Microstructure analysis of hybrid aluminum parts from recycled EN AW-6082 and EN AW-7075 chips

Microstructure analysis of hybrid aluminum parts from recycled EN AW-6082 and EN AW-7075 chips

URSINUS Jonathan, KOCH Alexander, BRUNOTTE Kai, WALTHER Frank, BEHRENS Bernd-Arno

download PDF

Abstract. In order to promote aluminum scrap recycling and reduce remelting losses, solid-state recycling processes are subject to increasing academic attention. These processes range from severe plastic deformation (SPD) to diffusion-based processes like field-assisted sintering (FAST). In this study, a FAST-based recycling route consisting of precompaction, FAST, and impact extrusion of dry machined EN AW-6082 and EN AW-7075 aluminum chips was used to create multi-material parts from different aluminum alloys. To examine the effect on the resulting part quality, two different hybrid material layouts were created during cold compaction of the chips. The subsequent sintering process took place in a field-assisted sintering (FAST) machine at 400°C and 500°C for a duration of 5 min under a pressure of 85 MPa, allowing for the analysis of inter-chip diffusion. These sintered blanks were then cold-formed by impact extrusion. Metallographic and computed tomography analyses as well as hardness measurements were performed for property evaluation before and after heat-treatment.

Keywords
Aluminum, Recycling, Chips, FAST, Extrusion, Hybrid Materials

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: URSINUS Jonathan, KOCH Alexander, BRUNOTTE Kai, WALTHER Frank, BEHRENS Bernd-Arno, Microstructure analysis of hybrid aluminum parts from recycled EN AW-6082 and EN AW-7075 chips, Materials Research Proceedings, Vol. 28, pp 1977-1986, 2023

DOI: https://doi.org/10.21741/9781644902479-213

The article was published as article 213 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] T.J. Brown, N.E. Idoine, E.R. Raycraft, R.A. Shaw, S.F. Hobbs, P. Everett, E.A. Deady, T. Bide, World Mineral Production 2012-16, Keyworth, Nottingham., 2018.
[2] Information on https://international-aluminium.org/resource/iai-material-flow-model-2021-update/
[3] R. Zhao, C. Nowicki, L. Gosselin, C. Duchesne, Energy and exergy inventory in aluminum smelter from a thermal integration point-of-view, Int. J. Energy Res. 40 (2016) 1321-1338. https://doi.org/10.1002/er.3508
[4] A. Gupta, B. Basu, Sustainable Primary Aluminium Production: Technology Status and Future Opportunities, Trans. Indian. Inst. Met. 72 (2019) 2135-2150. https://doi.org/10.1007/s12666-019-01699-9
[5] T.G. Gutowski, S. Sahni, J.M. Allwood, M.F. Ashby, E. Worrell, The energy required to produce materials: constraints on energy-intensity improvements, parameters of demand, Philos. Trans. A, Math. Phys. Eng. Sci. 371 (2013) 20120003. https://doi.org/10.1098/rsta.2012.0003
[6] D. Brough, H. Jouhara, The aluminium industry: A review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery, Int. J. Thermofluid. 1-2 (2020) 100007. https://doi.org/10.1016/j.ijft.2019.100007
[7] Information on https://www.umweltbundesamt.de/sites/default/files/medien/3521/
dokumente/factsheet-aluminium_fi_barrierefrei.pdf
[8] Y. Xiao, M. Reuter, Recycling of distributed aluminium turning scrap, Miner. Eng. 15 (2002) 963-970. https://doi.org/10.1016/S0892-6875(02)00137-1
[9] M. Stern, U.S. Patent 2391,752 (1945).
[10] J. Gronostajski, A. Matuszak, The recycling of metals by plastic deformation: an example of recycling of aluminium and its alloys chips, J. Mater. Process. Technol. 92-93 (1999) 35-41. https://doi.org/10.1016/S0924-0136(99)00166-1
[11] J. Gronostajski, H. Marciniak, A. Matuszak, New methods of aluminium and aluminium-alloy chips recycling, J. Mater. Process. Technol. 106 (2000) 34-39. https://doi.org/10.1016/S0924-0136(00)00634-8
[12] J.Z. Gronostajski, J.W. Kaczmar, H. Marciniak, A. Matuszak, Direct recycling of aluminium chips into extruded products, J. Mater. Process. Technol. 64 (1997) 149-156. https://doi.org/10.1016/S0924-0136(96)02563-0
[13] V. Güley, A. Güzel, A. Jäger, N. Ben Khalifa, A.E. Tekkaya, W.Z. Misiolek, Effect of die design on the welding quality during solid state recycling of AA6060 chips by hot extrusion, Mater. Sci. Eng. A 574 (2013) 163-175. https://doi.org/10.1016/j.msea.2013.03.010
[14] M. Haase, A.E. Tekkaya, Cold extrusion of hot extruded aluminum chips, J. Mater. Process. Technol. 217 (2015) 356-367. https://doi.org/10.1016/j.jmatprotec.2014.11.028.
[15] M.I. Abd El Aal, M.A. Taha, A.I. Selmy, A.M. El-Gohry, H.S. Kim, Solid state recycling of aluminium AA6061 alloy chips by hot extrusion, Mater. Res. Express 6 (2019) 36525. https://doi.org/10.1088/2053-1591/aaf6e7
[16] B. Lela, J. Krolo, S. Jozić, Mathematical modeling of solid-state recycling of aluminum chips, Int. J. Adv. Manuf. Technol. 87 (2016) 1125-1133. https://doi.org/10.1007/s00170-016-8569-5
[17] N. Bay, Mechanisms Producing Metallic Bonds in Cold Welding, Weld. J. (1983) 137-142.
[18] D.R. Cooper, J.M. Allwood, The influence of deformation conditions in solid-state aluminium welding processes on the resulting weld strength, J. Mater. Process. Technol. 214 (2014) 2576-2592. https://doi.org/10.1016/j.jmatprotec.2014.04.018
[19] M. Haase, N. Ben Khalifa, A.E. Tekkaya, W.Z. Misiolek, Improving mechanical properties of chip-based aluminum extrudates by integrated extrusion and equal channel angular pressing (iECAP), Mater. Sci. Eng. A 539 (2012) 194-204. https://doi.org/10.1016/j.msea.2012.01.081
[20] J.R. Cui, W. Guo, H.J. Roven, Q.D. Wang, Y.J. Chen, T. Peng, Recycling of Aluminum Scrap by Severe Plastic Deformation.
[21] D. Paraskevas, K. Vanmeensel, J. Vleugels, W. Dewulf, Y. Deng, J.R. Duflou, Spark Plasma Sintering As a Solid-State Recycling Technique: The Case of Aluminum Alloy Scrap Consolidation, Mater. 7 (2014) 5664-5687. https://doi.org/10.3390/ma7085664
[22] A. Koch, M. Bonhage, M. Teschke, L. Luecker, B.-A. Behrens, F. Walther, Electrical resistance-based fatigue assessment and capability prediction of extrudates from recycled field-assisted sintered EN AW-6082 aluminium chips, Mater. Charact. 169 (2020) 110644. https://doi.org/10.1016/j.matchar.2020.110644
[23] C.N. Cislo, B. Kronthaler, B. Buchmayr, C. Weiß, Solid State Recycling of Aluminum Alloy Chips via Pulsed Electric Current Sintering, JMMP 4 (2020) 23. https://doi.org/10.3390/jmmp4010023
[24] R.H.R. Castro, K. van Benthem, Sintering: Mechanisms of convention nanodensification and field assisted processes, Springer, Berlin, New York, 2013.
[25] J. Fogagnolo, E. Ruiz-Navas, M. Simón, M. Martinez, Recycling of aluminium alloy and aluminium matrix composite chips by pressing and hot extrusion, J. Mater. Process. Technol. 143-144 (2003) 792-795. https://doi.org/10.1016/S0924-0136(03)00380-7
[26] B.A. Behrens, M. Bonhage, D. Bohr, D. Duran, Simulation Assisted Process Development for Tailored Forming, MSF 949 (2019) 101-111. https://doi.org/10.4028/www.scientific.net/MSF.949.101