenosis to endothelialization, 2014.
[75] J. lei Wang, B. chao Li, Z. jun Li, K. feng Ren, L. jiang Jin, S. miao Zhang, H. Chang, Y. xin Sun, J. Ji, Electropolymerization of dopamine for surface modification of complex-shaped cardiovascular stents, Biomaterials. 35 (2014) 7679–7689.
[76] S. Aryal, A. Alimadadi, I. Manandhar, B. Joe, X. Cheng, Machine Learning Strategy for Gut Microbiome-Based Diagnostic Screening of Cardiovascular Disease, Hypertension. 76 (2020) 1555–1562.
[77] M.S. Islam, H. Muhamed Umran, S.M. Umran, M. Karim, Intelligent Healthcare Platform: Cardiovascular Disease Risk Factors Prediction Using Attention Module Based LSTM, 2019 2nd Int. Conf. Artif. Intell. Big Data, ICAIBD 2019. (2019) 167–175.
[78] N. Louridi, M. Amar, B. El Ouahidi, Identification of Cardiovascular Diseases Using Machine Learning, 7th Mediterr. Congr. Telecommun. 2019, C. 2019. (2019).
[79] J. Wu, M. Dong, S. Santos, C. Rigatto, Y. Liu, F. Lin, Lab-on-a-chip platforms for detection of cardiovascular disease and cancer biomarkers, Sensors (Switzerland). 17 (2017).
[80] M. Moravej, D. Mantovani, Biodegradable metals for cardiovascular stent application: Interests and new opportunities, Int. J. Mol. Sci. 12 (2011) 4250–4270.
[81] P. Shyamkumar, P. Rai, S. Oh, M. Ramasamy, R.E. Harbaugh, V. Varadan, Wearable wireless cardiovascular monitoring using textile-based nanosensor and nanomaterial systems, Electron. 3 (2014) 504–520.
[82] L. Panzella, F. Moccia, R. Nasti, S. Marzorati, L. Verotta, A. Napolitano, Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies, Front. Nutr. 7 (2020) 1–27.
[83] K. Arumugam, M. Naved, P.P. Shinde, O. Leiva-Chauca, A. Huaman-Osorio, T. Gonzales-Yanac, Multiple disease prediction using Machine learning algorithms, Mater. Today Proc. 80 (2023) 3682–3685.
[84] M. Alshamrani, Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials, Polymers (Basel). 14 (2022) 1221.
[85] D. Chandna, Diagnosis of Heart Disease Using Data Mining Algorithm, 5 (2014) 1678–1680
[86] K. Munir, A. Biesiekierski, C. Wen, Y. Li, Surface modifications of metallic biomaterials, LTD, 2020.
[87] S.K. Metkar, K. Girigoswami, Diagnostic biosensors in medicine – A review, Biocatal. Agric. Biotechnol. 17 (2019) 271–283.
[88] C. Li, C. Guo, V. Fitzpatrick, A. Ibrahim, M.J. Zwierstra, P. Hanna, A. Lechtig, A. Nazarian, S.J. Lin, D.L. Kaplan, Design of biodegradable, implantable devices towards clinical translation, Nat. Rev. Mater. 5 (2020) 61–81.
[89] V. R, S. G, R. Velusamy, S. Ramakrishna, An in-vitro evaluation study on the effects of surface modification via physical vapor deposition on the degradation rates of magnesium-based biomaterials, Surf. Coatings Technol. 411 (2021) 126972.
[90] I. Cicha, R. Priefer, P. Severino, E.B. Souto, S. Jain, Biosensor-Integrated Drug Delivery Systems as New Materials for Biomedical Applications, Biomolecules. 12 (2022).
[91] R. Molinaro, A. Pasto, F. Taraballi, F. Giordano, J.A. Azzi, E. Tasciotti, C. Corbo, Biomimetic nanoparticles potentiate the anti-inflammatory properties of dexamethasone and reduce the cytokine storm syndrome: An additional weapon against COVID-19?, Nanomaterials. 10 (2020) 1–12.
[92] C. Buzea, I.I. Pacheco, K. Robbie, Nanomaterials and nanoparticles: Sources and toxicity, Biointerphases. 2 (2007) MR17–MR71.
[93] M.H. Sarfraz, M. Zubair, B. Aslam, A. Ashraf, M.H. Siddique, S. Hayat, J.N. Cruz, S. Muzammil, M. Khurshid, M.F. Sarfraz, A. Hashem, T.M. Dawoud, G.D. Avila-Quezada, E.F. Abd_Allah, Comparative analysis of phyto-fabricated chitosan, copper oxide, and chitosan-based CuO nanoparticles: antibacterial potential against Acinetobacter baumannii isolates and anticancer activity against HepG2 cell lines, Front. Microbiol. 14 (2023) 1188743.
[94] S. Barua, S. Gogoi, R. Khan, Fluorescence biosensor based on gold-carbon dot probe for efficient detection of cholesterol, Synth. Met. 244 (2018) 92–98.
[95] R. Alizadehsani, M. Abdar, M. Roshanzamir, A. Khosravi, P.M. Kebria, F. Khozeimeh, S. Nahavandi, N. Sarrafzadegan, U.R. Acharya, Machine learning-based coronary artery disease diagnosis: A comprehensive review, Comput. Biol. Med. 111 (2019) 103346.
[96] O.M.L. Alharbi, A.A. Basheer, R.A. Khattab, I. Ali, Health and environmental effects of persistent organic pollutants, J. Mol. Liq. 263 (2018) 442–453.
[97] J. Levita, S. Megantara, Mutakin, S.A. Sumiwi, CHRONOTROPIC, INOTROPIC, AND RADICAL SCAVENGING ACTIVITY OF Curcuma heyneana EXTRACT BY MOLECULAR DOCKING SIMULATION AND In-vitro STUDY ON THE HEART OF Fejervarya cancrivora FROG, Rasayan J. Chem. 2022 (2022) 1–10.
[98] S. Nagaraja, A.R. Pelton, Corrosion resistance of a Nitinol ocular microstent: Implications on biocompatibility, J. Biomed. Mater. Res. – Part B Appl. Biomater. 108 (2020) 2681–2690.
[99] A.E. Segneanu, G. Vlase, A.T. Lukinich-Gruia, D.D. Herea, I. Grozescu, Untargeted Metabolomic Approach of Curcuma longa to Neurodegenerative Phytocarrier System Based on Silver Nanoparticles, Antioxidants. 11 (2022).
[100] B.D. Mansuriya, Z. Altintas, Graphene Quantum Dot-Based Electrochemical, Materials (Basel). 13 (2020) 1–30
[101] E. Adarkwa, R. Kotoka, S. Desai, 3D printing of polymeric Coatings on AZ31 Mg alloy Substrate for Corrosion Protection of biomedical implants, Med. Devices Sensors. 4 (2021) 1–15.
[102] M. Balamurugan, P. Santharaman, T. Madasamy, S. Rajesh, N.K. Sethy, K. Bhargava, S. Kotamraju, C. Karunakaran, Recent trends in electrochemical biosensors of superoxide dismutases, Biosens. Bioelectron. 116 (2018) 89–99.
[103] R. Buettner, M. Schunter, Efficient machine learning based detection of heart disease, 2019 IEEE Int. Conf. E-Health Networking, Appl. Serv. Heal. 2019. (2019).
[104] A. Baldassarre, N. Mucci, M. Padovan, A. Pellitteri, S. Viscera, L.I. Lecca, R.P. Galea, G. Arcangeli, The role of electrocardiography in occupational medicine, from einthoven’s invention to the digital era of wearable devices, Int. J. Environ. Res. Public Health. 17 (2020) 1–28.
[105] N.R. Shanmugam, S. Muthukumar, S. Prasad, A review on ZnO-based electrical biosensors for cardiac biomarker detection, Futur. Sci. OA. 3 (2017).
[106] R.D. Crapnell, N.C. Dempsey, E. Sigley, A. Tridente, C.E. Banks, Electroanalytical point-of-care detection of gold standard and emerging cardiac biomarkers for stratification and monitoring in intensive care medicine – a review, Springer Vienna, 2022.
[107] A. Rescalli, E.M. Varoni, F. Cellesi, P. Cerveri, Analytical Challenges in Diabetes Management: Towards Glycated Albumin Point-of-Care Detection, Biosensors. 12 (2022) 1–22.
[108] K. Kannan, A. Menaga, Risk Factor Prediction by Naive Bayes Classifier, Logistic Regression Models, Various Classification and Regression Machine Learning Techniques, Proc. Natl. Acad. Sci. India Sect. B – Biol. Sci. 92 (2022) 63–79.
[109] B. Regan, R. O’Kennedy, D. Collins, Point-of-care compatibility of ultra-sensitive detection techniques for the cardiac biomarker troponin I—challenges and potential value, Biosensors. 8 (2018) 1–32.
[110] A. Mehta, A. Mishra, S. Kainth, S. Basu, Carbon quantum dots/TiO2 nanocomposite for sensing of toxic metals and photodetoxification of dyes with kill waste by waste concept, Mater. Des. 155 (2018) 485–493.
[111] P.H. Quan, I. Antoniac, F. Miculescu, A. Antoniac, V. Manescu, A. Robu, A.I. Bița, M. Miculescu, A. Saceleanu, A.D. Bodog, V. Saceleanu, Fluoride Treatment and In Vitro Corrosion Behavior of Mg‐Nd‐Y‐Zn‐Zr Alloys Type, Materials (Basel). 15 (2022) 1–17.
[112] N. Radha Shanmugam, S. Muthukumar, S. Chaudhry, J. Anguiano, S. Prasad, Ultrasensitive nanostructure sensor arrays on flexible substrates for multiplexed and simultaneous electrochemical detection of a panel of cardiac biomarkers, Biosens. Bioelectron. 89 (2017) 764–772.
[113] C. Maraveas, I.S. Bayer, T. Bartzanas, Recent advances in antioxidant polymers: From sustainable and natural monomers to synthesis and applications, Polymers (Basel). 13 (2021) 1–31.
[114] J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo, R. Ji, H. Wang, Y. Wang, Y. Zhou, Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: A systematic review and meta-analysis, Int. J. Infect. Dis. 94 (2020) 91–95.
[115] M.M. Baig, H. GholamHosseini, A.A. Moqeem, F. Mirza, M. Lindén, A Systematic Review of Wearable Patient Monitoring Systems – Current Challenges and Opportunities for Clinical Adoption, J. Med. Syst. 41 (2017).
[116] F. Gao, Y. Hu, G. Li, S. Liu, L. Quan, Z. Yang, Y. Wei, C. Pan, Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility, Bioact. Mater. 5 (2020) 611–623.
[117] S.D. Deshmukh, S.N. Shilaskar, Wearable sensors and patient monitoring system: A Review, 2015 Int. Conf. Pervasive Comput. Adv. Commun. Technol. Appl. Soc. ICPC 2015. 00 (2015) 31–33.
[118] S. Dolati, J. Soleymani, S. Kazem Shakouri, A. Mobed, The trends in nanomaterial-based biosensors for detecting critical biomarkers in stroke, Clin. Chim. Acta. 514 (2021) 107–121.
[119] M. Jorfi, E.J. Foster, Recent advances in nanocellulose for biomedical applications, J. Appl. Polym. Sci. 132 (2015) 1–19.
[120] J.C. Miller, D. Skoll, L.A. Saxon, Home Monitoring of Cardiac Devices in the Era of COVID-19, Curr. Cardiol. Rep. 23 (2021).
[121] A. Jain, S. Ranjan, N. Dasgupta, C. Ramalingam, Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues, Crit. Rev. Food Sci. Nutr. 58 (2018) 297–317.
[122] L.H. Lin, H.P. Lee, M.L. Yeh, Characterization of a sandwich plga-gallic acid-plga coating on mg alloy zk60 for bioresorbable coronary artery stents, Materials (Basel). 13 (2020) 1–16.
[123] Y. Qi, H. Qi, Y. He, W. Lin, P. Li, L. Qin, Y. Hu, L. Chen, Q. Liu, H. Sun, Q. Liu, G. Zhang, S. Cui, J. Hu, L. Yu, D. Zhang, J. Ding, Strategy of Metal-Polymer Composite Stent to Accelerate Biodegradation of Iron-Based Biomaterials, ACS Appl. Mater. Interfaces. 10 (2018) 182–192.
[124] R.D. Crapnell, N.C. Dempsey-Hibbert, M. Peeters, A. Tridente, C.E. Banks, Molecularly imprinted polymer based electrochemical biosensors: Overcoming the challenges of detecting vital biomarkers and speeding up diagnosis, Talanta Open. 2 (2020) 100018.
[125] C.O. Rolim, F.L. Koch, C.B. Westphall, J. Werner, A. Fracalossi, G.S. Salvador, A cloud computing solution for patient’s data collection in health care institutions, 2nd Int. Conf. EHealth, Telemedicine, Soc. Med. ETELEMED 2010, Incl. MLMB 2010; BUSMMed 2010. (2010) 95–99.
[126] S. Veličković, B. Stojanović, L. Ivanović, S. Miladinović, S. Milojević, Application of Nanocomposites in the Automotive Industry, Mobil. Veh. Mech. 45 (2019) 51–64.
[127] A. Mpupa, A. Nqombolo, B. Mizaikoff, P.N. Nomngongo, Beta-Cyclodextrin-Decorated Magnetic Activated Carbon as a Sorbent for Extraction and Enrichment of Steroid Hormones (Estrone, β-Estradiol, Hydrocortisone and Progesterone) for Liquid Chromatographic Analysis, Molecules. 27 (2022).
[128] D. Iannazzo, C. Espro, C. Celesti, A. Ferlazzo, G. Neri, Smart biosensors for cancer diagnosis based on graphene quantum dots, Cancers (Basel). 13 (2021).
[129] I.M. Maafa, Biodiesel Synthesis from High Free-Fatty-Acid Chicken Fat Using a Scrap-Tire Derived Solid Acid Catalyst and KOH, Polymers (Basel). 14 (2022).
[130] S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Mater. Sci. Eng. C. 68 (2016) 948–963.
[131] Q. Wang, P. Zhou, S. Liu, S. Attarilar, R.L.W. Ma, Y. Zhong, L. Wang, Multi-scale surface treatments of titanium implants for rapid osseointegration: A review, Nanomaterials. 10 (2020) 1–27.
[132] N. Badolati, R. Masselli, M. Maisto, A. Di Minno, G.C. Tenore, M. Stornaiuolo, E. Novellino, Genotoxicity assessment of three nutraceuticals containing natural antioxidants extracted from agri-food waste biomasses, Foods. 9 (2020).
[133] S. Höhn, S. Virtanen, A.R. Boccaccini, Protein adsorption on magnesium and its alloys: A review, Appl. Surf. Sci. 464 (2019) 212–219.
[134] A. Abraham, Lecture Notes in Networks and Systems 167 3rd International Conference on Computing Informatics and Networks, 2020
[135] E.M. Miramontes-Gutierrez, J.M. Ochoa-Rivero, H.O. Rubio-Arias, L. Ballinas-Casarrubias, B.A. Rocha-Gutiérrez, Impact of cations (Na+, K+, Mg+2) and anions (F−, Cl−, SO42−) leaching from filters packed with natural zeolite and ferric nanoparticles for wastewater treatment, Int. J. Environ. Res. Public Health. 18 (2021).
[136] M. Raj, R.N. Goyal, Silver nanoparticles and electrochemically reduced graphene oxide nanocomposite based biosensor for determining the effect of caffeine on Estradiol release in women of child-bearing age, Sensors Actuators, B Chem. 284 (2019) 759–767.