Through process stochastic model of hot strip rolling

Through process stochastic model of hot strip rolling


download PDF

Abstract. Advanced numerical models, which predict heterogeneity of microstructural features, are needed to design modern multiphase steels. Models based on stochastic internal variables meet this requirement. Our objective was to account for the random character of the recrystallization and to transfer this randomness to equations describing the evolution of the dislocations and the grain size during hot deformation. The idea of the internal variable model with the dislocation density and the grain size being stochastic variables is described briefly in the paper. Histograms of the grain size measured in the experimental compression tests were used to identify the coefficients in the model. Inverse analysis with the objective function based on the distance between histograms was applied. The model was used to simulation of the various technological routes in the industrial process of the hot strip rolling.

Internal Variables, Stochastic Model, Hot Strip Rolling, DP Steel, Microstructure Evolution

Published online 4/19/2023, 10 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: SZELIGA Danuta, CZYŻEWSKA Natalia, KUSIAK Jan, OPROCHA Piotr, PIETRZYK Maciej, PRZYBYŁOWICZ Paweł, Through process stochastic model of hot strip rolling, Materials Research Proceedings, Vol. 28, pp 1631-1640, 2023


The article was published as article 176 of the book Material Forming

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Arch. Civil Mech. Eng. 8 (2008) 103-117.
[2] D. Szeliga, N. Czyżewska, K. Klimczak, J. Kusiak, R. Kuziak, P. Morkisz, P. Oprocha, V. Pidvysotsk’yy, M. Pietrzyk, P. Przybyłowicz, Formulation, identification and validation of a stochastic internal variables model describing the evolution of metallic materials microstructure during hot forming, Int. J. Mater. Form. 15 (2022) 53.
[3] M. Tashkinov, Statistical methods for mechanical characterization of randomly reinforced media, Mech. Adv. Mater. Modern Process. 3 (2017) 18.
[4] B.C. Cameron, C.C. Tasan, Microstructural damage sensitivity prediction using spatial statistics, Scientif. Report. 9 (2019) 2774,
[5] G. Napoli, A. Di Schino, Statistical modelling of recrystallization and grain growth phenomena in stainless steels: effect of initial grain size distribution, Open Eng. 8 (2018) 373-376.
[6] K. Klimczak, P. Oprocha, J. Kusiak, D. Szeliga, P. Morkisz, P. Przybyłowicz, N. Czyżewska, M. Pietrzyk, Inverse problem in stochastic approach to modelling of microstructural parameters in metallic materials during processing, Math. Probl. Eng. (2022) 9690742. 2022/9690742
[7] D. Szeliga, N. Czyżewska, K. Klimczak, J. Kusiak, R. Kuziak, P. Morkisz, P. Oprocha, M. Pietrzyk, Ł. Poloczek, P. Przybyłowicz, Stochastic model describing evolution of microstructural parameters during hot rolling of steel plates and strips, Arch. Civil Mech. Eng. 22 (2022) 239.
[8] H. Mecking, U.F. Kocks, Kinetics of flow and strain-hardening, Acta Metall. 29 (1981) 1865-1875.
[9] Y. Estrin, H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall. 32 (1984) 57-70.
[10] C.M. Sellars, Physical metallurgy of hot working, in: Hot working and forming processes, C.M. Sellars, G.J. Davies, (Eds), The Metals Society, London, 1979, pp. 3-15.
[11] D. Szeliga, J. Gawąd, M. Pietrzyk, Inverse analysis for identification of rheological and friction models in metal forming, Comput. Meth. Appl. Mech. Eng. 195 (2006) 6778-6798.
[12] K. Bzowski, J. Kitowski, R. Kuziak, P. Uranga, I. Gutierrez, R. Jacolot, L. Rauch, M. Pietrzyk, Development of the material database for the VirtRoll computer system dedicated to design of an optimal hot strip rolling technology, Comput. Meth. Mater. Sci. 17 (2017) 225-246.
[13] J. Kitowski, Ł. Rauch, M. Pietrzyk, A. Perlade, R. Jacolot, V. Diegelmann, M. Neuer, I. Gutierrez, P. Uranga, N. Isasti, G. Larzabal, R. Kuziak, U. Diekmann, Virtual Strip Rolling Mill VirtRoll, European Commission Research Programme of the Research Fund for Coal and Steel, Technical Group TGS 4, Final Report from the Project RFSR-CT-2013-00007, 2017.
[14] M. Pietrzyk, Finite element simulation of large plastic deformation, J. Mater. Process. Technol. 106 (2000) 223-229.
[15] R.A. Petković, M.J. Luton, J.J. Jonas, Recovery and recrystallization of carbon steel between intervals of hot working, Canadian Metallurgical Quarterly 14 (1975) 137-145.
[16] J.J. Urcola, C.M. Sellars, Effect of changing strain rate on stress-strain behaviour during high temperature deformation, Acta Metall. 35 (1987) 2637-2647.
[17] K.P. Rao, Y.K.D.V. Prasad, E.B. Hawbolt, Hot deformation studies on a low-carbon steel: Part 2 – An algorithm for the flow stress determination under varying process conditions, J. Mater. Process. Technol. 56 (1996) 908-917.
[18] M. Pietrzyk, J. Kusiak, R. Kuziak, Ł. Madej, D. Szeliga, R. Gołąb, Conventional and multiscale modelling of microstructure evolution during laminar cooling of DP steel strips, Metall. Mater. Trans. B, 46B (2014) 497-506.
[19] P.D. Hodgson, R.K. Gibbs, A mathematical model to predict the mechanical properties of hot rolled C-Mn and microalloyed steels, ISIJ Int. 32 (1992) 1329-1338.