Viscoelastic characterization of reformable epoxy vitrimers composites

Viscoelastic characterization of reformable epoxy vitrimers composites

PALMIERI Barbara, CILENTO Fabrizia, MARTONE Alfonso, GIORDANO Michele, AMENDOLA Eugenio

download PDF

Abstract. Epoxy Vitrimers are gathering attention as a development in the field of more easily re-processable and self-healing thermosets. Incorporating a catalyst should activate the transesterification reaction within the polymeric macromolecule inducing topological modification of the network. Reacting epoxy precursors with suitable anhydrides and acids will promote exchange reactions between esters and beta-hydroxyls, adding the vitrimeric behaviour. In the present work, a commercial epoxy system suitable for CFRP manufacturing has been modified to induce vitrimeric behaviour by exploiting the catalytic activity towards the transesterification reaction of Zn2+. Creep experiments confirm that the resin starts to flow above a critical “Vitrimeric” temperature (Tv). Moreover, the thermoformability of vitrimer-CFRP has been investigated by reprocessing CFRP coupons.

Compression Moulding, Vitrimer, Multifunctional Composites, Epoxy Matrix

Published online 4/19/2023, 8 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: PALMIERI Barbara, CILENTO Fabrizia, MARTONE Alfonso, GIORDANO Michele, AMENDOLA Eugenio, Viscoelastic characterization of reformable epoxy vitrimers composites, Materials Research Proceedings, Vol. 28, pp 1871-1878, 2023


The article was published as article 202 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] M. Capelot, M.M. Unterlass, F. Tournilhac, L. Leibler, Catalytic Control of the Vitrimer Glass Transition, ACS Macro Lett. 1 (2012) 789.
[2] L. Imbernon, S. Norvez, From landfilling to vitrimer chemistry in rubber life cycle, Eur. Polym. J. 82 (2016) 347-376.
[3] S. Dello Iacono, A. Martone, A. Pastore, G. Filippone, D. Acierno, M. Zarrelli, M. Giordano, E. Amendola, Thermally activated multiple self-healing diels-alder epoxy system, Polym. Eng. Sci. 57 (2017) 674-679.
[4] D. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Silica-like malleable materials from permanent organic networks, Science (1979). 334 (2011) 965-968.
[5] S. Wang, S. Ma, Q. Li, X. Xu, B. Wang, W. Yuan, S. Zhou, S. You, J. Zhu, Facile: In situ preparation of high-performance epoxy vitrimer from renewable resources and its application in nondestructive recyclable carbon fiber composite, Green Chem. 21 (2019) 1484-1497.
[6] W. Denissen, J.M. Winne, F.E. Du Prez, Vitrimers: Permanent organic networks with glass-like fluidity, Chem. Sci. 7 (2016) 30 -38.
[7] M. Capelot, D. Montarnal, F. Tournilhac, L. Leibler, Metal-catalyzed transesterification for healing and assembling of thermosets, J. Am. Chem. Soc. 134 (2012) 7664-7667.
[8] Q. Shi, K. Yu, M.L. Dunn, T. Wang, H.J. Qi, Solvent Assisted Pressure-Free Surface Welding and Reprocessing of Malleable Epoxy Polymers, Macromolecules 49 (2016) 5527-5537.
[9] A. Demongeot, S.J. Mougnier, S. Okada, C. Soulié-Ziakovic, F. Tournilhac, Coordination and catalysis of Zn2+ in epoxy-based vitrimers, Polym. Chem. 7 (2016) 4486-4493.
[10] X. Niu, F. Wang, X. Li, R. Zhang, Q. Wu, P. Sun, Using Zn2+ Ionomer to Catalyze Transesterification Reaction in Epoxy Vitrimer, Ind. Eng. Chem. Res. 58 (2019) 5698-5706.
[11] Y. Yang, G. Peng, S. Wu, W. Hao, A repairable anhydride-epoxy system with high mechanical properties inspired by vitrimers, Polym. 159 (2018) 162-168.