Mechanical behavior and microstructure evolution of Ti-6.5Al-2Zr-1Mo-1V/TiB metal-matrix composites during deformation

Mechanical behavior and microstructure evolution of Ti-6.5Al-2Zr-1Mo-1V/TiB metal-matrix composites during deformation

Maxim Ozerov, Vitaly Sokolovsky, Alexander Galtsev, Nikita Stepanov, Sergey Zherebtsov

download PDF

Abstract. The Ti-6.5Al-2Zr-1Mo-1V/TiB metal-matrix composites with different amounts of TiB reinforcements (~2.0, 6.0 and 10.0 vol. %) were produced by vacuum arc melting. The initial microstructure of the synthesized composites composed of two-phase α+β matrix with embedded boride particles. The addition of borides resulted in 15-35% increase in strength without a visible drop in ductility. The alloy with the highest amount of the reinforcement attained yield strength of 1100 MPa, peak strength of 1670 MPa and compression ductility of 10 % at room temperature. Microstructure evolution during hot compression was associated with dynamic recrystallization of the matrix and rearrangement/shortening of TiB fibers. The composite with 10.0 vol. % of TiB demonstrated noticeably higher strength at elevated temperatures in comparison with non-reinforced alloy.

Keywords
Titanium Alloy, Metal-Matrix Composite, Boride Fibers, Microstructure, Mechanical Properties, Mechanical Behavior, Aspect Ratio

Published online , 7 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Maxim Ozerov, Vitaly Sokolovsky, Alexander Galtsev, Nikita Stepanov, Sergey Zherebtsov, Mechanical behavior and microstructure evolution of Ti-6.5Al-2Zr-1Mo-1V/TiB metal-matrix composites during deformation, Materials Research Proceedings, Vol. 32, pp 280-286, 2023

DOI: https://doi.org/10.21741/9781644902615-32

The article was published as article 32 of the book Superplasticity in Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] C. Leyens, M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH: Weinheim, Germany, 2003. https://doi.org/10.1002/3527602119
[2] Q.J. Sun, X. Xie, Microstructure and mechanical properties of TA15 alloy after 433 thermo-mechanical processing, Mater. Sci. Eng. A 724 (2018) 493-501. https://doi.org/10.1016/j.msea.2018.03.109
[3] Z. Sun, H. Yang, Microstructure and mechanical properties of TA15 titanium alloy 436 under multi-step local loading forming, Mater. Sci. Eng. A 523(1-2) (2009) 184-192. https://doi.org/10.1016/j.msea.2009.05.058
[4] K.S. Ravi Chandran, K.B. Panda, S.S. Sahay, TiBw-reinforced Ti composites: Processing, properties, application, prospects, and research needs, JOM 56 (2004) 42-48. https://doi.org/10.1007/s11837-004-0127-1
[5] T. Godfrey, P. Goodwin, C. Ward-Close, Titanium particulate metal matrix composites – reinforcement, production methods, and mechanical properties. Adv. Eng. Mat. 2 (2000) 85-91. https://doi.org/10.1002/(SICI)1527-2648(200003)2:3<85::AID-ADEM85>3.0.CO;2-U
[6] K. Morsi, Review: Titanium-titanium boride composites, J. Mater. Sci. 54 (2019) 6753-6771. https://doi.org/10.1007/s10853-018-03283-w
[7] M. Ozerov, M. Klimova, V. Sokolovsky, N. Stepanov, A. Popov, M. Boldin, S. Zherebtsov, Evolution of microstructure and mechanical properties of Ti/TiB metal-matrix composite during isothermal multiaxial forging, J. Alloys Compd. 770 (2019) 840-848. https://doi.org/10.1016/j.jallcom.2018.08.215
[8] M. Ozerov, N. Stepanov, A. Kolesnikov, V. Sokolovsky, S. Zherebtsov, Brittle-to-ductile transition in a Ti-TiB metal-matrix composite, Mater. Lett. 187 (2017) 28-31. https://doi.org/10.1016/j.matlet.2016.10.060
[9] L. Huang, X. Cui, L. Geng, Y. Fu, Effects of rolling deformation on microstructure and mechanical properties of network structured TiBw/Ti composites, T NONFERR METAL SOC 22 (2012) 79-83. https://doi.org/10.1016/S1003-6326(12)61687-2
[10] J.H. Yang, S.L. Xiao, Y.Y. Chen, L.J. Xu, X.P. Wang, J. Tian, D.D. Zhang, Z.Z. Zheng, Microstructure evolution during forging deformation of (TiB+TiC+Y2O3)/α-Ti composite: DRX and globularization behavior, J. Alloys Compd. 827 (2020) 154170. https://doi.org/10.1016/j.jallcom.2020.154170
[11] R. Srinivasan, D. Miracle, S. Tamirisakandala, Direct rolling of as-cast Ti-6Al-4V modified with trace additions of boron, Mater. Sci. Eng., A 487 (1-2) (2008) 541-551. https://doi.org/10.1016/j.msea.2007.10.053
[12] L. Jia, X. Li, K. Kondoh, B. Chen, S.F. Li, J. Umeda, Z.L. Lu, Hybrid effect of TiCp and TiBw co-strengthening Ti matrix composites prepared by spark plasma sintering and hot extrusion, Mater. Char. 151 (2019) 6-14. https://doi.org/10.1016/j.matchar.2019.02.026
[13] M. Ozerov, M. Klimova, A. Kolesnikov, N. Stepanov, S. Zherebtsov, Deformation behavior and microstructure evolution of a Ti/TiB metal-matrix composite during high-temperature compression tests, Mater. Des. 112 (2016) 17-26. https://doi.org/10.1016/j.matdes.2016.09.051
[14] S. Zherebtsov, M. Ozerov, M. Klimova, D. Moskovskikh, N. Stepanov, G. Salishchev, Mechanical behavior and microstructure evolution of a Ti-15Mo/TiB titanium-matrix composite during hot deformation, Metals 9 (11) (2019) 1175. https://doi.org/10.3390/met9111175
[15] B. Chen, J. Shen, X. Ye, L. Jia, S. Li, J. Umeda, M. Takahashi, K. Kondoh, Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites, Acta Mater. 140 (2017) 317-325. https://doi.org/10.1016/j.actamat.2017.08.048
[16] M.Y. Koo, J.S. Park, M.K. Park, K.T. Kim, S.H. Hong, Effect of aspect ratios of in situ formed TiB whiskers on the mechanical properties of TiBw/Ti‐6Al‐4V composites, Scr. Mater. 66 (2012) 487-490. https://doi.org/10.1016/j.scriptamat.2011.12.024
[17] S. Zherebtsov, M. Ozerov, E. Povolyaeva, V. Sokolovsky, N. Stepanov, D. Moskovskikh, G. Salishchev, Effect of hot rolling on the microstructure and mechanical properties of a Ti‐15Mo/TiB metal‐matrix composite, Metals 10 (2020) 40. https://doi.org/10.3390/met10010040
[18] H.T. Tsang, Effects of volume fraction of reinforcement on tensile and creep properties of in-situ TiB/Ti MMC, Scr. Mater. 37 (9) (1997) 1359-1365. https://doi.org/10.1016/S1359-6462(97)00251-0
[19] S. Wang, L. J. Huang, L. Geng, F. Scarpa, Y. Jiao, H. X. Peng, Significantly enhanced creep resistance of low volume fraction in-situ TiBw/Ti6Al4V composites by architecture network reinforcements, Sci. Rep. 7 (2017) 40823. https://doi.org/10.1038/srep40823