Consolidation of AZ31 magnesium chips using equal channel angular pressing

Consolidation of AZ31 magnesium chips using equal channel angular pressing

Majid Al-Maharbi, Almundher Al-Namani

download PDF

Abstract. Equal channel angular pressing (ECAP) as a severe plastic deformation (SPD) technique was employed for consolidation of AZ31 magnesium chips. The chips were consolidated at a temperature of 300 °C following ECAP route A up to two passes. The optical and scanning electron micrographs reveal that consolidation have taken place and the quality of consolidation improves with number of ECAP passes and hence the total imposed strain. The Vickers hardness of the processed samples increased from 41 of the as cast used to generate the chips to 47.7 ad 58.5 of consolidated samples after one and two passes respectively. The consolidation of chips was accompanied by the breakage and dispersion of the oxide layer developed on the surface of the chips during and after machining.

Keywords
Magnesium Alloy, AZ31, Consolidation, Solid-State Recycling, Equal Channel Angular Pressing, Severe Plastic Deformation

Published online , 7 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Majid Al-Maharbi, Almundher Al-Namani, Consolidation of AZ31 magnesium chips using equal channel angular pressing, Materials Research Proceedings, Vol. 32, pp 213-219, 2023

DOI: https://doi.org/10.21741/9781644902615-24

The article was published as article 24 of the book Superplasticity in Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] M. Mabuchi, K. Kubota, K. Higashi, New recycling process by extrusion for machined chips of AZ91 magnesium and mechanical properties of extruded bars, Mater. Trans. JIM. 36 (1995) 1249–1254. https://doi.org/10.2320/matertrans1989.36.1249
[2] Y. Chino, M. Kobata, K. Shimojima, H. Hosokawa, Y. Yamada, H. Iwasaki, M. Mabuchi, Blow Forming of Mg Alloy Recycled by Solid-State Recycling, Mater. Trans. 45 (2004) 361–364. https://doi.org/10.2320/matertrans.45.361
[3] Y. Chino, T. Hoshika, M. Mabuchi, Enhanced corrosion properties of pure Mg and AZ31 Mg alloy recycled by solid-state process, Mater. Sci. Eng. A. 435–436 (2006) 275–281. https://doi.org/10.1016/j.msea.2006.07.019
[4] M. Hu, Z. Ji, X. Chen, Z. Zhang, Effect of chip size on mechanical property and microstructure of AZ91D magnesium alloy prepared by solid state recycling, Mater. Charact. 59 (2008) 385–389. https://doi.org/10.1016/j.matchar.2007.02.002
[5] S. Wu, Z. Ji, T. Zhang, Microstructure and mechanical properties of AZ31B magnesium alloy recycled by solid-state process from different size chips, J. Mater. Process. Technol. 209 (2009) 5319–5324. https://doi.org/10.1016/j.jmatprotec.2009.04.002
[6] M.L. Hu, Z.S. Ji, X.Y. Chen, Q.D. Wang, W.J. Ding, Solid-state recycling of AZ91D magnesium alloy chips, Trans. Nonferrous Met. Soc. China (English Ed. 22 (2012) s68–s73. https://doi.org/10.1016/S1003-6326(12)61685-9
[7] S. Wu, Z. Ji, M. Hu, Z. Huang, C. Tian, M. Wu, Microstructure and Mechanical Properties of AZ31B Magnesium Alloy Prepared by Solid State Recycling, Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng. 47 (2018) 736–741. https://doi.org/10.1016/s1875-5372(18)30101-2
[8] S. yan Wu, Z. sheng Ji, S. fan Rong, M. liang Hu, Microstructure and mechanical properties of AZ31B magnesium alloy prepared by solid-state recycling process from chips, Trans. Nonferrous Met. Soc. China (English Ed. 20 (2010) 783–788. https://doi.org/10.1016/S1003-6326(09)60214-4.
[9] B. Wan, W. Chen, T. Lu, F. Liu, Z. Jiang, M. Mao, Review of solid state recycling of aluminum chips, Resour. Conserv. Recycl. 125 (2017) 37–47. https://doi.org/10.1016/j.resconrec.2017.06.004
[10] T. Peng, Q.D. Wang, Y.K. Han, J. Zheng, W. Guo, Consolidation behavior of Mg-10Gd-2Y-0.5Zr chips during solid-state recycling, J. Alloys Compd. 503 (2010) 253–259. https://doi.org/10.1016/j.jallcom.2010.05.011
[11] D. Baffari, G. Buffa, L. Fratini, A numerical model for Wire integrity prediction in Friction Stir Extrusion of magnesium alloys, J. Mater. Process. Technol. 247 (2017) 1–10. https://doi.org/10.1016/j.jmatprotec.2017.04.007
[12] S. WU, Z. JI, S. RONG, M. HU, Microstructure and mechanical properties of AZ31B magnesium alloy prepared by solid-state recycling process from chips, Trans. Nonferrous Met. Soc. China. (2010). https://doi.org/10.1016/S1003-6326(09)60214-4
[13] T. Ying, M.Y. Zheng, X.S. Hu, K. Wu, Recycling of AZ91 Mg alloy through consolidation of machined chips by extrusion and ECAP, Trans. Nonferrous Met. Soc. China (English Ed. 20 (2010). https://doi.org/10.1016/S1003-6326(10)60547-X
[14] M. Moss, R. Lapovok, C.J. Bettles, The equal channel angular pressing of magnesium and magnesium alloy powders, Jom. 59 (2007) 54–57. https://doi.org/10.1007/s11837-007-0105-5
[15] D. Paraskevas, S. Dadbakhsh, J. Vleugels, K. Vanmeensel, W. Dewulf, J.R. Duflou, Solid state recycling of pure Mg and AZ31 Mg machining chips via spark plasma sintering, Mater. Des. 109 (2016) 520–529. https://doi.org/10.1016/j.matdes.2016.07.082
[16] D. Baffari, G. Buffa, D. Campanella, L. Fratini, A.P. Reynolds, Process mechanics in Friction Stir Extrusion of magnesium alloys chips through experiments and numerical simulation, J. Manuf. Process. 29 (2017) 41–49. https://doi.org/10.1016/j.jmapro.2017.07.010
[17] Y. Chino, T. Hoshika, J.S. Lee, M. Mabuchi, Mechanical properties of AZ31 Mg alloy recycled by severe deformation, J. Mater. Res. 21 (2006) 754–760. https://doi.org/10.1557/jmr.2006.0090
[18] Q. Shi, Y.Y. Tse, R.L. Higginson, Effects of processing parameters on relative density, microhardness and microstructure of recycled Ti-6Al-4V from machining chips produced by equal channel angular pressing, Mater. Sci. Eng. A. 651 (2016) 248–258. https://doi.org/10.1016/j.msea.2015.11.002
[19] P. Luo, H. Xie, M. Paladugu, S. Palanisamy, M.S. Dargusch, K. Xia, Recycling of titanium machining chips by severe plastic deformation consolidation, J. Mater. Sci. 45 (2010) 4606–4612. https://doi.org/10.1007/s10853-010-4443-2
[20] P. Luo, D.T. McDonald, S.M. Zhu, S. Palanisamy, M.S. Dargusch, K. Xia, Analysis of microstructure and strengthening in pure titanium recycled from machining chips by equal channel angular pressing using electron backscatter diffraction, Mater. Sci. Eng. A. 538 (2012) 252–258. https://doi.org/10.1016/j.msea.2012.01.039
[21] D.T. McDonald, P. Luo, S. Palanisamy, M.S. Dargusch, K. Xia, Ti-6Al-4V recycled from machining chips by equal channel angular pressing, Key Eng. Mater. 520 (2012) 295–300. https://doi.org/10.4028/www.scientific.net/KEM.520.295
[22] S. Wu, Z. Ji, T. Zhang, Microstructure and mechanical properties of AZ31B magnesium alloy recycled by solid-state process from different size chips, J. Mater. Process. Technol. 209 (2009) 5319–5324. https://doi.org/10.1016/j.jmatprotec.2009.04.002
[23] L. Wen, Z. Ji, X. Li, Effect of extrusion ratio on microstructure and mechanical properties of Mg – Nd – Zn – Zr alloys prepared by a solid recycling process, 9 (2008) 2–7. https://doi.org/10.1016/j.matchar.2008.03.009
[24] Z. Zu-de, C. Qiang, Y. Lin, S.H.U. Da-yu, Z. Zhi-xiang, Microstructure and mechanical properties of Mg-Zn-Y-Zr alloy prepared by solid state recycling, Trans. Nonferrous Met. Soc. China. 21 (2010) 265–271. https://doi.org/10.1016/S1003-6326(11)60708-5
[25] T. Peng, Q.D. Wang, J.B. Lin, Microstructure and mechanical properties of Mg–10Gd–2Y–0.5Zr alloy recycled by cyclic extrusion compression, Mater. Sci. Eng. A. 516 (2009) 23–30. https://doi.org/10.1016/j.msea.2009.04.024.