Achieving superplasticity in hard-to-deform metallic materials using high-pressure sliding (HPS) process

Achieving superplasticity in hard-to-deform metallic materials using high-pressure sliding (HPS) process

Zenji Horita, Yoichi Takizawa

download PDF

Abstract. This presentation shows that superplasticity is achieved in hard-to-deform materials when they are processed by severe plastic deformation (SPD) through high-pressure sliding (HPS). The HPS process is similar to the high-pressure torsion (HPT) process as the straining is made under high pressure in highly constrained conditions. It is applicable to a sheet form of samples while the HPT process uses disks or rings, and thus it has advantage that the sample size can be increased. In addition, when the HPS process is combined with a feeding process, the SPD-processed area can be further enlarged without increasing the machine capacity, of which process is called the incremental feeding HPS (IF-HPS). The HPS process is applied to a Ni-based superalloy (Inconel 718), a Ti-6Al-7Nb alloy (F1295) and a Mg-6Al-1Zn alloy (AZ61), and superplasticity is well attained in all the hard-to-deform alloys with total elongations more than 400%. It is also demonstrated that cup forming of the Inconel 718 with practical dimensions is realized by application of the IF-HPS process.

Keywords
Severe Plastic Deformation, High-Pressure Sliding, Superplasticity, Superalloy, Cup Forming

Published online , 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Zenji Horita, Yoichi Takizawa, Achieving superplasticity in hard-to-deform metallic materials using high-pressure sliding (HPS) process, Materials Research Proceedings, Vol. 32, pp 15-22, 2023

DOI: https://doi.org/10.21741/9781644902615-2

The article was published as article 2 of the book Superplasticity in Advanced Materials

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer and Y.T. Zhu: JOM 58(4) (2006) 33-39. https://doi.org/10.1007/s11837-006-0213-7
[2] K. Edalati and Z. Horita: Mater. Sci. Eng. A 652 (2016) 325-352. https://doi.org/10.1016/j.msea.2015.11.074
[3] T. Fujioka and Z. Horita: Mater. Trans. 50 (2009) 930-933. https://doi.org/10.2320/matertrans.MRP2008445
[4] Y. Takizawa, T. Masuda, K. T. Fujimitsu, Kajita, K. Watanabe, M. Yumoto, Y. Otagiri and Z. Horita:Metall. Mater. Trans. A 47 (2016) 4669-4681. https://doi.org/10.1007/s11661-016-3623-3
[5] P.W. Bridgman: Phys. Rev. 48 (1935) 825-847. https://doi.org/10.1103/PhysRev.48.825
[6] A.P. Zhilyaev, T.G. Langdon: Prog. Mater. Sci. 53 (2008) 893-979. https://doi.org/10.1016/j.pmatsci.2008.03.002
[7] Z. Horita, Y. Tang, T. Masuda and Y. Takizawa:Mater. Trans. 61 (2020) 1177-1190. https://doi.org/10.2320/matertrans.MT-M2020074
[8] Y. Takizawa and Z. Horita: Mater. Trans. 64 (2023).https://doi.org/10.2320/matertrans.MT-MF2022025
[9] Y. Takizawa, K. Sumikazwa, K. Watanabe, T. Masuda, M. Yumoto, Y. Kanai, Y. Otagiri and Z. Horita:Metall. Mater. Trans. A 49 (2018) 1830-1840. https://doi.org/10.1007/s11661-018-4534-2
[10] Y. Takizawa, K.Watanabe, T. Kajita, K. Sumikawa, T. Masuda, M. Yumoto, Y. Otagiri and Z. Horita: J. Japan Inst. Met. Mater. 82 (2018) 25-31. https://doi.org/10.2320/jinstmet.J2017038
[11] T. Komatsu, T. Masuda, Y. Tang, I.F. Mohamed, M. Yumoto, Y. Takizawa and Z. Horita: Mater. Trans. 64 (2023) 436442. https://doi.org/10.2320/matertrans.MT-LA2022032
[12] T. Masuda, K. Fujimitsu, Y. Takizawa and Z. Horita: Lett. Mater. 5 (2015) 258263 https://doi.org/10.22226/2410-3535-2015-3-258-263
[13] Y. Tang, K. Matsuda, Y. Takizawa, M. Yumoto, Y. Otagiri and Z. Horita: Mater. Sci. Technol. 36 (2020) 877886. https://doi.org/10.1080/02670836.2020.1746538
[14] Z.Horita, D.J.Smith, M.Furukawa, M.Nemoto, R.Z.Valiev and T.G.Langdon: J. Mat. Res., 11 (1996) 1880-1890. https://doi.org/10.1557/JMR.1996.0239
[15] Y. Takizawa, T. Kajita, P. Kral, T. Masuda, K. Watanabe, M. Yumoto, Y. Otagiri, V. Sklenicka and Z. Horita: Mater. Sci. Eng. A 682 (2017) 603-612. https://doi.org/10.1016/j.msea.2016.11.081
[16] T.G. Langdon: J. Mater. Sci. 44 (2009) 5998-6010. https://doi.org/10.1007/s10853-009-3780-5
[17] K. Higashi, M. Mabuchi and T.G. Langdon: ISIJ Int. 36 (1996) 1423-1438. https://doi.org/10.2355/isijinternational.36.1423
[18] Y. Tang, K. Edalati, M. Masuda, Y. Takizawa, M. Yumoto, and Z. Horita: Mater. Lett. 300 (2021) 130144. https://doi.org/10.1016/j.matlet.2021.130144
[19] T.G. Langdon: Metall. Mater. Trans. A 13 (1982) 689-701. https://doi.org/10.1007/BF02642383
[20] E.O. Hall: Proc. Phys. Soc. B 64 (9) (1951) 747-753. https://doi.org/10.1088/0370-1301/64/9/303
[21] N.J. Petch: J. Iron. Steel Inst. 174 (1953) 25-28. https://doi.org/10.1111/j.1600-0447.1953.tb09440.x