Polymeric Electrolytes in Fuel Cells: A Sustainable Approach


Polymeric Electrolytes in Fuel Cells: A Sustainable Approach

N. Ureña, M.T. Pérez-Prior

Concerns are increasing over the thoughtless uses of fossil fuels in transport and electricity generation due to their harmful health and environmental impacts. As an alternative, in recent years, renewable energy has received an unprecedented worldwide interest. One of the most important points is the search for sustainable electrochemical energy generation and storage devices. The environmental impact of the use of such devices, in sectors such as transport, is indisputable. The use of vehicles that contain fuel cells, compared to those that use fossil fuels, drastically reduces the CO2 emissions into the atmosphere. In this context, fuel cells are electrochemical devices with a low carbon footprint. However, fuel cell components are based on scarce and expensive materials. Concretely, in the hydrogen fuel cells, two of the main components, platinum as the electrode and Nafion® as the electrolyte, respectively, are high-priced and difficult to obtain. This limits the industry implementation of fuel cell technology. In this chapter, conventional component recovery methods are summarized showing their limitations. Furthermore, promising approaches for component recovery are discussed. These approaches pave the way to new, and more eco-friendly ways for a circular economy.

Renewable Energy, Polymer Electrolyte, Hydrogen, Fuel Cell, Circular Economy

Published online 8/10/2023, 38 pages

Citation: N. Ureña, M.T. Pérez-Prior, Polymeric Electrolytes in Fuel Cells: A Sustainable Approach, Materials Research Foundations, Vol. 149, pp 446-483, 2023

DOI: https://doi.org/10.21741/9781644902639-12

Part of the book on New Materials for a Circular Economy

[1] Information on https://www.epa.gov
[2] S.A. Montzka, E.J. Dlugokencky, J.H. Butler, Non-CO2 greenhouse gases and climate change, Nature 476 (2011) 43-50. https://doi.org/10.1038/nature10322
[3] Information on https://ec.europa.eu/info/index_en
[4] M.Z. Jacobson, W.G. Colella, D.M. Golden, Cleaning the air and improving health with hydrogen fuel cell vehicles, Science 308 (2005) 1901-1905. https://doi.org/10.1126/science.1109157
[5] M.A. Hickner, H.Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative polymer systems for proton exchange membranes (PEMs), Chem. Rev. 104 (2004) 4587-4612. https://doi.org/10.1021/cr020711a
[6] L. Carrete, K.A. Friedrich, U. Stimming, Fuel cells-Fundamentals and applications, Fuel Cells 1 (2001) 5-39. https://doi.org/10.1002/1615-6854(200105)1:1<5::AID-FUCE5>3.0.CO;2-G
[7] Ellen Macarthur Foundation, Towards the Circular Economy. Economic and Business Rationale for an Accelerated Transition, first ed., Cower, UK, 2010, pp. 21-34.
[8] M. Wagner, The porter hypothesis revisited: a literature review of theoretical models and empirical tests, Centre for Sustainability Management, Univesitat Luneburg, Lüneburg, Germany, 2003.
[9] W. Haas, F. Krausmann, D. Wiedenhofer, M. Heinz, How circular is the global economy?: an assessment of material flows, waste production, and recycling in the European union and the world in 2005, J. Ind. Ecol. 19 (2015) 765-777. https://doi.org/10.1111/jiec.12244
[10] H.S. Oh, J.G. Oh, S. Haam, K. Arunabha, B. Roh, I. Hwang, H. Kim, On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells, Electrochem. Commun. 10 (2008) 1048-1051. https://doi.org/10.1016/j.elecom.2008.05.006
[11] Y. Wang, D.F. Ruiz Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Materials, technological status, and fundamentals of PEM fuel cells-A review, Mater. Today 32 (2020) 178-203. https://doi.org/10.1016/j.mattod.2019.06.005
[12] L. Fan, Z. Tu, S.H. Chan, Recent development of hydrogen and fuel cell technologies: A review, Energy Rep. 7 (2021) 8421-8446. https://doi.org/10.1016/j.egyr.2021.08.003
[13] M. Mori, R. Stropnik, M. Sekavčnik, A. Lotrič, Criticality and life-cycle assessment of materials used in fuel-cell and hydrogen technologies, Sustainability 13 (2021) 3565. https://doi.org/10.3390/su13063565
[14] S. Park, J.-W. Lee, B.N. Popov, A review of gas diffusion layer in PEM fuel cells: materials and designs, Int. J. Hydrog. Energy 37 (2012) 5850-5865. https://doi.org/10.1016/j.ijhydene.2011.12.148
[15] S. Park, B.N. Popov, Effect of a GDL based on carbon paper or carbon cloth on PEM fuel cell performance, Fuel 90 (2011) 436-440. https://doi.org/10.1016/j.fuel.2010.09.003
[16] M. Han, S. Chan, S.P. Jiang, Development of carbon-filled gas diffusion layer for polymer electrolyte fuel cells, J. Power Sources 159 (2006) 1005-1014. https://doi.org/10.1016/j.jpowsour.2005.12.003
[17] A. Arvay, E. Yli-Rantala, C.-H. Liu, X.-H. Peng, P. Koski, L. Cindrella, P. Kauranen, P.M. Wilde, A. M. Kannan, Characterization techniques for gas diffusion layers for proton exchange membrane fuel cells-a review, J. Power Sources 213 (2012) 317-337. https://doi.org/10.1016/j.jpowsour.2012.04.026
[18] M. Han, J. Xu, S. Chan, S.P. Jiang, Characterization of gas diffusion layers for PEMFC, Electrochim. Acta 53 (2008) 5361-5367. https://doi.org/10.1016/j.electacta.2008.02.057
[19] T. Kitahara, T. Konomi, H. Nakajima, Microporous layer coated gas diffusion layers for enhanced performance of polymer electrolyte fuel cells, J. Power Sources 195 (2010) 2202-2211. https://doi.org/10.1016/j.jpowsour.2009.10.089
[20] R. Anderson, M. Blanco, X. Bi, D.P. Wilkinson, Anode water removal and cathode gas diffusion layer flooding in a proton exchange membrane fuel cell, Int. J. Hydrog. Energy 37 (2012) 16093-16103. https://doi.org/10.1016/j.ijhydene.2012.08.013
[21] E.-D. Wang, P.-F. Shi, C.-Y. Du, Treatment and characterization of gas diffusion layers by sucrose carbonization for PEMFC applications, Electrochem. Commun. 10 (2008) 555-558. https://doi.org/10.1016/j.elecom.2008.01.031
[22] C.-H. Liu, T.-H. Ko, J.-W. Shen, S.-I. Chang, S.-I. Chang, Y.-K. Liao, Effect of hydrophobic gas diffusion layers on the performance of the polymer exchange membrane fuel cell, J. Power Sources 191 (2009) 489-494. https://doi.org/10.1016/j.jpowsour.2009.02.017
[23] N. Zamel, X. Li, Effective transport properties for polymer electrolyte membrane fuel cells-with a focus on the gas diffusion layer, Progr. Energy Combust. Sci. 39 (2013) 111-146. https://doi.org/10.1016/j.pecs.2012.07.002
[24] A. Tamayol, M. Bahrami, Water permeation through gas diffusion layers of proton exchange membrane fuel cells, J. Power Sources 196 (2011) 6356-6361. https://doi.org/10.1016/j.jpowsour.2011.02.069
[25] J.F. Lin, J. Wertz, R. Ahmad, M. Thommes, A.M. Kannan, Effect of carbon paper substrate of the gas diffusion layer on the performance of proton exchange membrane fuel cell, Electrochim. Acta 55 (2010) 2746-2751. https://doi.org/10.1016/j.electacta.2009.12.056
[26] S.E. Iyuke, A.B. Mohamad, A.A.H. Kadhum, W.R.W. Daud, C. Rachid, Improved membrane and electrode assemblies for proton exchange membrane fuel cells, J. Power Sources 114 (2003) 195-202. https://doi.org/10.1016/S0378-7753(03)00016-8
[27] S. Litster, G. McLean, PEM fuel cell electrodes, J. Power Sources 130 (2004) 61-76. https://doi.org/10.1016/j.jpowsour.2003.12.055
[28] B.C.H. Steele, Material science and engineering: the enabling technology for the commercialisation of fuel cell systems, J. Mater. Sci. 36 (2001) 1053-1068. https://doi.org/10.1023/A:1004853019349
[29] A.J. Leo, H. Ghezel-Ayagh, R. Sanderson, Ultra high efficiency hybrid direct fuel cell/turbine power plant. ASME. Turbo expo: power for land, sea, and air, 2000, Volume 2: Coal, biomass and alternative fuels; combustion and fuels; oil and gas applications. https://doi.org/10.1115/2000-GT-0552
[30] A. Kraytsberg, Y. Ein-Eli, Review of advanced materials for proton exchange membrane fuel cells, Energy fuels 28 (2014) 7303-7330. https://doi.org/10.1021/ef501977k
[31] P.R. Behera, R. Dash, S.M. Ali, K.K. Mohapatra, A review on fuel cell and its applications, Int. J. Res. Eng. Technol. 3 (2014) 562-565. https://doi.org/10.15623/ijret.2014.0303105
[32] D.J. Kim, M.J. Jo, S.Y. Nam, A review of polymer-nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem. 21 (2015) 36-52. https://doi.org/10.1016/j.jiec.2014.04.030
[33] D. Van Dao, G. Adilbish, I.-H. Lee, Y.-T. Yu, Enhanced electrocatalytic property of Pt/C electrode with double catalyst layers for PEMFC, Int. J. Hydrog. Energy 44 (2019) 24580-24590. https://doi.org/10.1016/j.ijhydene.2019.07.156
[34] S. Zhang, X.Z. Yuan, J.N.C. Hin, H. Wang, K.A. Friedrich, M. Schulze, A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells, J. Power Sources 194 (2009) 588-600. https://doi.org/10.1016/j.jpowsour.2009.06.073
[35] H.-J. Huang, T. Yang, F.-Y. Lai, G.-Q. Wu, Co-pyrolysis of sewage sludge and sawdust/rice straw for the production of biochar, J. Anal. Appl. Pyrolysis 125 (2017) 61-68. https://doi.org/10.1016/j.jaap.2017.04.018
[36] G. Gunn, Critical metals handbook, in G. Gunn (Ed.), John Wiley and Sons. Hoboken, NJ, USA, 2014, pp. 284. https://doi.org/10.1002/9781118755341.ch12
[37] S. Dey, N.S. Mehta, Automobile pollution control using catalysis, Resour. Environ. Sustain. 2 (2020) 100006. https://doi.org/10.1016/j.resenv.2020.100006
[38] T. Biggs, S.S. Taylor, E. Lingen, The hardening of platinum alloys for potential jewellery application, Platinum Metals Rev. 49 (2005) 2-15. https://doi.org/10.1595/147106705X24409
[39] C. Courdec, Platinum group metals in glass making, Platinum Metals Rev. 54 (2010) 186-191. https://doi.org/10.1595/147106710X514012
[40] A. Cowley, B. Woodward, A healthy future: platinum in medical applications, Platinum Metals Rev. 55 (2011) 98-107. https://doi.org/10.1595/147106711X566816
[41] A.E. Hughes, N. Haque, S.A. Northey, S. Giddey, Platinum group metals: a review of resources, production and usage with a focus on catalysts, Resources 10 (2021) 93. https://doi.org/10.3390/resources10090093
[42] J. Hou, M. Yang, C. Ke, G. Wei, C. Priest, Z. Qiao, G. Wu, J. Zhang, Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. Energy Chem. 2 (2020) 100023. https://doi.org/10.1016/j.enchem.2019.100023
[43] D. Banham, J. Zou, S. Mukerjee, Z. Liu, D. Yang, Y. Zhang, Y. Peng, A. Dong, Ultralow platinum loading proton exchange membrane fuel cells: Performance losses and solutions, J. Power Sources 490 (2021) 229515. https://doi.org/10.1016/j.jpowsour.2021.229515
[44] H.E. Suess, Abundances of the elements, Rev. Mod. Phys. 28 (1956) 53-73. https://doi.org/10.1103/RevModPhys.28.53
[45] L. Grandell, A. Lehtilä, M. Kivinen, T. Koljonen, S. Kihlman, L.S. Lauri, Role of critical metals in the future markets of clean energy technologies, Renew. Energy 95 (2016) 53-62. https://doi.org/10.1016/j.renene.2016.03.102
[46] A.N. Løvik, C. Hagelüken, P. Wäger, Improving supply security of critical metals: current developments and research in the EU, Sustain. Mater. Technol. 15 (2018) 9-18. https://doi.org/10.1016/j.susmat.2018.01.003
[47] J. Burlakovs, Z. Vincevica-Gaile, M. Krievans, Y. Jani, M. Horttanainen, K.M. Pehme, E. Dace, R.H. Setyobudi, J. Pilecka, G. Denafas, I. Grinfelde, A. Bhatnagar, V. Rud, V. Rudovica, R.L. Mersky, O. Anne, M. Kriipsalu, R. Ozola-Davidane, T. Tamm, M. Klavins, Platinum group elements in geosphere and anthroposphere: Interplay among the global reserves, urban ores, markets and circular economy, Minerals 10 (2020) 558. https://doi.org/10.3390/min10060558
[48] P. Sahu, M.S. Jena, N.R. Mandre, R. Venugopal, Platinum group elements mineralogy, beneficiation, and extraction practices-an overview, Miner. Process. Extr. Metall. Rev. 42 (2020) 1-14. https://doi.org/10.1080/08827508.2020.1795848
[49] B. J. Glaister, G.M. Mudd, The environmental costs of platinum-PGM mining and sustainability: Is the glass half-full or half-empty?, Miner. Eng. 23 (2010) 438-450. https://doi.org/10.1016/j.mineng.2009.12.007
[50] Information on https://www.usgs.gov
[51] A.L. Gulley, N.T. Nassar, S. Xun, China, the United States, and competition for resources that enable emerging technologies, Proc. Natl. Acad. Sci. USA 115 (2018) 4111-4115. https://doi.org/10.1073/pnas.1717152115
[52] N.T. Nassar, J. Brainard, A. Gulley, R. Manley, G. Matos, G. Lederer, L.R. Bird, D. Pineault, E. Alonso, J. Gambogi, S.M. Fortier, Evaluating the mineral commodity supply risk of the U.S. manufacturing sector, Sci. Adv. 6 (2020) 8647. https://doi.org/10.1126/sciadv.aay8647
[53] Y. Yuan, M. Yellishetty, G.M. Mudd, M.A. Muñoz, S.A. Northey, T.T. Werner, Toward dynamic evaluations of materials criticality: A systems framework applied to platinum, Resour. Conserv. Recycl. 152 (2020) 104532. https://doi.org/10.1016/j.resconrec.2019.104532
[54] Information on https://eur-lex.europa.eu
[55] F.K. Crundwell, M.S. Moats, V. Ramachandran , T.G. Robinson, W.G. Davenport, Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals, first ed., Elsevier, Oxford, UK, 2011, pp. 610. https://doi.org/10.1016/B978-0-08-096809-4.10038-3
[56] N. Ritschel, J. Taylor, T. England, B. Peters, F. Stoffner, C. Röhlich, S. Voss, H. Winkler, Heraeus Deutschland GmbH and Co, Process for the Production of a PGM-Enriched Alloy, U.S. Patent 10,202,669 (2019).
[57] M.K. Jha, J.C. Lee, M.S. Kim, J. Jeong, B.S. Kim, V. Kumar, Hydrometallurgical recovery/recycling of platinum by the leaching of spent catalysts: A review, Hydrometallurgy 133 (2013) 23-32. https://doi.org/10.1016/j.hydromet.2012.11.012
[58] H. Dong, J. Zhao, J. Chen, Y. Wu, B. Li, Recovery of platinum group metals from spent catalysts: A review, Int. J. Miner. Process 145 (2015) 108-113. https://doi.org/10.1016/j.minpro.2015.06.009
[59] S.K. Padamata, A.S. Yasinskiy, P.V. Polyakov, E.A. Pavlov, D.Y. Varyukhin, Recovery of noble metals from spent catalysts: A review, Metall. Mater. Trans. B 51 (2020) 2413-2435. https://doi.org/10.1007/s11663-020-01913-w
[60] Z. Peng, Z. Li, X. Lin, H. Tang, L. Ye, Y. Ma, M. Rao, Y. Zhang, G. Li, T. Jiang, Pyrometallurgical recovery of platinum group metals from spent catalysts, JOM 69 (2017) 1553-1562. https://doi.org/10.1007/s11837-017-2450-3
[61] T. Havlik, D. Orac, M. Petranikova, A. Miskufova, F. Kukurugya, Z. Takacova, Leaching of copper and tin from used printed circuit boards after thermal treatment, J. Hazard. Mater. 183 (2010) 866-873. https://doi.org/10.1016/j.jhazmat.2010.07.107
[62] M.W. Ojeda, E. Perino, M.del C. Ruiz, Gold Extraction by chlorination using a pyrometallurgical process, Miner. Eng. 22 (2009) 409-411. https://doi.org/10.1016/j.mineng.2008.09.002
[63] R.J. Allen, P.C. Foller, J. Giallombardo, Two step method for recovery of dispersed noble metals, EU Patent 0492691A1 (1992).
[64] C. Horike, K. Morita, T.H. Okabe, Effective dissolution of platinum by using chloride salts in recovery process. Metall. Mater. Trans. B Process, Metall. Mater. Process. Sci. 43 (2012) 1300-1307. https://doi.org/10.1007/s11663-012-9746-z
[65] C.H. Kim, S.I. Woo, S.H. Jeon, Recovery of platinum-group metals from recycled automotive catalytic converters by carbochlorination, Ind. Eng. Chem. Res. 39 (2000) 1185-1192. https://doi.org/10.1021/ie9905355
[66] K. Staszak, Chemical and petrochemical industry, Phys. Sci. Rev. 3 (2018) 1-28. https://doi.org/10.1016/j.revip.2017.11.001
[67] Y. Kayanuma, T.H. Okabe, M. Maeda, Metal vapor treatment for enhancing the dissolution of platinum group metals from automotive catalyst scrap, Metall. Mater. Trans. B 35 (2004) 817-824. https://doi.org/10.1007/s11663-004-0075-8
[68] M. Benson, C.R. Bennett, J.E. Harry, M.K. Patel, M. Cross, The recovery mechanism of platinum group metals from catalytic converters in spent automotive exhaust systems, Resour. Conserv. Recycl. 31 (2000) 1-7. https://doi.org/10.1016/S0921-3449(00)00062-8
[69] G. Kolliopoulos, E. Balomenos, I. Giannopoulou, I. Yakoumis, D. Panias, Behavior of platinum group during their pyrometallurgical recovery from spent automotive catalysts, O. A. Lib. J. 1 (2014) 1-9. https://doi.org/10.4236/oalib.1100736
[70] X. He, Y. Li, X. Wu, Y. Zhoo, H. Weng, W. Liu, Study on the process of enrichment platinum group metals by plasma melting technology, Precious Met. 37 (2016) 1-5.
[71] K.C. Chiang, K.L. Chen, C.Y. Chen, J.J. Huang, Y.H. Shen, M.Y. Yeh, F.F. Wong, Recovery of spent alumina-supported platinum catalyst and reduction of platinum oxide via plasma sintering technique, J. Taiwan Inst. Chem. Eng. 42 (2011) 158-165. https://doi.org/10.1016/j.jtice.2010.05.003
[72] I. Bronshtein, Y. Feldman, S. Shilstein, E. Wachtel, I. Lubomirsky, V. Kaplan, Efficient chloride salt extraction of platinum group metals from spent catalysts, J. Sustain. Metall. 4 (2018) 103-114. https://doi.org/10.1007/s40831-017-0155-z
[73] D.J. De Aberasturi, R. Pinedo, I.R. De Larramendi, J.I.R. De Larramendi, T. Rojo, Recovery by hydrometallurgical extraction of the platinum-group metals from car catalytic converters, Miner. Eng. 24 (2011) 505-513. https://doi.org/10.1016/j.mineng.2010.12.009
[74] A. Fornalczyk, M. Saternus, Removal of platinum group metals from the used autocatalytic converter, Metalurgija 48 (2009) 133-136.
[75] T.N. Angelidis, Development of a laboratory scale hydrometallurgical procedure for the recovery of Pt and Rh from spent automotive catalysts, Top. Catal. 16 (2001) 419-423. https://doi.org/10.1023/A:1016641906103
[76] K. Han, X. Meng, Recovery of platinum group metals and rhenium from materials using halogen reagents, U.S. Patent 5,542,957A (1995).
[77] J.S. Yoo, Metal recovery and rejuvenation of metal-loaded spent catalysts, Catal. Today 44 (1998) 27-46. https://doi.org/10.1016/S0920-5861(98)00171-0
[78] S. Harjanto, Y. Cao, A. Shibayama, I. Naitoh, T. Nanami, K. Kasahara, Y. Okumura, K. Liu, T. Fujita, Leaching of Pt, Pd and Rh from automotive catalyst residue in various chloride based solutions, Mater. Trans. 47 (2006) 129-135. https://doi.org/10.2320/matertrans.47.129
[79] R. Panda, M.K. Jha, D.D. Pathak, Commercial processes for the extraction of platinum group metals (PGMs), in H. Kim et. al (Eds.), Rare metal technology. The Minerals, Metals & Materials Series. Springer, Cham, Switzerland, 2018, pp. 119-130. https://doi.org/10.1007/978-3-319-72350-1_11
[80] C. Saguru, S. Ndlovu, D. Moropeng, A review of recent studies into hydrometallurgical methods for recovering PGMs from used catalytic converters, Hydrometallurgy 182 (2018) 44-56. https://doi.org/10.1016/j.hydromet.2018.10.012
[81] M. Massucci, S.L. Clegg, P. Brimblecombe, Equilibrium partial pressures, thermodynamic properties of aqueous and solid phases, and Cl2 production from aqueous HCl and HNO3 and their mixtures, J. Phys. Chem. A 103 (1999) 4209-4226. https://doi.org/10.1021/jp9847179
[82] D. Jafarifar, M.R. Daryanavard, S. Sheibani, Ultra fast microwave-assisted leaching for recovery of platinum from spent catalyst, Hydrometallurgy 78 (2005) 166-171. https://doi.org/10.1016/j.hydromet.2005.02.006
[83] E. Kizilaslan, S. Aktaş¸ M.K. Şeşen¸ Towards environmentally safe recovery of platinum from scrap automotive catalytic converters, Turkish J. Eng. Environ. Sci. 33 (2009) 83-90.
[84] R. Torres, G.T. Lapidus, Platinum, palladium and gold leaching from magnetite ore, with concentrated chloride solutions and ozone, Hydrometallurgy 166 (2016) 185-194. https://doi.org/10.1016/j.hydromet.2016.06.009
[85] V.T. Nguyen, S. Riaño, E. Aktan, C. Deferm, J. Fransaer, K. Binnemans, Solvometallurgical recovery of platinum group metals from spent automotive catalysts, ACS Sustain. Chem. Eng. 9 (2021) 337-350. https://doi.org/10.1021/acssuschemeng.0c07355
[86] T. Suoranta, O. Zugazua, M. Niemelä, P. Perämäki, Recovery of palladium, platinum, rhodium and ruthenium from catalyst materials using microwave-assisted leaching and cloud point extraction, Hydrometallurgy 154 (2015) 56-62. https://doi.org/10.1016/j.hydromet.2015.03.014
[87] S. Sui, X. Wang, X. Zhou, Y. Su, S. Riffat, C.-J. Liu, A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells, J. Mater. Chem. A 5 (2017) 1808-1825. https://doi.org/10.1039/C6TA08580F
[88] R. Sharma, S. Gyergyek, P.B. Lund, S.M. Andersen, Recovery of Pt and Ru from spent low-temperature polymer electrolyte membrane fuel cell electrodes and recycling of Pt by direct redeposition of the dissolved precursor on carbon, ACS Appl. Energy Mater. 4 (2021) 6842-6852. https://doi.org/10.1021/acsaem.1c00964
[89] A. Pavlišič, P. Jovanovič, V.S. Šelih, M. Šala, N. Hodnik, M. Gaberšček, Platinum dissolution and redeposition from Pt/C fuel cell electrocatalyst at potential cycling, J. Electrochem. Soc. 165 (2018) F3161-F3165. https://doi.org/10.1149/2.0191806jes
[90] C.L. Brierley, N.W. Le Roux, Bacterial leaching, CRC Crit. Rev. Microbiol. 6 (1978) 273-284. https://doi.org/10.3109/10408417809090623
[91] D.G. Lundgren, E.E. Malouf, Microbial extraction and concentration of metals, ADV. Biotechnol. Process. 1 (1983) 223-249.
[92] H. Brandl, S. Lehmann, M.A. Faramarzi, D. Martinelli, Biomobilization of silver, gold, and platinum from solid waste materials by HCN-forming microorganisms, Hydrometallurgy 94 (2008) 14-17. https://doi.org/10.1016/j.hydromet.2008.05.016
[93] V.A. Pham, Y.P. Ting, Gold Bioleaching of electronic waste by cyanogenic bacteria and its enhancement with bio-oxidation, Adv. Mater. Res. 71-73 (2009) 661-664. https://doi.org/10.4028/www.scientific.net/AMR.71-73.661
[94] T.D. Chi, J.C. Lee, B.D. Pandey, K. Yoo, J. Jeong, Bioleaching of gold and copper from waste mobile phone pcbs by using a cyanogenic bacterium, Proc. Miner. Eng. 24 (2011) 1219-1222. https://doi.org/10.1016/j.mineng.2011.05.009
[95] H.B. Trinh, J.-C. Lee, Y.-J. Suh, J. Lee, A review on the recycling processes of spent auto-catalysts: Towards the development of sustainable metallurgy, Waste Manag. 114 (2020) 148-165. https://doi.org/10.1016/j.wasman.2020.06.030
[96] R. Granados-Fernández, M.A. Montiel, S. Díaz-Abad, M.A. Rodrigo, J. Lobato, Platinum recovery techniques for a circular economy, Catalysts 11 (2021) 937. https://doi.org/10.3390/catal11080937
[97] Y.-K. Taninouchi, T.H. Okabe, Recovery of platinum group metals from spent catalysts using iron chloride vapor treatment, Metall. Mater. Trans. B 49 (2018) 1781-1793. https://doi.org/10.1007/s11663-018-1269-9
[98] Y.-K. Taninouchi, T. Watanabe, T.H. Okabe, Recovery of platinum group metals from spent catalysts using electroless nickel plating and magnetic separation, Proc. Mater. Trans. 58 (2017) 410-419. https://doi.org/10.2320/matertrans.M-M2017801
[99] A.M. Martinez, K.S. Osen, A. Støre, Recovery of platinum group metals from secondary sources by selective chlorination from molten salt media, Proc. Miner. Met. Mater. Ser. (2020) 221-233. https://doi.org/10.1007/978-3-030-36758-9_21
[100] M.H. Morcali, A new approach to recover platinum-group metals from spent catalytic converters via iron Matte, Resour. Conserv. Recycl. 159 (2020) 104891. https://doi.org/10.1016/j.resconrec.2020.104891
[101] H. Sasaki, M. Maeda, Enhanced dissolution of Pt from Pt-Zn intermetallic compounds and underpotential dissolution from Zn-rich alloys, J. Phys. Chem. C 117 (2013) 18457-18463. https://doi.org/10.1021/jp405184e
[102] H. Sasaki, M. Maeda, Zn-Vapor Pretreatment for acid leaching of platinum group metals from automotive catalytic converters, Hydrometallurgy 147-148 (2014) 59-67. https://doi.org/10.1016/j.hydromet.2014.04.019
[103] J. Spooren, T. Abo Atia, Combined microwave assisted roasting and leaching to recover platinum group metals from spent automotive catalysts, Miner. Eng. 146 (2020) 106153. https://doi.org/10.1016/j.mineng.2019.106153
[104] G. Nicol, E. Goosey, D.S. Yildiz, E. Loving, V.T. Nguyen, S. Riaño, I. Yakoumis, A.M. Martinez, A. Siriwardana, A. Unzurrunzaga, J. Spooren, T. Abo Atia, B. Michielsen, X. Dominguez-Benetton, O. Lanaridi, Platinum group metals recovery using secondary raw materials (PLATIRUS): Project overview with a focus on processing spent autocatalyst, Johns. Matthey Technol. Rev. 65 (2021) 127-147. https://doi.org/10.1595/205651321×16057842276133
[105] S. Chen, S. Shen, Y. Cheng, H. Wang, B. Lv, F. Wang, Effect of O2, H2 and CO pretreatments on leaching Rh from spent auto-catalysts with acidic sodium chlorate solution, Hydrometallurgy 144-145 (2014) 69-76. https://doi.org/10.1016/j.hydromet.2014.01.018
[106] H.B. Trinh, J.-C. Lee, R.R. Srivastava, S. Kim, Total recycling of all the components from spent auto-catalyst by NaOH roasting-assisted hydrometallurgical route, J. Hazard. Mater. 379 (2019) 120772. https://doi.org/10.1016/j.jhazmat.2019.120772
[107] C.A. Nogueira, A.P. Paiva, M.C. Costa, A.M. Rosa da Costa, Leaching efficiency and kinetics of the recovery of palladium and rhodium from a spent auto-catalyst in HCl/CuCl2 media, Environ. Technol. 41 (2020) 2293-2304. https://doi.org/10.1080/09593330.2018.1563635
[108] D.J. Connolly, W.F. Gresham, Fluorocarbon vinyl ether polymers, U.S. Patent 3,282,875 (1966).
[109] S.J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrog. Energy 35 (2010) 9349-9384. https://doi.org/10.1016/j.ijhydene.2010.05.017
[110] S. Motupally, A.J. Becker, J.W. Beidner, Diffusion of water in Nafion-115 membranes, J. Electrochem. Soc. 147 (2000) 3171-3177. https://doi.org/10.1149/1.1393879
[111] P. Choi, N.H. Jalani, R. Datta, Thermodynamics and proton transport in Nafion II. Proton diffusion mechanisms and conductivity, J. Electrochem. Soc. 152 (2005) 123-130. https://doi.org/10.1149/1.1859814
[112] M. Vinothkannan, A.R. Kim, D.J. Yoo, Potential carbon nanomaterials as additives for state-of-the-art Nafion electrolyte in proton-exchange membrane fuel cells: a concise review, RSC Adv. 11 (2021) 18351-18370. https://doi.org/10.1039/D1RA00685A
[113] F. Mohammadi, A. Rabiee, Solution casting, characterization, and performance evaluation of perfluorosulfonic sodium type membranes for chlor-alkali application, J. Appl. Polym. Sci. 120 (2011) 3469-3476. https://doi.org/10.1002/app.33526
[114] X.L. Zheng, J.P. Song, T. Ling, Z.P. Hu, P.F. Yin, K. Davey, X.W. Du, S.Z. Qiao, Strongly coupled Nafion molecules and ordered porous CdS networks for enhanced visible-light photoelectrochemical hydrogen evolution, Adv. Mater. 28 (2016) 4935-4942. https://doi.org/10.1002/adma.201600437
[115] Information on https://www.factmr.com
[116] Information on http:// www.plasticsrecyclers.eu
[117] M. Hong, E.Y.X. Chen, Chemically recyclable polymers: a circular economy approach to sustainability, Green Chem. 19 (2017) 3692-3706. https://doi.org/10.1039/C7GC01496A
[118] J. Koehler, R. Zuber, B. Matthias, V. Baenisch, M. Lopez, Process for recycling fuel cell components containing precious metals, WO Patent 024507A1 (2006).
[119] a) W. Grot, (DuPont) U.S. Patent 3,969,285 (1976)
b) W. Grot, (DuPont) U.S. Patent 4,026,783 (1977)
c) W. Grot, (DuPont) U.S. Patent 4,030,988 (1977).
[120] R. Wittstock, A. Pehlken, M. Wark, Challenges in automotive fuel cells recycling, Recycling 1 (2016) 343-364. https://doi.org/10.3390/recycling1030343
[121] L. Duclos, L. Svecova, V. Laforest, G. Mandil, P.X. Thivel, Process development and optimization for platinum recovery from PEM fuel cell catalyst, Hydrometallurgy 160 (2016) 79-89. https://doi.org/10.1016/j.hydromet.2015.12.013
[122] F. Xu, S. Mu, M. Pan, Recycling of membrane electrode assembly of PEMFC by acid processing, Int. J. Hydrog. Energy 35 (2010) 2976-2979. https://doi.org/10.1016/j.ijhydene.2009.05.087
[123] H. Xu, X. Wang, Z. Shao, I. Hsing, Recycling and regeneration of used perfluorosulfonic membranes for polymer electrolyte fuel cells, J. Appl. Electrochem. 32 (2002) 1337-1340. https://doi.org/10.1023/A:1022636000888
[124] C. Handley, N. Brandon, R. Van Der Vorst, Impact of the European Union vehicle waste directive on end-of-life options for polymer electrolyte fuel cells, J. Power Sources 106 (2002) 344-352. https://doi.org/10.1016/S0378-7753(01)01019-9
[125] P.A. Cirkel, T. Okada, S. Kinugasa, Equilibrium aggregation in perfluorinated ionomer solutions, Macromolecules 32 (1999) 531-533. https://doi.org/10.1021/ma981421s
[126] M. Laporta, M. Pegoraro, L. Zanderighi, Recast Nafion-117 thin film from water solution, Macromol. Mater. Eng. 282 (2000) 22-29. https://doi.org/10.1002/1439-2054(20001001)282:1<22::AID-MAME22>3.0.CO;2-#
[127] R.B. Moore, C.R. Martin, Procedure for preparing solution-cast perfluorosulfonate ionomer films and membranes, Anal. Chem. 58 (1986) 2569-2570. https://doi.org/10.1021/ac00125a046
[128] F. Mura, R. Silva, A. Pozio, Study on the conductivity of recast Nafion/montmorillonite and Nafion/TiO2 composite membranes, Electrochim. Acta 52 (2007) 5824-5828. https://doi.org/10.1016/j.electacta.2007.02.081
[129] A. Pozio, A. Cemmi, F. Mura, A. Masci, R. F. Silva, Study on the durability of recast Nafion/montmorillonite composite membranes in low humidification conditions, Int. J. Electrochem. Sci. 2011 (2010) 1-5. https://doi.org/10.4061/2011/252031
[130] R.F. Silva, M. De Francesco, A. Pozio, Solution-cast Nafion ionomer membranes: preparation and characterization, Electrochim. Acta 49 (2004) 3211-3219. https://doi.org/10.1016/j.electacta.2004.02.035
[131] R.F. Silva, S. Passerini, A. Pozio, Solution-cast Nafion/montmorillonite composite membrane with low methanol permeability, Electrochim. Acta 50 (2005) 2639-2645. https://doi.org/10.1016/j.electacta.2004.11.008
[132] A. Tsatsas, W. Risen, Studies on solution cast perfluorocarbonsulfonic acid ionomers, J. Polym. Sci., Part B: Polym. Phys. 31 (1993) 1223-1227. https://doi.org/10.1002/polb.1993.090310917
[133] a) L. Shore, B.R. Arthur, H.S. Shulman, M.L. Fall, Process for recycling components of a PEM fuel cell membrane electrode assembly, U.S. Patent WO2006/115684 (2006)
b) L. Shore, Process for recycling components of a PEM fuel cell membrane electrode assembly, U.S. Patent 8124261B2 (2012).
[134] S. Grot, W. Grot, Recycling of used perfluorosulfonic acid membranes, U.S. Patent 7,255,798 (2007).
[135] J.A. Moghaddam, M.J. Parnian, S. Rowshanzamir, Preparation, characterization, and electrochemical properties investigation of recycled proton exchange membrane for fuel cell applications, Energy 161 (2018) 699-709. https://doi.org/10.1016/j.energy.2018.07.123
[136] T. Oki, T. Katsumata, K. Hashimoto, M. Kobayashi, Recovery of platinum catalyst and polymer electrolyte from used small fuel cells by particle separation technology, Mater. Trans. 50 (2009) 1864-1870. https://doi.org/10.2320/matertrans.M-M2009812
[137] A. Valente, D. Iribarren, J. Dufour, End of life of fuel cells and hydrogen products: from technologies to strategies, Int. J. Hydrog. Energy 44 (2019) 20965-20977. https://doi.org/10.1016/j.ijhydene.2019.01.110
[138] P. Pei, H. Chen, Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: a review, Appl. Energy 125 (2014) 60-75. https://doi.org/10.1016/j.apenergy.2014.03.048
[139] X. Glipa, B. Bonnet, B. Mula, D. Jones, J. Rozière, Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole, J. Mater. Chem. 9 (1999) 3045-3049. https://doi.org/10.1039/a906060j
[140] M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, N. Ogata, Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules, Electrochim. Acta 45 (2000) 1395-1398. https://doi.org/10.1016/S0013-4686(99)00349-7
[141] P. Staiti, M. Minutoli, Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes, J. Power Sources 94 (2001) 9-13. https://doi.org/10.1016/S0378-7753(00)00597-8
[142] J. Yu, B. Yi, D. Xing, F. Liu, Z. Shao, Y. Fu, H. Zhang, Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells, Phys. Chem. Chem. Phys. 5 (2003) 611-615. https://doi.org/10.1039/b209020a
[143] Y. A. Elabd, E. Napadensky, C. W. Walker, K. I. Winey, Transport properties of sulfonated poly(styrene-b-isobutylene-b-styrene) triblock copolymers at high ion-exchange capacities, Macromolecules 39 (2006) 399-407. https://doi.org/10.1021/ma051958n
[144] F. Göktepe, A. Bozkurt, Ş. T. Günday, Synthesis and proton conductivity of poly(styrene sulfonic acid)/heterocycle-based membranes, Polym. Int. 57 (2008) 133-138. https://doi.org/10.1002/pi.2335
[145] S. Vetter, B. Ruffmann, I. Buder, S. P. Nunes, Proton conductive membranes of sulfonated poly(ether ketone ketone), J. Membr. Sci. 260 (2005) 181-186. https://doi.org/10.1016/j.memsci.2005.02.036
[146] T. Maharana, A.K. Sutar, N. Nath, A. Routaray, Y.S. Negi, B. Mohanty, Polyetheretherketone (PPEK) membrane for fuel cell applications, in: A. Tiwari, S. Valyukh (Eds.), Adv. Energy Mater.Wiley, New Jersey, 2014, pp. 433-464. https://doi.org/10.1002/9781118904923.ch11
[147] P. Xing, G.P. Robertson, M.D. Guiver, S.D. Mikhailenko, K. Wang, S. Kaliaguine, Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes, J. Membr. Sci. 229 (2004) 95-106. https://doi.org/10.1016/j.memsci.2003.09.019
[148] H.L. Wu, C.C.M. Ma, F.Y. Liu, C.Y. Chen, S.J. Lee, C.L. Chiang, Preparation and characterization of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membranes, Eur. Polym. J. 42 (2006) 1688-1695. https://doi.org/10.1016/j.eurpolymj.2006.01.018
[149] Z. Wang, H. Tang, H. Zhang, M. Lei, R. Chen, P. Xiao, M. Pan, Synthesis of Nafion/ CeO2 hybrid for chemically durable proton exchange membrane of fuel cell, J. Membr. Sci. 421 (2012) 201-210. https://doi.org/10.1016/j.memsci.2012.07.014
[150] S. Xiao, H. Zhang, C. Bi, Y. Zhang, Y. Zhang, H. Dai, Z. Mai, X. Li, Degradation location study of proton exchange membrane at open circuit operation, J. Power Sources 195 (2010) 5305-5311. https://doi.org/10.1016/j.jpowsour.2010.03.010
[151] L. Zhang, S.R. Chae, Z. Hendren, J.S. Park, M.R. Wiesner, Recent advances in proton exchange membranes for fuel cell applications, Chem. Eng. J. 204 (2012) 87-97. https://doi.org/10.1016/j.cej.2012.07.103
[152] J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Marine pollution. Plastic waste inputs from land into the ocean, Science 347 (2015) 768-771. https://doi.org/10.1126/science.1260352
[153] C.J. Moore, Synthetic polymers in the marine environment: a rapidly increasing, long-term threat, Environ. Res. 180 (2008) 131-139. https://doi.org/10.1016/j.envres.2008.07.025
[154] R.A. Gross, B. Kalra, Biodegradable polymers for the environment, Science 297 (2002) 803-807. https://doi.org/10.1126/science.297.5582.803
[155] B. Rieger, A. Künkel, G.W. Coates, R. Reichardt, E. Dinjus, T.A. Zevaco, Synthetic biodegradable polymers, Springer, Berlin, Heidelberg, 2012, pp. 49. https://doi.org/10.1007/978-3-642-27154-0
[156] Information on https://ellenmacarthurfoundation.org/
[157] G.O. Jones, A. Yuen, R.J. Wojtecki, J.L. Hedrick, J.M. García, Computational and experimental investigations of one-step conversion of poly(carbonate)s into value-added poly(aryl ether sulfone)s, Proc. Natl. Acad. Sci. U. S. A., 113 (2016) 7722-7726. https://doi.org/10.1073/pnas.1600924113
[158] M.S. Koroma, D. Costa, M. Philippot, G. Cardellini, M. S. Hosen, T. Coosemans, M. Messagie, Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management, Sci. Total Environ. 831 (2022) 154859. https://doi.org/10.1016/j.scitotenv.2022.154859
[159] F. Arshad, J. Lin, N. Manurkar, E. Fan, A. Ahmad, M-u-N. Tariq, F. Wu, R. Chen, L. Li, Life cycle assessment of Lithium-ion Batteries: A critical review, Resour. Conserv. Recycl. 180 (2022) 106164. https://doi.org/10.1016/j.resconrec.2022.106164
[160] S. Evangelisti, C. Tagliaferri, J.L.B. Dan, P. Lettieri, Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles, J. Clean. Prod. 142 (2017) 4339-4355. https://doi.org/10.1016/j.jclepro.2016.11.159
[161] R. Stropnik, A. Lotrič, A.B. Montenegro, M. Sekavčnik, M. Mori, Critical materials in PEMFC systems and a LCA analysis for the potential reduction of environmental impacts with EoL strategies, Energy Sci. Eng. 7 (2019) 2519-2539. https://doi.org/10.1002/ese3.441
[162] L. Usai, C.R. Hung, F. Vásquez, M. Windsheimer, O.S. Burheim, A.H. Strømman, Life cycle assessment of fuel cell systems for light duty vehicles, current state-of-the-art and future impacts, J. Clean. Prod. 280 (2021) 125086. https://doi.org/10.1016/j.jclepro.2020.125086
[163] S.G. Poulopoulos, Atmospheric Environment, in: S.G. Poulopoulos, V.J. Inglezakis (Eds.), Environment and Development, Elsevier, 2016, pp. 45-136. https://doi.org/10.1016/B978-0-444-62733-9.00002-2
[164] United Nations. Adoption of the Paris Agreement; United Nations Framework Convention on Climate Change: Paris, France, 2015.
[165] European Commission. The European Green Deal; European Commission: Brussels, Belgium, 2019; Volume 53.