Lead-Free Perovskite Solar Cells

$45.00

Lead-Free Perovskite Solar Cells

Mridula Guin, Riya Singh

The breakthrough in 2012 for halide perovskite solar cells (PSC) left a deep impact on the next-generation solar cell. Lead halide perovskites have remarkable optoelectronic properties and are found to be highly efficient solar cells. However, the toxic nature of lead in these devices is of serious concern and set back the pace of their large-scale commercialization as PSC. The development of environment-friendly lead-free PSCs became the prime focus for scientists at large. In a short period, reasonable progress has been accomplished in lead-free PSCs. In this chapter present status of lead-free PSCs and prospects have been discussed. A detailed discussion of different strategies that can be adopted to enhance the photovoltaic efficiency of lead-free PSCs has been presented. We have also highlighted the materials to explore further progress in this area. Lastly, different fabrication processes of high-quality PSC film and associated challenges in improving efficiency have been provided.

Keywords
Perovskite, Solar Cell, Lead-Free, Halide Double Perovskites, Tin-Based, Germanium Based, Photovoltaic

Published online 10/15/2023, 44 pages

Citation: Mridula Guin, Riya Singh, Lead-Free Perovskite Solar Cells, Materials Research Foundations, Vol. 151, pp 111-154, 2023

DOI: https://doi.org/10.21741/9781644902738-5

Part of the book on Perovskite based Materials for Energy Storage Devices

References
[1] A.K. Jena, A. Kulkarni, T. Miyasaka, Halide perovskite photovoltaics: Background, status, and future prospects, Chem. Rev. 119 (2019) 3036-3103. https://doi.org/10.1021/acs.chemrev.8b00539
[2] P.K. Nayak, S. Mahesh, H.J. Snaith, D. Cahen, Photovoltaic solar cell technologies: Analyzing the state of the art, Nat. Rev. Mater. 4 (2019) 269-285. https://doi.org/10.1038/s41578-019-0097-0
[3] Y.H. Kim, J.S. Kim, T.W. Lee, Perovskite LEDs: Strategies to improve luminescence efficiency of metal-halide perovskites and light-emitting diodes, Adv. Mater. 31 (2019) 1970335. https://doi.org/10.1002/adma.201970335
[4] S.P. Senanayak, M.A. Jalebi, V.S. Kamboj, R. Carey, R. Shivanna, T. Tian, G. Schweicher, J. Wang, N. Giesbrecht, D.D. Nuzzo, H.E. Beere, P. Docampo, D.A. Ritchie, D. F. Jimenez, R.H. Friend, H. Sirringhaus, A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors, Sci. Adv. 6 (2020) eaaz4948. https://doi.org/10.1126/sciadv.aaz4948
[5] V. Pecunia, Efficiency and spectral performance of narrowband organic and perovskite photodetectors: A cross-sectional review, J. Phys. Mater. 2 (2019) 042001. https://doi.org/10.1088/2515-7639/ab336a
[6] S.V.N. Pammi, R. Maddaka, V.D. Tran, J.H. Eom, V. Pecunia, S. Majumder, M.D. Kim, S.G. Yoon, CVD-deposited hybrid lead halide perovskite films for high-responsivity, self-powered photodetectors with enhanced photo stability under ambient conditions, Nano Energy 74 (2020) 104872. https://doi.org/10.1016/j.nanoen.2020.104872
[7] National Renewable Energy Laboratory, 2020. https://www.nrel.gov/pv/cell
[8] B. Murali, S. Dey, A.L. Abdelhady, W. Peng, E. Alarousu, A.R. Kirmani, N. Cho, S.P. Sarmah, M.R. Parida, M.I. Saidaminov, A.A. Zhumekenov, J. Sun, M.S. Alias, E. Yengel, B.S. Ooi, A. Amassian, O.M. Bakr, O.F. Mohammed, Surface restructuring of hybrid perovskite crystals, ACS Energy Lett. 1 (2016) 1119-1126. https://doi.org/10.1021/acsenergylett.6b00517
[9] J.A. Christians, P.A.M. Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air, J. Am. Chem. Soc. 137 (2015) 1530-1538. https://doi.org/10.1021/ja511132a
[10] W. Huang, J.S. Manser, P.V. Kamat, S. Ptasinska, Evolution of chemical composition, morphology, and photovoltaic efficiency of CH3NH3PbI3 perovskite under ambient conditions, Chem. Mater. 28 (2016) 303-311. https://doi.org/10.1021/acs.chemmater.5b04122
[11] W. Peng, X. Miao, V. Adinolfi, E. Alarousu, O.E. Tall, A.H. Emwas, C. Zhao, G. Walters, J. Liu, O. Ouellette, J. Pan, B. Murali, E.H. Sargent, O.F. Mohammed, O.M. Bakr, Engineering of CH3NH3PbI3 perovskite crystals by alloying large organic cations for enhanced thermal stability and transport properties, Angew. Chem. Int. Ed. 55 (2016) 10686-10690. https://doi.org/10.1002/anie.201604880
[12] F. Ma, J. Li, W. Li, N. Lin, L. Wang, J. Qiao, Stable α/δ phase junction of Formamidinium Lead Iodide perovskites for enhanced near-infrared emission, Chem. Sci. 8 (2017) 800-805. https://doi.org/10.1039/C6SC03542F
[13] G.A. Tosado, Y.Y. Lin, E. Zheng, Q. Yu, Impact of Cesium on the phase and device stability of triple cation Pb-Sn double halide perovskite films and solar cells, J. Mater. Chem. 6 (2018) 17426-17436. https://doi.org/10.1039/C8TA06391E
[14] A. Babayigit, A. Ethirajan, M. Muller, B. Conings, Toxicity of organometal halide perovskite solar cells, Nat. Mater. 15 (2016) 247-251. https://doi.org/10.1038/nmat4572
[15] I.R. Benmessaoud, A.L.M.-Mellier, E. Horváth, B. Maco, M. Spina, H.A. Lashuel, L. Forró, Health hazards of Methylammonium Lead Iodide based perovskites: Cytotoxicity studies, Toxicol. Res. 5 (2016) 407-419. https://doi.org/10.1039/C5TX00303B
[16] A. Babayigit, D.D. Thanh, A. Ethirajan, J. Manca, M. Muller, H.-G. Boyen, B. Conings, Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio, Sci. Rep. 6 (2016) 1-11. https://doi.org/10.1038/srep18721
[17] R.Wang, M. Mujahid, Y. Duan, Z.K. Wang, J. Xue, Y. Yang, A review of perovskites solar cell stability, Adv. Funct. Mater. 29 (2019) 1808843. https://doi.org/10.1002/adfm.201808843
[18] A. Abate, Perovskite solar cells go lead free, Joule.1 (2017) 659-664. https://doi.org/10.1016/j.joule.2017.09.007
[19] W.F. Yang, F. Igbari, Y.H. Lou, Z.K. Wang, L.S. Liao, Tin halide perovskites: Progress and challenges, Adv. Energy Mater. 10 (2020) 1902584. https://doi.org/10.1002/aenm.201902584
[20] K. Nishimura, M.A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Lead-free Tin-halide perovskite solar cells with 13% efficiency, Nano Energy. 74 (2020) 104858. https://doi.org/10.1016/j.nanoen.2020.104858
[21] W. Ke, C.C. Stoumpos, M.G. Kanatzidis, Unleaded perovskites: Status quo and future prospects of Tin-based perovskite solar cells, Adv. Mater. 31 (2019) 1803230. https://doi.org/10.1002/adma.201803230
[22] P. Xu, S. Chen, H.J. Xiang, X.G. Gong, S.H. Wei, Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3, Chem. Mater. 26 (2014) 6068-6072. https://doi.org/10.1021/cm503122j
[23] G. Xing, M.H. Kumar, W.K. Chong, X. Liu, Y. Cai, H. Ding, M. Asta, M. Grätzel, S. Mhaisalkar, N. Mathews, T.C. Sum, Solution-processed Tin-based perovskite for near-infrared lasing, Adv. Mater. 28 (2016) 8191-8196. https://doi.org/10.1002/adma.201601418
[24] M. Leng, Y. Yang, K. Zeng, Z. Chen, Z. Tan, S. Li, J. Li, B. Xu, D. Li, M.P. Hautzinger, Y. Fu, T. Zhai, L. Xu, G. Niu, S. Jin, J. Tang, All‐inorganic Bismuth‐based perovskite quantum dots with bright blue photoluminescence and excellent stability, Adv. Funct. Mater. 28 (2018) 1704446. https://doi.org/10.1002/adfm.201704446
[25] M. Lyu, J.H. Yun, P. Chen, M. Hao, L. Wang, Addressing toxicity of Lead: Progress and applications of low‐toxic metal halide perovskites and their derivatives, Adv. Energy Mater. 7 (2017) 1602512. https://doi.org/10.1002/aenm.201602512
[26] A.B.F. Vitoreti, S. Agouram, M.S.D.L. Fuente, V.M. Sanjosé, M.A. Schiavon, I.M. Seró, Study of the partial substitution of Pb by Sn in Cs-Pb-Sn-Br nanocrystals owing to obtaining stable nanoparticles with excellent optical properties, J. Phys. Chem: C, 122 (2018) 14222-14231. https://doi.org/10.1021/acs.jpcc.8b02499
[27] D. Bartesaghi, A. Ray, J. Jiang, R.K.M. Bouwer, S. Tao, T.J. Savenije, Partially replacing Pb2+ by Mn2+ in hybrid metal halide perovskites: Structural and electronic properties, APL Mater. 6 (2018) 121106. https://doi.org/10.1063/1.5060953
[28] J. Liu, G. Wang, Z. Song, X. He, K. Luo, Q. Ye, C. Liao, J. Mei, FAPb1− xSnxI3 mixed metal halide perovskites with improved light harvesting and stability for efficient planar heterojunction solar cells, J. Mater. Chem: A, 5 (2017) 9097-9106. https://doi.org/10.1039/C6TA11181E
[29] B. Zhao, M.A. Jalebi, M. Tabachnyk, H. Glass, V.S. Kamboj, W. Nie, A.J. Pearson, Y. Puttisong, K.C. Gödel, H. E. Beere, D.A. Ritchie, A.D. Mohite, S.E. Dutton, R.H. Friend, A. Sadhanala, High open‐circuit voltages in Tin‐rich low‐bandgap perovskite‐based planar heterojunction photovoltaics, Adv. Mater. 29 (2017) 1604744. https://doi.org/10.1002/adma.201604744
[30] F. Yang, D. Hirotani, G. Kapil, M.A. Kamarudin, C.H. Ng, Y. Zhang, Q. Shen, S. Hayase, All‐inorganic CsPb1− xGexI2Br perovskite with enhanced phase stability and photovoltaic performance, Angew. Chem. Int. Ed. 130 (2018) 12927-12931. https://doi.org/10.1002/ange.201807270
[31] M.R. Filip, F. Giustino, Computational screening of homovalent Lead substitution in organic-inorganic halide perovskites, J. Phys. Chem: C, 120 (2016) 166-173. https://doi.org/10.1021/acs.jpcc.5b11845
[32] S.F. Hoefler, G. Trimmel, T. Rath, Progress on Lead-free metal halide perovskites for photovoltaic applications: A review, Monatsh. Chem. 148 (2017) 795-826. https://doi.org/10.1007/s00706-017-1933-9
[33] L. Yang, A.T. Barrows, D.G. Lidzey, T. Wang, Recent progress and challenges of organometal halide perovskite solar cells, Rep. Prog. Phys. 79 (2016) 026501. https://doi.org/10.1088/0034-4885/79/2/026501
[34] G. Nagabhushana, R. Shivaramaiah, A. Navrotsky, Direct calorimetric verification of thermodynamic instability of Lead halide hybrid perovskites, Proc. Natl. Acad. Sci. 113 (2016) 7717-7721. https://doi.org/10.1073/pnas.1607850113
[35] B. Saparov, D.B. Mitzi, Organic-inorganic perovskites: Structural versatility for functional materials design, Chem. Rev. 116 (2016) 4558-4596. https://doi.org/10.1021/acs.chemrev.5b00715
[36] T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, Lead-free Germanium Iodide perovskite materials for photovoltaic applications, J. Mater. Chem: A, 3 (2015) 23829-23832. https://doi.org/10.1039/C5TA05741H
[37] W.F. Yang, F. Igbari, Y.H. Lou, Z.K. Wang, L.S. Liao, Tin halide perovskites: Progress and challenges, Adv. Energy Mater. 10 (2020) 1902584. https://doi.org/10.1002/aenm.201902584
[38] K. Nishimura, M.A. Kamarudin, D. Hirotani, K. Hamada, Q. Shen, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Lead-free Tin-halide perovskite solar cells with 13% efficiency, Nano Energy. 74 (2020) 104858. https://doi.org/10.1016/j.nanoen.2020.104858
[39] W. Ke, C.C. Stoumpos, M.G. Kanatzidis, Unleaded perovskites: Status quo and future prospects of Tin-based perovskite solar cells, Adv. Mater. 31 (2019) 1803230. https://doi.org/10.1002/adma.201803230
[40] W. Ke, M.G. Kanatzidis, Prospects for low-toxicity Lead-free perovskite solar cells, Nat. Commun. 10 (2019) 1-4. https://doi.org/10.1038/s41467-018-07882-8
[41] M.E. Kayesh, T.H. Chowdhury, K. Matsuishi, R. Kaneko, S. Kazaoui, J.J. Lee, T. Noda, A. Islam, Enhanced photovoltaic performance of FASnI3-based perovskite solar cells with Hydrazinium Chloride coadditive, ACS Energy Lett. 3 (2018) 1584-1589. https://doi.org/10.1021/acsenergylett.8b00645
[42] Q. Tai, X. Guo, G. Tang, P. You, T.W. Ng, D. Shen, J. Cao, C.K. Liu, N. Wang, Y. Zhu, C.S. Lee, F. Yan, Antioxidant grain passivation for air‐stable Tin‐based perovskite solar cells, Angew. Chem. Int. Ed. 58 (2019) 806-810. https://doi.org/10.1002/anie.201811539
[43] X. Meng, T. Wu, X. Liu, X. He, T. Noda, Y. Wang, H. Segawa, L. Han, Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent, J. Phys. Chem. Lett. 11 (2020) 2965-2971. https://doi.org/10.1021/acs.jpclett.0c00923
[44] T. Wang, Q. Tai, X. Guo, J. Cao, C.K. Liu, N. Wang, D. Shen, Y. Zhu, C.S. Lee, F. Yan, Highly air-stable Tin-based perovskite solar cells through grain-surface protection by Gallic acid, ACS Energy Lett. 5 (2020) 1741-1749. https://doi.org/10.1021/acsenergylett.0c00526
[45] E. Jokar, C.H. Chien, C.M. Tsai, A. Fathi, EW.G. Diau, Robust Tin‐based perovskite solar cells with hybrid organic cations to attain efficiency approaching 10%, Adv. Mater. 31 (2019) 1804835. https://doi.org/10.1002/adma.201804835
[46] M.A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura, Q. Shen, T. Toyoda, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Suppression of charge carrier recombination in Lead-free Tin halide perovskite via Lewis base post-treatment, J. Phys. Chem. Lett. 10 (2019) 5277-5283. https://doi.org/10.1021/acs.jpclett.9b02024
[47] W. Ke, C.C. Stoumpos, I. Spanopoulos, L. Mao, M. Chen, M.R. Wasielewski, M.G. Kanatzidis, Efficient Lead-free solar cells based on hollow {en} MASnI3 perovskites, J. Am. Chem. Soc. 139 (2017) 14800-14806. https://doi.org/10.1021/jacs.7b09018
[48] W. Ke, C.C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos, J. Liu, O.Y. Kontsevoi, M. Chen, D. Sarma, Y. Zhang, M.R. Wasielewski, M.G. Kanatzidis, Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en} FASnI3, Sci. Adv. 3 (2017) 1701293. https://doi.org/10.1126/sciadv.1701293
[49] S. Shao, J. Liu, G. Portale, H.H. Fang, G.R. Blake, G.H.T. Brink, L.J.A. Koster, M.A. Loi, Highly reproducible Sn‐based hybrid perovskite solar cells with 9% efficiency, Adv. Energy Mater. 8 (2018) 1702019. https://doi.org/10.1002/aenm.201702019
[50] X. Jiang, F. Wang, Q. Wei, H. Li, Y. Shang, W. Zhou, C. Wang, P. Cheng, Q. Chen, L. Chen, Z. Ning, Ultra-high open-circuit voltage of Tin perovskite solar cells via an electron transporting layer design, Nat. Commun. 11 (2020) 1-7. https://doi.org/10.1038/s41467-019-13993-7
[51] F. Wang, X. Jiang, H. Chen, Y. Shang, H. Liu, J. Wei, W. Zhou, H. He, W. Liu, Z. Ning, 2D-quasi-2D-3D hierarchy structure for Tin perovskite solar cells with enhanced efficiency and stability, Joule. 2 (2018) 2732-2743. https://doi.org/10.1016/j.joule.2018.09.012
[52] T. Wu, X. Liu, X. Luo, X. Lin, D. Cui, Y. Wang, H. Segawa, Y. Zhang, L. Han, Lead-free Tin perovskite solar cells, Joule. 5 (2021) 863-886. https://doi.org/10.1016/j.joule.2021.03.001
[53] T. Krishnamoorthy, H. Ding, C. Yan, W.L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S.G. Mhaisalkar, Lead-free Germanium Iodide perovskite materials for photovoltaic applications, J. Mater. Chem: A, 3 (2015) 23829- 23832. https://doi.org/10.1039/C5TA05741H
[54] I. Kopacic, B. Friesenbichler, S.F. Hoefler, B. Kunert, H. Plank, T. Rath, G. Trimmel, Enhanced performance of Germanium halide perovskite solar cells through compositional engineering, ACS Appl. Energy Mater. 1 (2018) 343-347. https://doi.org/10.1021/acsaem.8b00007
[55] V. Pecunia, L.G. Occhipinti, A. Chakraborty, Y. Pan, Y. Pang, Lead-free halide perovskite photovoltaics: Challenges, open questions, and opportunities, APL Mater. 8 (2020) 100901. https://doi.org/10.1063/5.0022271
[56] C.H. Ng, K. Nishimura, N. Ito, K. Hamada, D. Hirotani, Z. Wang, F. Yang, S. Likubo, Q. Shen, K. Yoshino, T. Minemoto, S. Hayase, Role of GeI2 and SnF2 additives for SnGe perovskite solar cells, Nano Energy. 58 (2019) 130-137. https://doi.org/10.1016/j.nanoen.2019.01.026
[57] M. Chen, M.G. Ju, H.F. Garces, A.D. Carl, L.K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R.L. Grimm, D. Pacifici, X.C. Zeng, Y. Zhou, N.P. Padture, Highly stable and efficient all-inorganic Lead-free perovskite solar cells with native-oxide passivation, Nat. Commun. 10 (2019) 1-8. https://doi.org/10.1038/s41467-018-07882-8
[58] R. Wang, J. Wang, S. Tan, Y. Duan, Z.-K. Wang, Y. Yang, Opportunities and challenges of Lead-free perovskite optoelectronic devices, Trends Chem. 1 (2019) 368-379. https://doi.org/10.1016/j.trechm.2019.04.004
[59] Z. Xiao, W. Meng, J. Wang, D.B. Mitzi, Y. Yan, Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality, Mater. Horiz. 4 (2017) 206-216. https://doi.org/10.1039/C6MH00519E
[60] H. Hu, B. Dong, W. Zhang, Low-toxic metal halide perovskites: Opportunities and future challenges, J. Mater. Chem: A, 5 (2017) 11436-11449. https://doi.org/10.1039/C7TA00269F
[61] Park, B. Wook, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar cell application, Adv. Mater. 27 (2015) 6806-6813. https://doi.org/10.1002/adma.201501978
[62] B.W. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, E.M.J. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application, Adv. Mater. 27 (2015) 6806-6813. https://doi.org/10.1002/adma.201501978
[63] J.P.C. Baena, L. Nienhaus, R.C. Kurchin, S.S. Shin, S. Wieghold, N.T.P. Hartono, M. Layurova, N.D. Klein, J.R. Poindexter, A. Polizzotti, S. Sun, M.G. Bawendi, T. Buonassisi, A-Site cation in inorganic A3Sb2I9 perovskite influences structural dimensionality, exciton binding energy, and solar cell performance, Chem. Mater. 30 (2018) 3734- 3742. https://doi.org/10.1021/acs.chemmater.8b00676
[64] J.C. Hebig, I. Kuhn, J. Flohre, T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications, ACS Energy Lett. 1 (2016) 309-314. https://doi.org/10.1021/acsenergylett.6b00170
[65] S.M. Jain, D. Phuyal, M.L. Davies, M. Li, B. Philippe, C.D. Castro, Z. Qiu, J. Kim, T. Watson, W.C. Tsoi, O. Karis, H. Rensmo, G. Boschloo, T. Edvinsson, J.R. Durrant, An effective approach of vapor assisted morphological tailoring for reducing metal defect sites in Lead-free, (CH3NH3)3Bi2I9 Bismuth-based perovskite solar cells for improved performance and long-term stability, Nano Energy. 49 (2018) 614-624. https://doi.org/10.1016/j.nanoen.2018.05.003
[66] F. Bai, Y. Hu, Y. Hu, T. Qiu, X. Miao, S. Zhang, Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells, Sol. Energy Mater. Sol. Cells. 184 (2018) 15-21. https://doi.org/10.1016/j.solmat.2018.04.032
[67] S. Weber, T. Rath, K. Fellner, R. Fischer, R. Resel, B. Kunert, T. Dimopoulos, A. Steinegger, G. Trimmel, Influence of the Iodide to Bromide ratio on crystallographic and optoelectronic properties of Rubidium Antimony halide perovskites, ACS Appl. Energy Mater. 2 (2019) 539-547. https://doi.org/10.1021/acsaem.8b01572
[68] F. Li, Y. Wang, K. Xia, R.L.Z. Hoye, V. Pecunia, Microstructural and photoconversion efficiency enhancement of compact films of Lead-free perovskite derivative Rb3Sb2I9, J. Mater. Chem: A, 8 (2020) 4396-4406. https://doi.org/10.1039/C9TA13352F
[69] Y. Yang, C. Liu, M. Cai, Y. Liao, Y. Ding, S. Ma, X. Liu, M. Guli, S. Dai, M.K. Nazeeruddin, Dimension-controlled growth of Antimony-based perovskite-like halides for Lead-free and semitransparent photovoltaics, ACS Appl. Mater. Interfaces. 12 (2020) 17062-17069. https://doi.org/10.1021/acsami.0c00681
[70] Y. Peng, F. Li, Y. Wang, Y. Li, R.L.Z. Hoye, L. Feng, K. Xia, V. Pecunia, Enhanced photoconversion efficiency in Cesium-Antimony-halide perovskite derivatives by tuning crystallographic dimensionality, Appl. Mater. Today. 19 (2020) 100637. https://doi.org/10.1016/j.apmt.2020.100637
[71] M. Wang, W. Wang, B. Ma, W. Shen, L. Liu, K. Cao, S. Chen, W. Huang, Lead free perovskite materials for solar cells, Nano-Micro Lett. 13 (2021) 1-36. https://doi.org/10.1007/s40820-020-00525-y
[72] F. Igbari, Z.K. Wang, L.S. Liao, Progress of Lead‐free halide double perovskites, Adv. Energy Mater. 9 (2019) 1803150. https://doi.org/10.1002/aenm.201803150
[73] P.K. Kung, M.H. Li, P.Y. Lin, J.Y. Jhang, M. Pantaler, D.C. Lupascu, G. Grancini, P. Chen, Lead‐free double perovskites for perovskite solar cells, Sol. RRL. 4 (2020) 1900306. https://doi.org/10.1002/solr.201900306
[74] X.G. Zhao, D. Yang, J.C. Ren, Y. Sun, Z. Xiao, L. Zhang, Rational design of halide double perovskites for optoelectronic applications, Joule. 2 (2018) 1662-1673. https://doi.org/10.1016/j.joule.2018.06.017
[75] I.N. Flerov, M.V. Gorev, K.S. Aleksandrov, A. Tressaud, J. Grannec, M. Couzi, Phase transitions in elpasolites (ordered perovskites), Mater. Sci. Eng: R, 24 (2018) 81-151. https://doi.org/10.1016/S0927-796X(98)00015-1
[76] R. Kentsch, M. Scholz, J. Horn, D. Schlettwein, K. Oum, T. Lenzer, Exciton dynamics and electron-phonon coupling affect the photovoltaic performance of the Cs2AgBiBr6 double perovskite, J. Phys. Chem: C, 122 (2018) 25940-25947. https://doi.org/10.1021/acs.jpcc.8b09911
[77] C.N. Savory, A. Walsh, D.O. Scanlon, Can Pb-free halide double perovskites support high-efficiency solar cells?, ACS Energy Lett. 1 (2016) 949-955. https://doi.org/10.1021/acsenergylett.6b00471
[78] A.H. Slavney, T. Hu, A.M. Lindenberg, H.I. Karunadasa, A Bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, J. Am. Chem. Soc. 138 (2016) 2138-2141. https://doi.org/10.1021/jacs.5b13294
[79] M.R. Filip, X. Liu, A. Miglio, G. Hautier, F. Giustino, Phase diagrams and stability of Lead-free halide double perovskites Cs2BB′ X6: B= Sb and Bi, B′= Cu, Ag, and Au, and X= Cl, Br, and I, J. Phys. Chem: C, 122 (2018) 158-170. https://doi.org/10.1021/acs.jpcc.7b10370
[80] S.E. Creutz, E.N. Crites, M.C.D. Siena, D.R. Gamelin, Colloidal nanocrystals of Lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials, Nano Lett. 18 (2018) 1118-1123. https://doi.org/10.1021/acs.nanolett.7b04659
[81] X. Qiu, B. Cao, S. Yuan, X. Chen, Z. Qiu, Y. Jiang, Q. Ye, H. Wang, H. Zeng, J. Liu, M.G. Kanatzidis, From unstable CsSnI3 to air-stable Cs2SnI6: A Lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient, Sol. Energy Mater. Sol. Cells. 159 (2017) 227-234. https://doi.org/10.1016/j.solmat.2016.09.022
[82] T. Kirchartz, U. Rau, What makes a good solar cell?, Adv. Energy Mater. 8 (2018) 1703385. https://doi.org/10.1002/aenm.201703385
[83] D. Sabba, H.K. Mulmudi, R.R. Prabhakar, T. Krishnamoorthy, T. Baikie, P.P. Boix, S. Mhaisalkar, N. Mathews, Impact of anionic Br-substitution on open circuit voltage in Lead free perovskite (CsSnI3-xBr x) solar cells, J. Phys. Chem: C, 119 (2015) 1763-1767. https://doi.org/10.1021/jp5126624
[84] W. Ming, H. Shi, M.H. Du, Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGe3, J. Mater. Chem: A, 4 (2016) 13852-13858. https://doi.org/10.1039/C6TA04685A
[85] F. Li, Y. Wang, K. Xia, R.L.Z. Hoye, V. Pecunia, Microstructural and photoconversion efficiency enhancement of compact films of Lead-free perovskite derivative Rb3Sb2I9, J. Mater. Chem: A, 8 (2020) 4396- 4406. https://doi.org/10.1039/C9TA13352F
[86] B. Saparov, F. Hong, J.P. Sun, H.S. Duan, W. Meng, S. Cameron, I.G. Hill, Y. Yan, D.B. Mitzi, Thin-film preparation and characterization of Cs3Sb2I9 : A Lead-free layered perovskite semiconductor, Chem. Mater. 27 (2015) 5622- 5632. https://doi.org/10.1021/acs.chemmater.5b01989
[87] P.C. Harikesh, H.K. Mulmudi, B. Ghosh, T.W. Goh, Y.T. Teng, K. Thirumal, M. Lockrey, K. Weber, T.M. Koh, S. Li, S. Mhaisalkar, N. Mathews, Rb as an alternative cation for templating inorganic Lead-free perovskites for solution processed photovoltaics, Chem. Mater. 28 (2016) 7496-7504. https://doi.org/10.1021/acs.chemmater.6b03310
[88] W. Meng, X. Wang, Z. Xiao, J. Wang, D.B. Mitzi, Y. Yan, Parity-forbidden transitions and their impact on the optical absorption properties of Lead-free metal halide perovskites and double perovskites, J. Phys. Chem. Lett. 8 (2017) 2999-3007. https://doi.org/10.1021/acs.jpclett.7b01042
[89] X.G. Zhao, D. Yang, J.C. Ren, Y. Sun, Z. Xiao, L. Zhang, Rational design of halide double perovskites for optoelectronic applications, Joule. 2 (2018) 1662-1673. https://doi.org/10.1016/j.joule.2018.06.017
[90] W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang, M. Wu, X. Hou, Z. Wu, High‐quality Cs2AgBiBr6 double perovskite film for Lead‐free inverted planar heterojunction solar cells with 2.2% efficiency, ChemPhysChem. 19 (2018) 1696-1700. https://doi.org/10.1002/cphc.201800346
[91] B. Lee, A. Krenselewski, S.I. Baik, D.N. Seidman, R.P.H. Chang, Solution processing of air-stable molecular semiconducting Iodosalts, Cs2SnI6−xBrx, for potential solar cell applications, Sustain. Energy Fuels. 1 (2017) 710-724. https://doi.org/10.1039/C7SE00100B
[92] M.V. Khenkin, E.A. Katz, A. Abate, G. Bardizza, J.J. Berry, C. Brabec, F. Brunetti, V. Bulovi’c, Q. Burlingame, A.D. Carlo, R. Cheacharoen, Y.-B. Cheng, A. Colsmann, S. Cros, K. Domanski, M. Dusza, C.J. Fell, S.R. Forrest, Y. Galagan, D.D. Girolamo, M. Gratzel, A. Hagfeldt, E.V. Hauff, H. Hoppe, J. Kettle, H. Kobler, M.S. Leite, S. Liu, Y.-L. Loo, J.M. Luther, C.-Q. Ma, M. Madsen, M. Manceau, M. Matheron, M. McGehee, R. Meitzner, M.K. Nazeeruddin, A.F. Nogueira, C. Odaba, A. Osherov, N.-G. Park, M.O. Reese, F.D. Rossi, M. Saliba, U.S. Schubert, H. J. Snaith, S.D. Stranks, W. Tress, P.A. Troshin, V. Turkovic, S. Veenstra, I.V. Fisher, A. Walsh, T. Watson, H. Xie, R. Yildirim, S.M. Zakeeruddin, K. Zhu, M.L. Cantu, Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures, Nat. Energy. 5 (2020) 35-49. https://doi.org/10.1038/s41560-019-0529-5
[93] J. Cao, F. Yan, Recent progress in Tin-based perovskite solar cells, Energy Environ. Sci. 14 (2021) 1286. https://doi.org/10.1039/D0EE04007J
[94] R.E. Brandt, J.R. Poindexter, P. Gorai, R.C. Kurchin, R.L.Z. Hoye, L. Nienhaus, M.W.B. Wilson, J.A. Polizzotti, R. Sereika, R. Žaltauskas, L.C. Lee, J.L.M.M. Driscoll, M. Bawendi, V. Stevanovic, T. Buonassisi, Searching for “defect-tolerant” photovoltaic materials: Combined theoretical and experimental screening, Chem. Mater. 29 (2017) 4667-4674. https://doi.org/10.1021/acs.chemmater.6b05496
[95] A.M. Ganose, C.N. Savory, D.O. Scanlon, Beyond Methylammonium Lead Iodide: Prospects for the emergent field of ns 2 containing solar absorbers, Chem. Commun. 53 (2017) 20-44. https://doi.org/10.1039/C6CC06475B
[96] T.N. Huq, L.C. Lee, L. Eyre, W. Li, R.A. Jagt, C. Kim, S. Fearn, V. Pecunia, F. Deschler, J.L.M. Driscoll, R.L.Z. Hoye, Electronic structure and optoelectronic properties of Bismuth oxyiodide robust against percent‐level Iodine‐, Oxygen‐, and Bismuth‐related surface defects, Adv. Funct. Mater. 30 (2020) 1909983. https://doi.org/10.1002/adfm.201909983
[97] Y. Li, D.M. Lopez, V.R. Vargas, J. Zhang, K. Yang, Stability diagrams, defect tolerance, and absorption coefficients of hybrid halide semiconductors: High-throughput first-principles characterization, J. Chem. Phys. 152 (2020) 084106. https://doi.org/10.1063/1.5127929
[98] W. Gao, C. Ran, J. Xi, B. Jiao, W. Zhang, M. Wu, X. Hou, Z. Wu, High‐quality Cs2AgBiBr6 double perovskite film for Lead‐free inverted planar heterojunction solar cells with 2.2% efficiency, ChemPhysChem. 19 (2018) 1696-1700. https://doi.org/10.1002/cphc.201800346
[99] F. Umar, J. Zhang, Z. Jin, I. Muhammad, X. Yang, H. Deng, K. Jahangeer, Q. Hu, H. Song, J. Tang, Dimensionality controlling of Cs3Sb2I9 for efficient all‐inorganic planar thin film solar cells by HCl‐assisted solution method, Adv. Opt. Mater. 7 (2019) 1801368. https://doi.org/10.1002/adom.201801368
[100] E.A. Duijnstee, J.M. Ball, V.ML. Corre, L.J.A. Koster, H.J. Snaith, J. Lim, Towards understanding space-charge limited current measurements on metal halide perovskites, ACS Energy Lett. 5 (2020) 376-384. https://doi.org/10.1021/acsenergylett.9b02720
[101] C.K. Liu, Q. Tai, N. Wang, G. Tang, H.L. Loi, F. Yan, Sn‐based perovskite for highly sensitive photodetectors, Adv. Sci. 6 (2019) 1900751. https://doi.org/10.1002/advs.201900751
[102] K. Nishimura, D. Hirotani, M.A. Kamarudin, Q. Shen, T. Toyoda, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, Relationship between lattice strain and efficiency for Sn-perovskite solar cells, ACS Appl. Mater. Interfaces. 11 (2019) 31105-31110. https://doi.org/10.1021/acsami.9b09564
[103] S.Y. Kim, Y. Yun, S. Shin, J.H. Lee, Y.W. Heo, S. Lee, Wide range tuning of band gap energy of A3B2X9 perovskite-like halides, Scr. Mater. 166 (2019) 107-111. https://doi.org/10.1016/j.scriptamat.2019.03.009
[104] P.C. Harikesh, B. Wu, B. Ghosh, R.A. John, S. Lie, K. Thirumal, L.H. Wong, T.C. Sum, S. Mhaisalkar, N. Mathews, Doping and switchable photovoltaic effect in Lead‐free perovskites enabled by metal cation transmutation, Adv. Mater. 30 (2018) 1802080. https://doi.org/10.1002/adma.201802080
[105] V. Pecunia, Y. Yuan, J. Zhao, K. Xia, Y. Wang, S. Duhm, L. Portilla, F. Li, Perovskite-inspired Lead-free Ag2BiI5 for self-powered NIR-blind visible light photodetection, Nano-Micro Lett. 12 (2020) 1-12. https://doi.org/10.1007/s40820-020-0371-0
[106] F. Giustino, H.J. Snaith, Towards Lead-free perovskite solar cells, ACS Energy Lett. 1 (2016) 1233-1240. https://doi.org/10.1021/acsenergylett.6b00499
[107] M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature. 501 (2013) 395-398. https://doi.org/10.1038/nature12509
[108] C. Momblona, L.G. Escrig, E. Bandiello, E.M. Hutter, M. Sessolo, K. Lederer, J.B. Nimoth, H.J. Bolink, Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers, Energy Environ. Sci. 9 (2016) 3456-3463. https://doi.org/10.1039/C6EE02100J
[109] J. Xi, Z. Wu, B. Jiao, H. Dong, C. Ran, C. Pio, T. Lei, T.B. Song, W. Ke, T. Yokoyama, X. Hou, Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible Lead-free perovskite solar cells, Adv. Mater. 29 (2017) 1606964. https://doi.org/10.1002/adma.201606964
[110] D. Moghe, L. Wang, C.J. Traverse, A. Redoute, M. Sponseller, P.R. Brown, V. Bulović, R.R. Lunt, All vapor-deposited Lead-free doped CsSnBr3 planar solar cells, Nano Energy. 28 (2016) 469-474. https://doi.org/10.1016/j.nanoen.2016.09.009
[111] Jung, M. Cherl, S.R. Raga, Y. Qi, Properties and solar cell applications of Pb-free perovskite films formed by vapor deposition, RSC Adv. 6 (2016) 2819-2825. https://doi.org/10.1039/C5RA21291J
[112] N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, S.I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater. 13 (2014) 897-903. https://doi.org/10.1038/nmat4014
[113] N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of Lead (II) Iodide, J. Am. Chem. Soc. 137 (2015) 8696-8699. https://doi.org/10.1021/jacs.5b04930
[114] T.B. Song, Q. Chen, H. Zhou, C. Jiang, H.H. Wang, Y. Yang, Y. Liu, J. You, Y. Yang, Perovskite solar cells: Film formation and properties, J. Mater. Chem: A, 3 (2015) 9032- 9050. https://doi.org/10.1039/C4TA05246C
[115] J. Burschka, N. Pellet, S.-J. Moon, R.H. Baker, P. Gao, M.K. Nazeeruddin, M. Gr¨atzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature. 499 (2013) 316-319. https://doi.org/10.1038/nature12340
[116] M. Weiss, J. Horn, C. Richter, D. Schlettwein, Preparation and characterization of Methylammonium Tin Iodide layers as photovoltaic absorbers, Phys. Status Solidi: A, 213 (2016) 975-981. https://doi.org/10.1002/pssa.201532594
[117] T. Yokoyama, D.H. Cao, C.C. Stoumpos, T.B. Song, Y. Sato, S. Aramaki, M.G. Kanatzidis, Overcoming short-circuit in Lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process, J. Phys. Chem. Lett. 7 (2016) 776-782. https://doi.org/10.1021/acs.jpclett.6b00118
[118] C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, S. Wang, The dawn of Lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film, Adv. Sci. 5 (2018) 1700759. https://doi.org/10.1002/advs.201700759
[119] J.H. Im, H.S. Kim, N.G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3, APL Mater. 2 (2014) 081510. https://doi.org/10.1063/1.4891275
[120] L.K. Ono, M.R. Leyden, S. Wang, Y. Qi, Organometal halide perovskite thin films and solar cells by vapor deposition, J. Mater. Chem: A, 4 (2016) 6693-6713. https://doi.org/10.1039/C5TA08963H
[121] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci. 7 (2014) 2619- 2623. https://doi.org/10.1039/C4EE01138D
[122] D. Bi, C. Yi, J. Luo, J.D. D’ecoppet, F. Zhang, S.M. Zakeeruddin, X. Li, A. Hagfeldt, M. Gr¨atzel, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nat. Energy. 1 (2016) 1-5. https://doi.org/10.1038/nenergy.2016.142
[123] Y. Deng, Q. Dong, C. Bi, Y. Yuan, J. Huang, Air‐stable, efficient mixed‐cation perovskite solar cells with Cu electrode by scalable fabrication of active layer, Adv. Energy Mater. 6 (2016) 1600372. https://doi.org/10.1002/aenm.201600372
[124] H. Zhang, J. Shi, X. Xu, L. Zhu, Y. Luo, D. Li, Q. Meng, Mg-doped TiO2 boosts the efficiency of planar perovskite solar cells to exceed 19%, J. Mater. Chem: A, 4 (2016) 15383-15389. https://doi.org/10.1039/C6TA06879K
[125] B. Conings, A. Babayigit, M.T. Klug, S. Bai, N. Gauquelin, N. Sakai, J.T.-W. Wang, J. Verbeeck, H.-G. Boyen, H.J. Snaith, A universal deposition protocol for planar heterojunction solar cells with high efficiency-based hybrid Lead halide perovskite families, Adv. Mater. 28 (2016) 10701-10709. https://doi.org/10.1002/adma.201603747
[126] F. Ye, H. Chen, F. Xie, W. Tang, M. Yin, J. He, E. Bi, Y. Wang, X. Yang, L. Han, Soft-cover deposition of scaling-up uniform perovskite thin films for high cost-performance solar cells, Energy Environ. Sci. 9 (2016) 2295-2301. https://doi.org/10.1039/C6EE01411A