Role of Nanomaterials in Diagnosis, Drug Delivery and Treatment of Neurodegenerative Diseases

$30.00

Role of Nanomaterials in Diagnosis, Drug Delivery and Treatment of Neurodegenerative Diseases

Justin Lalu Perumal, George Kanjooparambil Rajeev, Kamakshi Gnanasekaran, Rakesh Gunasekhar, Revathi Ravind, Richa Sunil Sikligar, Smithi Vibha Toppo, Shinomol George Kunnel

Neurodegenerative diseases affect the neuronal system, with irreversible loss of neurons. Many factors play a role in the development of NDD and till now no conclusive cure is available for any of these diseases. As early diagnosis and specific drug delivery being the most challenging part of NDD, along with the absence of cure has led the scientists to explore the amazing nanotechnology and nanomaterials for diagnosis, delivery and cure for these diseases. In vitro and in vivo studies using nanomaterials have revealed promising results in these fields. Since the inception, nanotechnology has found its applications in healthcare, transforming the field and making the omnipresence in Nano medicine with many discoveries replacing the conventional systems revolutionizing the healthcare sector.

Keywords
Neurodegenerative Diseases, Green Nanoparticles, Gold Nanoparticles, Drug Delivery, Blood Brain Barrier

Published online 2/10/2024, 47 pages

Citation: Justin Lalu Perumal, George Kanjooparambil Rajeev, Kamakshi Gnanasekaran, Rakesh Gunasekhar, Revathi Ravind, Richa Sunil Sikligar, Smithi Vibha Toppo, Shinomol George Kunnel, Role of Nanomaterials in Diagnosis, Drug Delivery and Treatment of Neurodegenerative Diseases, Materials Research Foundations, Vol. 160, pp 200-246, 2024

DOI: https://doi.org/10.21741/9781644902974-9

Part of the book on Nanoparticles in Healthcare

References
[1] K.A. Jellinger, Basic mechanisms of neurodegeneration: a critical update, J. Cell Mol. Med. 14(2010) 457-87. https://doi.org/10.1111/j.1582-4934.2010.01010
[2] Information on https://medlineplus.gov/degenerativenervediseases.html.
[3] A.S. Schachter, K.L. Davis, Alzheimer’s disease, Dialogues, Clin. Neurosci.2 (2000)91-100. https://doi.org/10.31887/DCNS.2000.2.2/asschachter.
[4] M.W. Bondi, E.C. Edmonds, D.P. Salmon, Alzheimer’s Disease: Past, Present, and Future’ J. Int. Neuropsychol. Soc. 23 (2017) 818-831. https://doi.org/10.1017/S135561771700100X
[5] Z. Breijyeh, R. Karaman, Comprehensive Review on Alzheimer’s Disease: Causes and Treatment, Molecules. 25(2020)5789. https://doi.org/10.3390/molecules25245789
[6] Information on Alzheimer’s Association .https://www.alz.org/alzheimers-dementia/what-is-alzheimers.
[7] A. Burns, S. Iliffe’ Alzheimer’s Disease, B.M.J. 338(2009)467-477. b158. https://doi.org/10.1136/bmj.b158
[8] M.V.F Silva, C.d.M.G. Loures, L.C.V Alves, L.C de Souza, K.B.G. Borges, M.D.G. Carvalho, Alzheimer’s disease: risk factors and potentially protective measures, J. Biomed. Sci. 26, 33 (2019). https://doi.org/10.1186/s12929-019-0524-y
[9] J. Jankovic, E.K. Tan, Parkinson’s disease: etiopathogenesis and treatment, J. Neurol. Neurosur. & Psy. 91(2020)795-808. http://dx.doi.org/10.1136/jnnp-2019-322338
[10] Information on https://www.medicalnewstoday.com/articles/323396.Parkinson’s disease: Early signs, causes, and risk factors.
[11] Information on https://www.news-medical.net/condition/Parkinsons-Disease
[12] T.F. Outeiro, D.J. Koss, D. Erskine, L. Walker, M. Kurzawa-Akanbi, D. Burn, P Donaghy, C. Morris, J. Taylor, A. Thomas, J. Attems, I McKeith , Dementia with Lewy bodies: an update and outlook., Mol. Neurodeg. 14(2019). https://doi.org/10.1186/s13024-019-0306-8
[13] S.D. Capouch, M. R. Farlow, J .R. Brosch, A Review of Dementia with Lewy Bodies’ Impact, Diagnostic Criteria and Treatment, Neurol Ther. 7(2018) 249–263. https://doi.org/10.1007/s40120-018-0104-1
[14] Information on https://www.nia.nih.gov/health/what-lewy-body-dementia-causes-symptoms-and-treatments. What Is Lewy Body Dementia? Causes, Symptoms, and Treatments.
[15] Information on Lewy body dementia: Information for patients, families, and professionals. https://www.nia.nih.gov/health/lewy-body-dementia
[16] I.G. McKeith, B.F. Boeve, D.W. Dickson, G Halliday, J.P. Taylor, D. Weintraub, K. Kosaka, Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology, 89(2017), 88-100. https://doi.org/10.1212/WNL.0000000000004058
[17] Information on https://www.theaftd.org/what-is-ftd/disease-overview/Disease Overview.
[18] Information on Alzheimer’s Association: https://www.alz.org/alzheimers-dementia/what-is-dementia/types-of-dementia/frontotemporal-dementia
[19] Information on National Institute on Aging: https://www.nia.nih.gov/health/frontotemporal-disorders-information-people-early-stage
[20] T. O. John, A. Thomas, Vascular dementia. Non-Alzheimer’s dementia, Lancet, 386(2015)1698-1706.https://doi.org/10.1016/S0140-6736(15)00463-8
[21] V.D. Flier, W. Skoog, I. Schneider, J.A. Schneider,L. Pantoni L,V. Mok, C.L.H. Chen, P. Scheltens, Vascular cognitive impairment. Nat. Rev. Dis. Pri.15(2018)18003. https://doi.org/10.1038/nrdp.2018.3
[22] E.R. McGrath, S. Alexa, Beiser, A. Donnell, J.H. Jayandra, P.P. Matthew P. Claudia, L. Satizabal, S. Sudha, Determining vascular risk factors for dementia and demntia risk prediction across mid to later life, Neurology,99 (2022). https://doi.org/https://doi.org/10.1212/WNL.0000000000200521
[23] Information in https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Spinocerebellar-Ataxia-Fact-Sheet.
[24] R. Sullivan, W.Y. Yau, E. O’Connor, H. Houlden, Spinocerebellar ataxia: an update, J. Neurol. 266(2019)533-544. https://doi.org/10.1007/s00415-018-9076-4
[25] J. Collinge, J, Prion diseases of humans and animals: their causes and molecular basis. Ann. Rev. Neurosci, 24(2001)519-550.DOI: 10.1146/annurev.neuro.24.1.519 https://doi.org/10.1146/annurev.neuro.24.1.519
[26] L. Westergard, H.M. Christensen, D.A. Harris, The cellular prion protein (PrP(C)): its physiological function and role in disease, Biochim Biophys Acta. 1772(2007:629-44. https://doi.org/10.1016/j.bbadis.2007.02.011
[27] M. Imran, S. Mahmood, An overview of human prion diseases. Virol. J. 8, 559 (2011). https://doi.org/10.1186/1743-422X-8-559
[28] G.K. Shinomol, M.M.S. Bharath, Muralidhara, Neuromodulatory Propensity of Bacopa monnieri Leaf Extract Against 3-Nitropropionic Acid-Induced Oxidative Stress: In Vitro and In Vivo, Neurotox Res.22(2012)102-14. https://doi.org/10.1007/s12640-011-9303-6
[29] G.K. Shinomol, H. Ravikumar, Muralidhara, Prophylaxis with Centella asiatica confers protection to prepubertal mice against 3-nitropropionic-acid-induced oxidative stress in brain, Phytother Res.24(2010)885-92. https://doi.org/10.1002/ptr.3042
[30] R.A. Roos, Huntington’s disease: a clinical review, Orphanet. J. Rare. Dis. 5(2010). https://doi.org/10.1186/1750-1172-5-40
[31] P. Masrori, P. Van Damme, Amyotrophic lateral sclerosis: a clinical review, Eur. J. neurol. 27(2020)1918-1929. https://doi.org/10.1111/ene.14393
[32] C.M. Bellettato, M. Scarpa, Possible strategies to cross the blood–brain barrier. Ital. J. Pediatr. 44 (2018). https://doi.org/10.1186/s13052-018-0563-0
[33] B. Obermeier, A. Verma, R.M. Ransohoff, Chapter 3 – The blood–brain barrier, S.J. Pittock, A.Vincent (Eds.), Handbook of Clinical Neurology, Elsevier, 133, 2016, 39-59. ISSN 0072-9752, ISBN 9780444634320, https://doi.org/10.1016/B978-0-444-63432-0.00003-7
[34] W.M. Pardridge, Drug transport across the blood-brain barrier,J. Cereb. Blood Flow Metab. 32(2012)1959-1972. https://doi.org/10.1038/jcbfm.2012.126
[35] S. Jafari, I.S. Baum, O.G. Udalov, Y. Lee, O. Rodriguez, S.T. Fricke, M. Jafari, M. Amin, R. Probst, X. Tang, C. Chen, D.J. Ariando, A. Hevaganinge, L.O. Mair, C. Albanese, I.N. Weinberg, Opening the Blood Brain Barrier with an Electropermanent Magnet System. Pharmaceutics. 20(2022)1503. https://doi.org/10.3390/pharmaceutics14071503
[36] X. Dong, Current Strategies for Brain Drug Delivery, Theranostics, 8(2018)1481-1493. https://doi.org/10.7150/thno.21254
[37] M.D. Sweeney, A.P. Sagare, B.V. Zlokovic, Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders, Nat. Rev. Neurol. 14(2008)133-150. https://doi.org/10.1038/nrneurol.2017.188
[38] D.A. Kuhn, D. Vanhecke, B. Michen, F. Blank, P. Gehr, A. Petri-Fink, Rothen-Rutishauser, B. Beilstein, J. Nanotechnol. 5(2014)1625–1636. https://doi.org/10.3762/bjnano.5.174
[39] S. Salatin, K. A Yari, Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles, J. Cell Mol. Med. 21(2017)1668-1686. https://doi.org/10.1111/jcmm.13110
[40] Y. Zhou ,J. Li, F. Lu, J. Deng, J. Zhang, P. Fang, X. Peng, S.F. Zhou. A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells. Drug Des Devel Ther. 9(2015)2635-45. https://doi.org/10.2147/DDDT.S77105
[41] H. Lu, S. Zhang, J. Wang, Q. Chen, A Review on Polymer and Lipid-Based Nanocarriers and Its Application to Nano-Pharmaceutical and Food-Based Systems, Front. Nutr. 8(2021)783831. https://doi.org/10.3389/fnut.2021.783831
[42] D. Chenthamara, S. Subramaniam, S.G. Ramakrishnan, S. Krishnaswamy, M.M. Essa, F.H. Lin, M.W. Qoronfleh, Therapeutic efficacy of nanoparticles and routes of administration, Biomater. Res. 23(2019)20. https://doi.org/10.1186/s40824-019-0166-x
[43] Y. Chen, L. Liu, Modern methods for delivery of drugs across the blood-brain barrier, Adv. Drug Deliv. Rev. 64(2012) 640-665. https://doi.org/10.1016/j.addr.2011.11.010
[44] L.P. Sovan, J. Utpal, P.K. Manna, G.P. Mohanta, R. Manavalan, Nanoparticle: An overview of preparation and characterization., J. Appl. Pharma. Sci. 01 (2011) 228-234. https://www.japsonline.com/admin/php/uploads/159_pdf.pdf
[45] Information in NIH Stem Cell Information Home Page. In Stem Cell Information. Bethesda, MD: National Institutes of Health, U.S. Department of Health and Human Services, 2016 https://stemcells.nih.gov/info/basics/stc-basics
[46] W. Tang, Challenges and advances in stem cell therapy, Biosci. Trends, 13(2019)286. https://doi.org/10.5582/bst.2019.01241
[47] L. Yang, L.S.T.D. Chueng, Y. Li, P. Misaal, R. Christopher, D. Gangotri, L Wang, L. Cai, K.B. Lee, A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy, Nat. Commun. 9(2018) 3147. https://doi.org/10.1038/s41467-018-05599-2
[48] C. Ying, Z. Shiwei, L. Lingling, Z. Jun-jie, Nanomaterials-based sensitive electrochemi luminescence biosensing, Nan. Tod. 12(2017) 98-115, ISSN 1748-0132,https://doi.org/10.1016/j.nantod.2016.12.013
[49] P. Su, Y. Hongmei, Y. Xiaoyu, Y. Xiaohong W. Yan, L. Qinyi, J. Liliang, Y. Yudan, Application of Nanomaterials in Stem Cell Regenerative Medicine of Orthopedic Surgery, J. Nanomat. 2017(2017), Article ID 1985942, https://doi.org/10.1155/2017/1985942
[50] M. Wei, S. Li, W. Le, Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms, J Nanobiotechnol. 15(2017). https://doi.org/10.1186/s12951-017-0310-5
[51] S.B. Tiwari, MM. Amiji, A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv. (2006)219-232. https://doi.org/10.2174/156720106776359230
[52] P. Mittal, S. Anjali, V. Ravinder, M.A. Farag, M.A. Altalbawy, G.E.B. Alfaidi, A. Wahida, G.K. Rupesh, M. Sahab Uddin, M.S. Rahman, Dendrimers: A New Race of Pharmaceutical Nanocarriers, BioMed Res.Int.2021, Article ID 8844030. https://doi.org/10.1155/2021/8844030
[53] S. Batra, S. Sharma, N.K. Mehra, Carbon Nanotubes for Drug Delivery Applications. In: J. Abraham, S. Thomas, N. Kalarikkal. (Eds.), Handbook of Carbon Nanotubes. Springer publishers 2021, https://doi.org/10.1007/978-3-319-70614-6_39-1
[54] L. Dykman, N. Khlebtsov, N, Gold nanoparticles in biomedical applications: recent advances and perspectives, Chem. Soc. Rev. 41(2012) 2256-2282. https://doi.org/10.1039/C1CS15166E
[55] R. Dinali, A. Ebrahiminezhad, M. Manley-Harris, Y. Ghasemi, A. Berenjian, Iron oxide nanoparticles in modern microbiology and biotechnology, Crit. Rev. Microbiol. 43(2017)493-507. https://doi.org/10.1080/1040841X.2016.1267708
[56] R.K. Kesrevani, A.K. Sharma, 2 – Nanoarchitectured Biomaterials: Present Status and Future Prospects in Drug Delivery in: Alina Maria Holban, Alexandru Mihai Grumezescu (Eds.), For Smart Delivery and Drug Targeting, William Andrew Publishing,2016,PP.35-66,ISBN 9780323473477, https://doi.org/10.1016/B978-0-323-47347-7.00002-1
[57] R.P. Mrunali, B.P. Rashmin, D.T. Shivam, 29 – Nanoemulsion in drug delivery, in: Inamuddin, M.A. Abdullah, M. Ali, Woodhead Publishing Series in Biomaterials, Applications of Nanocomposite Materials in Drug Delivery,Woodhead Publishing,2018,pp 667-700,ISBN 9780128137413,https://doi.org/10.1016/B978-0-12-813741-3.00030-3
[58] E.E. Ngowi, Y. Wang, L. Qian, Y.A. Helmy, B. Anyomi, T. Li, M. Zheng, E. Jiang , S. Duan, J. Wei, D. Wu, X. Ji, The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front.s in Bioeng. and Biotech. 9 (2021). https://doi.org/10.3389/fbioe.2021.629832
[59] C. Spuch, O. Saida, C. Navarro, Advances in the treatment of neurodegenerative disorders employing nanoparticles, Rec. Pat. on Drug Deliver. Formu. 6(2012) 2–18. https://doi.org/10.2174/187221112799219125
[60] W.H. De Jong, P.J. Borm, Drug delivery and nanoparticles: applications and hazards, Int. J. Nanomed. 3(2008):133-49. https://doi.org/10.2147/ijn.s596
[61] L. Cui, X. Ren, M. Sun , H. Liu, L. Xia. Carbon Dots: Synthesis, Properties and Applications, Nanomaterials,11(2021)12:3419. https://doi.org/10.3390/nano11123419
[62] D. Yadav, K. Sandeep, D. Pandey, R.K. Dutta, Liposomes for Drug Delivery. J Biotechnol. Biomater.7(2017)276. https://doi.org/10.4172/2155-952X.1000276
[63] T. Fukuta, N. Oku, K. Kogure, Application and Utility of Liposomal Neuroprotective Agents and Biomimetic Nanoparticles for the Treatment of Ischemic Stroke. Pharmaceutics, 14(2)361. https://doi.org/10.3390/pharmaceutics14020361
[64] S.R.K. Pandian, K.K. Vijayakumar, S. Murugesan, S. Kunjiappan, Liposomes: An emerging carrier for targeting Alzheimer’s and Parkinson’s diseases. Heliyon, 8(2022):e09575. https://doi.org/10.1016/j.heliyon.2022.e09575
[65] G. Sancini, M. Gregori, E. Salvati, I. Cambianica, F.R., F. Ornaghi, M. Canovi, C. Fracasso, A. Cagnotto, M. Colombo, C. Zona, M. Gobbi, M. Salmona, B. La Ferla, F. Nicotra, and M. Masserini, Functionalization with TAT-Peptide Enhances Blood-Brain Barrier Crossing In vitro of Nanoliposomes Carrying a Curcumin-Derivative to Bind Amyloid-b Peptide. J Nanomed Nanotechol 4(2013)171. https://doi.org/10.4172/2157-7439.1000171
[66] I.F. Uchegbu, S.P. Vyas. Non-ionic surfactant based vesicles (niosomes) in drug delivery, Int. J. Pharma. 172 (1998) 33-70, doi.org/10.1016/S0378-5173(98)00169-0
[67] M.I. Teixeira, C.M. Lopes, M.H. Amaral, P.C. Costa, Current insights on lipid nanocarrier-assisted drug delivery in the treatment of neurodegenerative diseases. Eur. J. Pharm. Biopharm. 149(2020)192-217. https://doi.org/https://doi.org/10.1016/S0378-5173(98)00169-0
[68] I. Cacciatore, M. Ciulla, E. Fornasari, L. Marinelli, A. Di Stefano, Solid lipid nanoparticles as a drug delivery system for the treatment of neurodegenerative diseases, Exp. Opin. Drug Deliv. 13(2016)1121-31. https://doi.org/10.1080/17425247.2016.1178237
[69] S. Dhivya, A.N. Rajalakshmi, Curcumin Nano drug delivery systems: A Review on its type and therapeutic application, PharmaTutor. 5(2018), 30-39. https://doi.org/10.29161/PT.v5.i12.2017.30
[70] Y.W. Lin, C.H. Fang, C.Y. Yang, Y.J. Liang, F.H. Lin, Investigating a Curcumin-Loaded PLGA-PEG-PLGA Thermo-Sensitive Hydrogel for the Prevention of Alzheimer’s Disease, Antioxidants (Basel), 11(2022)727. https://doi.org/10.3390/antiox11040727
[71] D. Tuncel, H.V. Demir, Conjugated polymer nanoparticles, Nanoscale, 2(2010)484-94. https://doi.org/10.1039/b9nr00374f
[72] Y. Zhang, Z. Zou, S. Liu, S. Miao, H. Liu, Nanogels as Novel Nanocarrier Systems for Efficient Delivery of CNS Therapeutics 10 (2022) https://doi.org/10.3389/fbioe.2022.954470
[73] N. Habibi, A. Mauser, Y. Ko, J. Lahann, Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches, Advanced Science, 9 (2022) 8 . https://doi.org/10.1002/advs.202104012
[74] A.V. Kabanov , H.E Gendelman, Nanomedicine in the diagnosis and therapy of neurodegenerative disorders, Prog. Polym. Sci.32(2007)1054-1082. https://doi.org/10.1016/j.progpolymsci.2007.05.014
[75] T. Kim, T. Heyon, Application of inorganic nanoparticles as therapeutic agents, Nanotechnology, 25(201301200125. https://doi.org/10.1088/0957-4484/25/1/012001
[76] M.A. Cotta, Quantum dots and their applications. what lies ahead : Application, ACS Appl. Nano Mater. 3(2020)4920–4924. https://doi.org/10.1021/acsanm.0c01386
[77] J. Jampilek, K. Zaruba, M. Oravec, M. Kunes, P. Babula, P. Ulbrich, I. Brezaniova, R. Opatrilova, J. Triska, P. Suchy, Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood-brain barrier, Biomed Res Int. 2015(2015)812673. https://doi.org/10.1155/2015/812673
[78] J. Qian, X. Li, M. Wei , X. Gao, Z. Xu, S .He , Bio-molecule-conjugated fluorescent organically modified silica nanoparticles as optical probes for cancer cell imaging, Opt Expr.16(2008)19568-19578.doi: 10.1364/oe.16.019568
[79] R. Khalifehzadeh, H. Arami, Biodegradable calcium phosphate nanoparticles for cancer therapy, Adv Colloid Interface Sci. 279(2020)102157. https://doi.org/10.1016/j.cis.2020.102157
[80] C. Qiu , Y. Wu ,Q. Guo,Q. Shi, J. Zhang, Y.Q. Meng, F. Xia, J. Wang, Preparation and application of calcium phosphate nanocarriers in drug delivery, Mater Today Bio. 22(2022)17:100501. https://doi.org/10.1016/j.mtbio.2022.100501
[81] S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications–reflections on the field, Adv. Drug Deliv. Rev. 14(2005)2106-2129. https://doi.org/10.1016/j.addr.2005.09.018
[82] S. Sharma, S. Gupta, Dendrimers as Nanocarriers for Drug Delivery Applications. J. Nanosci. and Nanotech.19(2019) 4590-4617. https://doi.org/10.1166/jnn.2019.17005
[83] P. Nirale, A. Paul , K.S. Yadav, Nanoemulsions for targeting the neurodegenerative diseases: Alzheimer (39) Parkinson (39) and Prion(39.), Life Sci. 15(2020)245:117394. https://doi.org/10.1016/j.lfs.2020.117394
[84] E. Park, L. Li, Y. He, C. Abbasi, A.Z. Ahmed, T. Foltz, W.D. Flaherty, R. Zain, M. Bonin, R.P. Rauth, A.M. Fraser, P.E. Henderson, J. T. Wu, X.Y., Brain-Penetrating and Disease Site-Targeting Manganese Dioxide-Polymer-Lipid Hybrid Nanoparticles Remodel Microenvironment of Alzheimer: Disease by Regulating Multiple Pathological Pathways. (2023)2207238. https://doi.org/10.1002/advs.202207238
[85] G. Birolini, M. Valenza, I. Ottonelli, A. Passoni, M. Favagrossa, T.J. Duskey, M. Bombaci, M.A. Vandelli, L. Colombo, R. Bagnati, C. Caccia, V. Leoni, F. Taroni, F. Forni, B. Ruozi, M. Salmona, G. Tosi, E. Cattaneo, Insights into kinetics, release, and behavioral effects of brain-targeted hybrid nanoparticles for cholesterol delivery in Huntington, 330(2021) 587-598. https://doi.org/10.1016/j.jconrel.2020.12.051
[86] M. Dehvari, A. Ghahghaei,The effect of green synthesis silver nanoparticles (AgNPs) from Pulicaria undulata on the amyloid formation in α-lactalbumin and the chaperon action of α-casein, J.Biol. Macromol. 108(2018)1128-1139,doi.org/10.1016/j.ijbiomac.2017.12.040
[87] S. Jadoun, R. Arif, N.K. Jangid, R.K. Meena, Green synthesis of nanoparticles using plant extracts: a review, Environ. Chem. Lett. 19(2020)355-374.https://doi.org/10.1007/s10311-020-01074-x
[88] P.B. Gonçalves, A.C.R. Sodero, Y. Cordeiro, Green Tea Epigallocatechin-3-gallate (EGCG) Targeting Protein Misfolding in Drug Discovery for Neurodegenerative Diseases. Biomolecules. 11(2021)767. https://doi.org/10.3390/biom11050767
[89] Md. M. Rahman, Md. R. Islam, S. Akash, Md. H.-O.-Rashid, T.K. Ray, Md. S. Rahaman, M. Islam, F. Anika, Md. K. Hosain, F.I. Aovi, H.A. Hemeg, A. Rauf, P. Wilairatana. Saidur Rahaman, Mahfuzul Islam, Fazilatunnesa Anika, Md. Kawser Hosain, Farjana Islam Aovi, Hassan A. Hemeg, Abdur Rauf, Polrat Wilairatana, Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed. Pharmacother. 153 (2022), https://doi.org/10.1016/j.biopha.2022.113305
[90] S.M. Asil, J. Ahlawat, G.G. Barrosoc, M. Narayan, Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases, Biomat. Sci. 15(2020) 15, https://doi.org/https://doi.org/10.1039/D0BM00809E
[91] N.S. Mohd Sairazi, K.N.S. Sirajudee, Natural Products and Their Bioactive Compounds: Neuroprotective Potentials against Neurodegenerative Diseases. Evid. Based Complement. Alternat. Med. 14 (2020)6565396. https://doi.org/10.1155/2020/6565396
[92] A. Ahmad, A. Husain, M. Mujeeb, S.A. Khan, A.K. Najmi, N.A. Siddique, Z.A. Damanhouri, F. Anwar, A review on therapeutic potential of Nigella sativa: A miracle herb, Asian Pac. J. Trop. Biomed. 3(2013)337-352. https://doi.org/10.1016/S2221-1691(13)60075-1
[93] M. Hajialyani, M. Hosein Farzaei, J. Echeverría, S. Nabavi, E. Uriarte, E. Sobarzo-Sánchez, Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence, Molecules, 24(2019), 648. https://doi.org/10.3390/molecules24030648
[94] S. Parham, A.Z. Kharazi, H.R. Bakhsheshi-Rad, H. Nur, A.F. Ismail, S. Sharif, S. Rama Krishna, F. Berto. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants, 9(2020):1309. https://doi.org/10.3390/antiox9121309
[95] N. Suganthy, V. Sri Ramkumar, A. Pugazhendhi, G. Benelli, G. Archunan. Biogenic synthesis of gold nanoparticles from Terminalia arjuna bark extract: assessment of safety aspects and neuroprotective potential via antioxidant, anticholinesterase, and antiamyloidogenic effects. Environ. Sci. Pollut. Res. Int. 25(2018)10418-10433. https://doi.org/10.1007/s11356-017-9789-4
[96] T. Bhattacharya, G.A.B. Soares, H. Chopra, M.M. Rahman, Z. Hasan, S.S. Swain, S. Cavalu, Applications of Phyto-Nanotechnology for the Treatment of Neurodegenerative Disorders, Materials,15(2022),804. https://doi.org/10.3390/ma15030804
[97] J. K. Vasir, V. Labhasetwar , Chapter 56-Biodegradable Nanoparticles, in Gene Transfer: Delivery and Expression of DNA and RNA, Friedmann,Rossi(Eds.), https://www.sigmaaldrich.com/IN/en/technicaldocuments/protocol/genomics/gene-expression-and-silencing/biodegradable-nanoparticles.
[98] J. Panyam,V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Deliv. Rev. 55(2003)329-347. https://doi.org/10.1016/s0169-409x(02)00228-4
[99] A. Kumari, S.K.Yadav, S.C Yadav, Biodegradable polymeric nanoparticles based drug delivery systems, Collo.Surf B Biointer.75(010)1-18. https://doi.org/10.1016/j.colsurfb.2009.09.001
[100] R.K. Jain, T. Stylianopoulos , Delivering nanomedicine to solid tumors, Nat. Rev. Clin. Oncol.7(2010)653-664, https://doi.org/10.1038/nrclinonc.2010.139
[101] M.A. Shim, A. Jyoti, G.B. Gileydis, N. Mahesh, Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases, Biomat. Sci.15(2020). https://doi.org/10.1039/D0BM00809E
[102] B. Olesja, S. Mart, Neurotrophic Factors in Parkinson’s Disease: Clinical Trials, Open Challenges and Nanoparticle-Mediated Delivery to the Brain, Common Pathways Linking Neurodegenerative Diseases – The Role of Inflammation, Fronts. Cell. Neuro. 5(2021). https://doi.org/10.3389/fncel.2021.682597
[103] Y.B. Hanie, G.K. Maryam, P. Marzieh, Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders, Intl. J.f nanomed.14(2019)4449-4460. https://doi.org/10.2147/IJN.S208332
[104] G.R.P. Rúben, A.J.Coutinho,M.Pinheiro,A.R.Neves, Nanoparticles for Targeted Brain Drug Delivery: What Do We Know?, Int J Mol Sci. 22(2021)11654. https://doi.org/10.3390/ijms222111654
[105] L. Zhang, F.X. Gu, J.M. Chan, A.Z. Wang, R.S. Langer, O.C. Farokhzad, Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. & Therapeu.83(2008), 761-769. https://doi.org/10.1038/sj.clpt.6100400
[106] Y. Yao, Y. Zhou, L. Liu, Y. Xu, Q. Chen, Y. Wang, S. Wu, Y. Deng, J. Zhang, A. Shao, Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance, Fronts. in Mol. Biosci.7(2020)193. https://doi.org/10.3389/fmolb.2020.00193
[107] K. Johan, J. Vaughan Hannah, G. J.Jordan, Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments, Ann. Rev. of Chem. Biomol. Eng. 9(2018)105-127. https://doi.org/10.1146/annurev-chembioeng-060817-084055
[108] S. Gavas, S. Quazi, T.M. Karpiński, Nanoparticles for Cancer Therapy: Current Progress and Challenges, Nano. Res. Lett. 16(2021)173. https://doi.org/10.1186/s11671-021-03628-6
[109] A. Kaushik, Biomedical Nanotechnology Related Grand Challenges and Perspectives, Front. Nanotech.1(2019) https://www.frontiersin.org/articles/10.3389/fnano.2019.00001
[110] J.R. Heath, Nanotechnologies for biomedical science and translational medicine, PNAS. 112(2015) 14436–14443. https://doi.org/10.1073/pnas.1515202112
[111] J.J. Chu, W.B. Ji, J.H. Zhuang, B.F. Gong, X.H. Chen, W.B. Cheng, W.D. Liang, G.-R. Li, J. Gao, Y. Yin, Nanoparticles-based anti-aging treatment of Alzheimer’s disease, Drug Del. 29(2022), 2100-2116, https://doi.org/10.1080/10717544.2022.2094501
[112] Y.C. Kuo, Y.I. Lou, R. Rajesh, Dual functional liposomes carrying antioxidants against tau hyperphosphorylation and apoptosis of neurons, J. of Drug Targ. 28(2020). https://doi.org/10.1080/1061186X.2020.1761819
[113] S.K. Tiwari, S. Agarwal, B. Seth, A. Yadav, S. Nair, P. Bhatnagar, M. Karmakar, M. Kumari, L.K.S. Chauhan, D.K. Patel, V. Srivastava, D. Singh, S.K. Gupta, A. Tripathi, R.K. Chaturvedi, K.C. Gupta, Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway, ACS Nano, 8(2014), 76–103. https://doi.org/10.1021/nn405077y
[114] A.R. Neves, J.F. Queiroz, S. Reis, Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E, J. of Nanobiotech.14 (2016) 27. https://doi.org/10.1186/s12951-016-0177-x
[115] S. Palmal, A.R. Maity, B.K. Singh, S. Basu, N.R. Jana, Inhibition of amyloid fibril growth and dissolution of amyloid fibrils by curcumin-gold nanoparticles, Chemistry (Weinheim an Der Bergstrasse, Germany), 20 (2014) 6184–6191. https://doi.org/10.1002/chem.201400079
[116] M. Bilal, M. Barani, F. Sabir, A. Rahdar, G.Z. Kyzas, Nanomaterials for the treatment and diagnosis of Alzheimer’s disease: An overview, NanoImpact, 20(2020) 100251. https://doi.org/10.1016/j.impact.2020.100251
[117] W. Li, Q. Guo, H. Zhao, L. Zhang, J. Li, J. Gao, W. Qian, B. Li, H. Chen, H. Wang, J. Dai, Y. Guo, Novel dual-control poly(N-isopropylacrylamide-co-chlorophyllin) nanogels for improving drug release, Nanomedicine, 7 (2012) 383–392. https://doi.org/10.2217/nnm.11.100
[118] S. Shah, N. Rangaraj, K. Laxmikeshav, S. Sampathi, Nanogels as drug carriers—Introduction, chemical aspects, release mechanisms and potential applications, Intl. J. Pharma.581(2020) 119268. https://doi.org/10.1016/j.ijpharm.2020.119268
[119] N. Lopez-Barbosa, J.G. Garcia, J. Cifuentes, L.M. Castro, F. Vargas, C. Ostos, G.P. Cardona-Gomez, A.M. Hernandez, J.C. Cruz, Multifunctional magnetite nanoparticles to enable delivery of siRNA for the potential treatment of Alzheimer’s, Drug Del.27(2020),864–875. https://doi.org/10.1080/10717544.2020.1775724
[120] S.I. Laura, M.C. Christina, K.S. Georgina, P.R.J. Angus, Nanoescapology: Progress toward understanding the endosomal escape of polymeric nanoparticles. WIREs Nanomed. and Nanobiotech. 9(2017) e1452. https://doi.org/10.1002/wnan.1452
[121] T. Hamaguchi, K. Ono, M. Yamada, REVIEW: Curcumin and Alzheimer’s Disease, CNS Neuroscie .& Therapeu.16(2010) 285–297. https://doi.org/10.1111/j.1755-5949.2010.00147.x
[122] K.G. Goozee, T.M. Shah, H.R. Sohrabi, S.R. Rainey-Smith Brown, B. Brown, G. Verdile, R.N. Martins, Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease, The Bri. J. Nut.115(2016) 449–465. https://doi.org/10.1017/S0007114515004687
[123] M. Tang, C. Taghibiglou (2017). The Mechanisms of Action of Curcumin in Alzheimer’s Disease, J. of Alz. Dis.: JAD, 58(2017) 1003–1016. https://doi.org/10.3233/JAD-170188
[124] S. Fan, Y. Zheng, X. Liu, W. Fang, X. Chen, W. Liao, X. Jing, M. Lei, E. Tao, Q. Ma, X. Zhang, R. Guo, J. Liu, Curcumin-loaded PLGA-PEG nanoparticles conjugated with B6 peptide for potential use in Alzheimer’s disease, Drug Delivery, 25(2018) 1091–1102. https://doi.org/10.1080/10717544.2018.1461955
[125] S. Pillay, V. Pillay, Y.E. Choonara, D. Naidoo, Riaz.A. Khan, Lisa C. du Toit, V.M.K. Ndesendo, G. Modi, M.P. Danckwerts, S.E. Iyuke, Design, biometric simulation and optimization of anano-enabled scaffold device for enhanced delivery of dopamine to the brain, Intl. J.of Pharma. 382(2009) 277–290. https://doi.org/10.1016/j.ijpharm.2009.08.021
[126] A. Trapani, E. De Giglio, D. Cafagna, N. Denora, G. Agrimi, T. Cassano, S. Gaetani, V. Cuomo, G. Trapani, Characterization and evaluation of chitosan nanoparticles for dopamine brain delivery, Intl. J. of Pharma. 419(2011) 296–307. https://doi.org/10.1016/j.ijpharm.2011.07.036
[127] S. Mao, W. Sun, T. Kissel, Chitosan-based formulations for delivery of DNA and siRNA, Advanced Drug Delivery Reviews, 62(2010) 12–27. https://doi.org/10.1016/j.addr.2009.08.004
[128] K. Jagaran, M. Singh, Lipid Nanoparticles: Promising Treatment Approach for Parkinson’s Disease, Intl. J. of Mol. Sci. 23(2022), Article 16. https://doi.org/10.3390/ijms23169361.
[129] B.N. Aldosari, I.M. Alfagih, A.S. Almurshedi, Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines, Pharmaceutics, 13(2021) 206. https://doi.org/10.3390/pharmaceutics13020206
[130] S. Chakraborty, G.S. Dhakshinamurthy, S.K. Misra, Tailoring of physicochemical properties of nanocarriers for effective anti-cancer applications, J. Biomed. Ma. Res. Part A, 105(2017) 2906–2928. https://doi.org/10.1002/jbm.a.36141
[131] N. Dudhipala, T. Gorre, Neuroprotective Effect of Ropinirole Lipid Nanoparticles Enriched Hydrogel for Parkinson’s Disease: In Vitro, Ex Vivo, Pharmacokinetic and Pharmacodynamic Evaluation, Pharmaceutics, 12(2020)448. https://doi.org/10.3390/pharmaceutics12050448
[132] A. Waris, A. Ali, A.U. Khan, M. Asim, D. Zamel, K. Fatima, A. Raziq, M.A. Khan, N. Akbar, A. Baset, M.A.S. Abourehab, Applications of Various Types of Nanomaterials for the Treatment of Neurological Disorders, Nanomaterials (Basel, Switzerland), 12 (2022)2140. https://doi.org/10.3390/nano12132140
[133] E. Alimohammadi, A. Nikzad, M. Khedri, M. Rezaian, A.M. Jahromi, N. Rezaei, R. Maleki, Potential treatment of Parkinson’s disease using new-generation carbon nanotubes: Abiomolecular in silico study, Nanomedicine, 16 (2021)189–204. https://doi.org/10.2217/nnm-2020-0372
[134] B.A. Rzigalinski, C.S. Carfagna, M. Ehrich, Cerium oxide nanoparticles in neuroprotection and considerations for efficacy and safety, Wil.Interdiscip. Rev. Nanomed Nanobiotechnol. 9(2017). https://doi.org/10.1002/wnan.1444
[135] B.S. Inbaraj, B.-H. Chen. An overview on recent in vivo biological application of cerium oxide nanoparticles, Asi. J. Pharmaceu. Sci.15 (2020)558-575, ISSN 1818-0876, https://doi.org/10.1016/j.ajps.2019.10.005
[136] R. Li, T. Liang, L. Xu, N. Zheng, K. Zhang, X. Duan, Puerarin attenuates neuronal degeneration in the substantia nigra of 6-OHDA-lesioned rats through regulating BDNF expression and activating the Nrf2/ARE signaling pathway., Brain Res.1523(2013) 1–9. https://doi.org/10.1016/j.brainres.2013.05.046
[137] G. Zhu, X. Wang, S. Wu, Q. Li. Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against MPP+-induced human neuroblastoma SH-SY5Y cell death, Neurochem. Intl.60 (2012)400–408. https://doi.org/10.1016/j.neuint.2012.01.003
[138] T. Chen, W. Liu, S. Xiong, D. Li, S. Fang, Z. Wu, Q. Wang, X. Chen,Nanoparticles Mediating the Sustained Puerarin Release Facilitate Improved Brain Delivery to Treat Parkinson’s Disease, ACS Appl. Mater. Interfaces 11(2019) 45276–45289. https://doi.org/10.1021/acsami.9b16047
[139] P. Edison, C.C. Rowe, J.O. Rinne, S. Ng, I. Ahmed, N. Kemppainen, V.L. Villemagne, G. O’Keefe, K. Någren, K.R. Chaudhury, C.L. Masters, D.J. Brooks, Amyloid load in Parkinson’s.disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography, J. Neurol. Neurosur. and Psy. 79 (2008) 1331–1338. https://doi.org/10.1136/jnnp.2007.127878
[140] S. Masoudi Asil, J. Ahlawat, G. Guillama Barroso, M. Narayan, Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases, Biomat. Sci. 8 (2020)4109–4128. https://doi.org/10.1039/D0BM00809E
[141] P. Turcano, C.D. Stang, J.H Bower, J.E. Ahlskog, B.F. Boeve, M.M. Mielke, R. Savica, Levodopa-induced dyskinesia in dementia with Lewy bodies and Parkinson disease with dementia, Neurology: Clin. Prac.10(2020), 156–161. https://doi.org/10.1212/CPJ.0000000000000703
[142] G. Leyva-Gómez, H. Cortés, J.J. Magaña, N. Leyva-García, D. Quintanar-Guerrero, B. Florán, Nanoparticle technology for treatment of Parkinson’s disease: The role of surfacephenomena in reaching the brain, Drug Discov. 20(2015) 824–837. https://doi.org/10.1016/j.drudis.2015.02.009
[143] T. Nie, He, Z., Zhu, J., K. Chen, G.P. Howard, J. Pacheco-Torres, I. Minn, P. Zhao, Z.M. Bhujwalla, H.Q. Mao, L. Liu, Y. Chen, Non-invasive delivery of levodopa-loaded nanoparticlesto the brain via lymphatic vasculature to enhance treatment of Parkinson’s disease, Nano. Res. 14(2021) 2749–2761. https://doi.org/10.1007/s12274-020-3280-0
[144] D. Kim, J.M. Yoo, H. Hwang, J. Lee, S.H. Lee, S.P. Yun, M.J. Park, M. Lee, S. Choi, S.H. Kwon, S. Lee, S.H. Kwon, S. Kim, Y.J. Park, M. Kinoshita, Y.H Lee, S. Shin, S.R. Paik, S.J. Lee, S. Lee, B.H. Hong, H.S. Ko, Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease, Nat. Nanotech. 13(2018) 812–818. https://doi.org/10.1038/s41565-018-0179-y
[145] N.K. Bhatia, A. Srivastava, N. Katyal, N. Jain, M.A.I Khan, B. Kundu, S. Deep, Curcumin binds to the pre-fibrillar aggregates of Cu/Zn superoxide dismutase (SOD1) and alters its amyloidogenic pathway resulting in reduced cytotoxicity, Biochim.Et Biophy. Acta, 1854(2015),426–436. https://doi.org/10.1016/j.bbapap.2015.01.014
[146] J.S. Rane, P. Bhaumik, D. Panda, (2017). Curcumin Inhibits Tau Aggregation and Disintegrates Preformed Tau Filaments in vitro. J. Alz. Dis.: JAD, 60(2017) 999–1014. https://doi.org/10.3233/JAD-170351
[147] J. den Haan, T.H.J. Morrema, A.J. Rozemuller, F.H. Bouwman, & amp; J.J.M Hoozemans, Different curcumin forms selectively bind fibrillar amyloid beta in post mortem Alzheimer’s diseasebrains: Implications for in-vivo diagnostics. Acta Neuropathol. Commun. 6(2018), 75.https://doi.org/10.1186/s40478-018-0577-2
[148] M.M. Khan, A. Ahmad, T. Ishrat, M.B. Khan, M.N. Hoda , G. Khuwaja ,S.S. Raza, A. Khan, H. Javed, K. Vaibhav, F. Islam, Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease, Brain Res. 1328(2010) 139-51. https://doi.org/10.1016/j.brainres.2010.02.031
[149] X. Cui, Q. Lin, Y. Lian, Plant-Derived Antioxidants Protect the Nervous System From Aging by Inhibiting Oxidative Stress, Front. Aging Neurosci. Neuroinfl. and Neuropathy, 12( 2020). https://doi.org/10.3389/fnagi.2020.00209
[150] A. Yadav, A. Sunkaria, N. Singhal, R. Sandhir, Resveratrol loaded solid lipid nanoparticles attenuate mitochondrial oxidative stress in vascular dementia by activating Nrf2/HO-1 pathway, Neurochem Int. 112(2018)239-254. https://doi.org/10.1016/j.neuint.2017.08.001
[151] M. Jaiswal, R. Dudhe, P.K. Sharma, Nanoemulsion: An advanced mode of drug delivery system, 3 Biotech, 5(2015) 123–127. https://doi.org/10.1007/s13205-014-0214-0
[152] J.W. Russell, L. Yang, Y. Guangze, Z. Chun-Xia Zhao, Nanoemulsions for drug delivery, Particuology,64(2022) 85-97. https://doi.org/10.1016/j.partic.2021.05.009
[153] M. Mizrahi, Y. Friedman-Levi, L. Larush, K. Frid, O. Binyamin, D. Dori, N. Fainstein, H. Ovadia, T. Ben-Hur, S. Magdassi, R. Gabizon, Pomegranate seed oil nanoemulsions for the prevention and treatment of neurodegenerative diseases: the case of genetic CJD, Nanomedicine. 10(2014)1353-63. https://doi.org/10.1016/j.nano.2014.03.015
[154] Y. Friedman-Levi, Z. Meiner, T. Canello, K. Frid, G.G. Kovacs, H. Budka, D. Avrahami, R. Gabizon, Fatal Prion Disease in a Mouse Model of Genetic E200K Creutzfeldt-Jakob Disease, PLOS Pathogens, 7 (2011) e1002350. https://doi.org/10.1371/journal.ppat.1002350
[155] M. Balbirnie, R. Grothe, D.S, Eisenberg, An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid, PNAS.98 (2001) 2375–2380. https://doi.org/10.1073/pnas.041617698
[156] A.V. Krasnoslobodtsev, A.M. Portillo, T. Deckert-Gaudig, V. Deckert, Y.L. Lyubchenko, Nanoimaging for prion related diseases, Prion, 4(2010) 265–274. https://doi.org/10.4161/pri.4.4.13125
[157] S. Zhou, Y. Zhu, X. Yao, H. Liu, Carbon Nanoparticles Inhibit the Aggregation of Prion Protein as Revealed by Experiments and Atomistic Simulations, J Chem Inf Model .59 (2019)1909–1918. https://doi.org/10.1021/acs.jcim.8b00725
[158] A. Janaszewska, B. Ziemba, K. Ciepluch, D. Appelhans, B. Voit, B. Klajnert, M. Bryszewska, The biodistribution of maltotriose modified poly(propylene imine) (PPI) dendrimers conjugated with fluorescein—Proofs of crossing blood–brain–barrier, New J. Chem.36 (2012)350–353. https://doi.org/10.1039/C1NJ20444K
[159] J.M McCarthy, D. Appelhans,J. Tatzelt, M.S. Rogers, Nanomedicine for prion disease treatment. Prion, 7(2013), 198–202. https://doi.org/10.4161/pri.24431
[160] S.Ramaswamy, J.L. McBride, J.H. Kordower, Animal Models of Huntington’s Disease, ILAR Journal, 48(2007)356–373. https://doi.org/10.1093/ilar.48.4.356
[161] S.J Tabrizi, B.R. Leavitt, G.B. Landwehrmeyer, E.J. Wild, C. Saft, R.A. Barker, N.F. Blair, D. Craufurd, J. Priller, H. Rickards, A. Rosser, H.B. Kordasiewicz, C. Czech, E.E. Swayze, D.A. Norris, T. Baumann, I. Gerlach, S.A. Schobel, E. Paz, … Phase 1–2a IONIS-HTTRx Study Site Teams, Targeting Huntingtin Expression in Patients with Huntington’s Disease, NEJM. 380(2019)2307–2316. https://doi.org/10.1056/NEJMoa1900907
[162] M.C. Didiot, L.M. Hall, A.H. Coles, R.A. Haraszti, B.M. Godinho, K. Chase, E. Sapp, S. Ly, J.F. Alterman, M.R. Hassler, D. Echeverria, L. Raj, D.V. Morrissey, M. Di Figlia, A. Neil , K. Anastasia, Exosome-mediated Delivery of Hydrophobically Modified siRNA for Huntingtin mRNA Silencing, Mol Ther.24(2016)1836-1847. https://doi.org/10.1038/mt.2016.126
[163] D.D. Ojeda-Hernández, A.A. Canales-Aguirre, J. Matias-Guiu, U. Gomez-Pinedo, J.C. Mateos-Díaz, Potential of Chitosan and Its Derivatives for Biomedical Applications in the Central Nervous System, Front. Bioeng. Biotechnol. 8 (2020)389. https://doi.org/10.3389/fbioe.2020.00389
[164] G.M Escott, D.J. Adams, Chitinase activity in human serum and leukocytes, Infec. Immunity, 63(1995)4770–4773. https://doi.org/10.1128/iai.63.12.4770-4773.1995
[165] T. Chandy, C.P. Sharma, Chitosan—As a biomaterial, Biomaterials, Artificial Cells, and Artificial Organs, 18(1990) 1–24. https://doi.org/10.3109/10731199009117286
[166] V. Sava, O. Fihurka, A. Khvorova, J. Sanchez-Ramos, Enriched chitosan nanoparticles loaded with siRNA are effective in lowering Huntington’s disease gene expression following intranasal administration, Nanomedicine nanomed-nanotechnol 24(2020) 102119. https://doi.org/10.1016/j.nano.2019.102119
[167] A. Shahar, K.V Patel, R.D Semba, S. Bandinelli, D.R. Shahar, L. Ferrucci, & J.M Guralnik, Plasma selenium is positively related to performance in neurological task sassessing coordination and motor speed, Movt. Disor. 25(2010) 1909–1915. https://doi.org/10.1002/mds.23218
[168] W. Cong, R. Bai, Y-F. Li, L. Wang, C. Chen, Selenium Nanoparticles as an Efficient Nanomedicine for the Therapy of Huntington’s Disease, ACS Appl. Mat. Interfaces, 11(2019) 34725–34735. https://doi.org/10.1021/acsami.9b12319
[169] M. Mielcarek, C. Landles, A. Weiss, A. Bradaia, T. Seredenina, L. Inuabasi, G.F. Osborne, K. Wadel, C. Touller, R. Butler, J. Robertson, S.A. Franklin, D.L. Smith, L. Park, P.A. Marks, E.E. Wanker, E.N. Olson, R. Luthi-Carter, H. van der Putten, B. Vahri, G.P. Bates, HDAC4 Reduction: A Novel Therapeutic Strategy to Target Cytoplasmic Huntingtin and Ameliorate Neurodegeneration, PLoS Biol 11 (2013)e1001717. https://doi.org/10.1371/journal.pbio.1001717
[170] M.R. Smith, A. Syed, T. Lukacsovich, J. Purcell, B.A Barbaro, S.A, Worthge, S.R. , Wei, G. Pollio, L. Magnoni, C. Scali, L. Massai, D. Franceschini, M. Camarri, M. Gianfriddo, E. ,Diodato, R. Thomas, O. Gokce, S.J. Tabrizi, A. Caricasole, J.L. Marsh, Apotent and selective sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of huntington’s disease, Hum. Mol. Gen. 23(2014). https://doi.org/10.1093/hmg/ddu010
[171] V. Leoni, C. Mariotti, S.J. Tabrizi, M. Valenza, E.J. Wild, S.M. Henley, N.Z. Hobbs, M.L. Mandelli, M. Grisoli, I. Björkhem, E. Cattaneo, S. Di Donato, Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington’s disease, 131 (2008) 2851–2859. https://doi.org/10.1093/brain/awn212
[172] V. Leoni, J.D. Long, J.A. Mills, S. Di Donato, J.S. Paulsen JS, Plasma 24S‐hydroxycholesterol correlation with markers of Huntington disease progression. Neurobiol Dis55(2013)37–43. https://doi.org/10.1016/j.nbd.2013.03.013
[173] A.B. Ziegler,T. Christoph, T. Federico, H. Astrid , S. Peter, T. Gaia , Cell-Autonomous Control of Neuronal Dendrite Expansion via the Fatty Acid Synthesis Regulator SREBP, Cell Reports 21 (2017) 3346–3353. https://doi.org/10.1016/j.celrep.2017.11.069
[174] M.S. Shive, J.M. Anderson, Biodegradation and biocompatibility of PLA and PLGA microspheres, Adv. Drug Deliv. Rev. 28(1997)5-24. https://doi.org/10.1016/s0169-409x(97)00048-3
[175] F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A. Le Breton, V. Préat, PLGA-based nanoparticles: an overview of biomedical applications, J. Contr. Rel.,161(2012)505-22. https://doi.org/10.1016/j.jconrel.2012.01.043
[176] J. Gupta, M.T. Fatima, Z. Islam, R.H. Khan, V.N. Uversky, P. Salahuddin, Nanoparticle formulations in the diagnosis and therapy of Alzheimer’s disease, Intl.J. Biol. Macromol. 130 (2019) 515–526. https://doi.org/10.1016/j.ijbiomac.2019.02.156
[177] D. Ling, T. Hyeon, Chemical design of biocompatible iron oxide nanoparticles for medical applications, Small (Weinheim an Der Bergstrasse, Germany), 9(2013), https://doi.org/10.1002/smll.201202111
[178] R. Adami, D. Bottai, Curcumin and neurological diseases, Nutr. Neurosci. 25 (2022)441–461. https://doi.org/10.1080/1028415X.2020.1760531
[179] Z. Yarjanli, K. Ghaedi, A. Esmaeili, S. Rahgozar, A. Zarrabi, Iron oxide nanoparticles may damage to the neural tissue through iron accumulation, oxidative stress, and protein aggregation, BMC Neurosci. 18 (2017). https://doi.org/10.1186/s12868-017-0369-9
[180] P. Bigini, V. Diana, S. Barbera, E. Fumagalli, E. Micotti, L. Sitia, A. Paladini, C. Bisighini, L. de Grada, L. Coloca, L. Colombo, P. Manca, P. Bossolasco, F. Malvestiti, F. Fiordaliso, G. Forloni, M. Morbidelli, M. Salmona, D. Giardino, L. Cova. Longitudinal tracking of human fetal cells labeled with super paramagnetic iron oxide nanoparticles in the brain of mice with motor neuron disease, PLoS One, 7 (2012) https://doi.org/10.1371/journal.pone.0032326
[181] L. Canzi, V. Castellaneta, S. Navone, S. Nava, M. Dossena, I. Zucca, T. Mennini, P. Bigini, E. A. Parati. Human skeletal muscle stem cell antiinflammatory activity ameliorates clinical outcome in amyotrophic lateral sclerosis models. Mol. Med. 18 (2012). https://doi.org/10.2119/molmed.2011.00123
[182] S. Gargiulo, S. Anzilotti, A.R.D. Coda, M. Gramanzini, A. Greco,M. Panico, A. Vinciguerra, A. Zannetti, C. Vicidomini, F. Dollé, G. Pignataro, M. Quarantelli, L. Annunziato, A. Brunetti, M. Salvatore, S. Pappatà, Imaging of brain TSPO expression in amouse model of amyotrophic lateral sclerosis with 18F-DPA-714 and micro-PET/CT, Eur. J. Nu. Med.2016. 1–12. https://doi.org/10.1007/s00259-016-3311-y
[183] B.E. Clarke, R. Patani, The microglial component of amyotrophic lateral sclerosis. Brain. 143(2020):3526-3539. https://doi.org/10.1093/brain/awaa309
[184] F.E. Turkheimer, G. Rizzo, P.S. Bloomfield, Howes, P. Zanotti, A. Bertoldo, M. Veronese, M. (2015). The methodology of TSPO imaging with positron emission tomography, Biochem. Soc. Transac. 43(2015). https://doi.org/10.1042/BST20150058
[185] Q. Chen, Y. Du, K. Zhang, Z. Liang, J. Li, H. Yu, R. Ren, J. Feng, Z. Jin, F. Li, J. Sun, M. Zhou, Q. He, X. Sun, H. Zhang, M. Tian, & amp; D. Ling, (2018). Tau-Targeted Multifunctional Nanocomposite for Combinational Therapy of Alzheimer’s Disease. ACS Nano, 12(2), Article 2. https://doi.org/10.1021/acsnano.7b07625
[186] F.N.S. Fachel, M. Dal Prá, J.H. Azambuja, M. Endres, V.L. Bassani, L. Koester, A.T. Henriques, A.G. Barschak, H.F. Teixeira, E. Braganhol, Glioprotective Effect of Chitosan-Coated Rosmarinic Acid Nanoemulsions Against Lipopolysaccharide-Induced Inflammation and Oxidative Stress in Rat Astrocyte Primary Cultures, Cell. Mol. Neurobiol. 40(2020) https://doi.org/10.1007/s10571-019-00727-y
[187] S. Liu, G. Zhen, R. Chi Li, & S. Dore, Acute bioenergetic intervention orpharmacological preconditioning protects neuron against ischemic injury. J. Exp. Stroke Transl. Med. 06(2013). https://doi.org/10.4172/1939-067X.1000140
[188] S.K. Rajendrakumar, V. Revuri, M. Samidurai, A.Mohapatra, J.H. Lee, P. Ganesan, J. Jo, Y.K. Lee, & I.-K. Park, Peroxidase-Mimicking Nanoassembly Mitigates Lipopolysaccharide-Induced Endotoxemia and Cognitive Damage in the Brain by Impeding Inflammatory Signaling in Macrophages, Nano Lett. 18(2018) https://doi.org/10.1021/acs.nanolett.8b02785
[189] M.L. Bondì, E.F. Craparo, G. Giammona, & F. Drago, Brain-targeted solid lipidnanoparticles containing riluzole: Preparation, characterization and biodistribution, Nanomedicine (London, England), 5(2010). https://doi.org/10.2217/nnm.09.67
[190] Z. Mazibuko,Y.E. Choonara, P. Kumar, L.C. Du Toit, G. Modi, D. Naidoo, V. Pillay, A review of the potential role of nano-enabled drug delivery technologies in amyotrophic lateral sclerosis: Lessons learned from other neurodegenerative disorders, J. Pharma.Sci. 104(2015). https://doi.org/10.1002/jps.24322
[191] G.Y. Wang, S.L. Rayner, R. Chung, B.Y. Shi, X.J. Liang, Advances in nanotechnology-based strategies for the treatments of amyotrophic lateral sclerosis, Mat. Today Bio, 6(2020) 100055. https://doi.org/10.1016/j.mtbio.2020.100055
[192] M. Benigni, C. Ricci, A.R. Jones, F. Giannini, A.Al-Chalabi, S. Battistini, Identification of miRNAs as Potential Biomarkers in Cerebrospinal Fluid from Amyotrophic Lateral Sclerosis Patients, Neuro Mol. Med. 18(2016). https://doi.org/10.1007/s12017-016-8396-8
[193] Pegoraro, V., Merico, A., & Angelini, C. (2019). MyomiRNAs Dysregulation in ALS Rehabilitation. Brain Sciences, 9(1), Article 1. https://doi.org/10.3390/brainsci9010008
[194] A. Freischmidt, K. Müller, L. Zondler, P. Weydt, A.E. Volk, A.L. Božič, M. Walter, M. Bonin, B. Mayer, C.A.F. von Arnim, M. Otto, C. Dieterich, K. Holzmann, P.M. Andersen, A.C. Ludolph, K.M. Danzer, J.H. Weishaupt, Serum microRNAs in patients with genetic amyotrophic lateral sclerosis and pre-manifest mutation carriers, Brain, 137(2014). https://doi.org/10.1093/brain/awu249
[195] B. Niccolini, V. Palmieri, M. De Spirito, M. Papi, Opportunities Offered by Graphene Nanoparticles for MicroRNAs Delivery for Amyotrophic Lateral Sclerosis Treatment, Materials (Basel, Switzerland), 15(2021). https://doi.org/10.3390/ma15010126
[196] L. Cui, Z. Chen, Z. Zhu, X. Lin, X. Chen, C.J. Yang, Stabilization of ssRNA on Graphene Oxide Surface: An Effective Way to Design Highly Robust RNA Probes, Analy. Chem. 85(2013). https://doi.org/10.1021/ac303179z
[197] A.J. Patil, J.L. Vickery, T.B. Scott, S. Mann, Aqueous Stabilization and Self-Assembly of Graphene Sheets into Layered Bio-Nanocomposites using DNA, Adv. Mat. 21(2009). https://doi.org/10.1002/adma.200803633
[198] A.K. Geim, K.S. Novoselov, The rise of graphene. In Nanoscience and Technology 2009 (pp. 11–19). Co-Published with Macmillan Publishers Ltd, UK. https://doi.org/10.1142/9789814287005_0002
[199] V. Novak, B. Rogelj, V. Župunski, Therapeutic Potential of Polyphenols in AmyotrophicLateral Sclerosis and Frontotemporal Dementia. Antioxidants, 10(2021). https://doi.org/10.3390/antiox10081328
[200] G. Tripodo, T. Chlapanidas, S. Perteghella, B. Vigani, D. Mandracchia, A. Trapani, M. Galuzzi, M.C. Tosca, B. Antonioli, P. Gaetani, M. Marazzi, M.L. Torre, Mesenchymal stromalcells loading curcumin-INVITE-micelles: A drug delivery system for neurodegenerative diseases.Colloids and Surfaces, Biointerfaces, 125(2015)300–308. https://doi.org/10.1016/j.colsurfb.2014.11.034