Microgeometrical design of lightweight bioinspired nacre-like composite materials for wave attenuation tuning

Microgeometrical design of lightweight bioinspired nacre-like composite materials for wave attenuation tuning

Andrea PRANNO, Fabrizio GRECO, Raimondo LUCIANO, Umberto DE MAIO

download PDF

Abstract. Numerical simulations give the opportunity for designing periodic microstructured materials by tuning and manipulating their dynamic properties in terms of vibration control by varying their main micro-geometrical parameters. Specifically, the bandgap formation in 2D nacre-like composites characterized by a brick-and-mortar arrangement of stiff platelets and a soft matrix containing periodically arranged cavities was investigated through the Bloch-wave analysis. The numerical outcomes highlighted that, by varying the microstructural topology of the void inclusions and the stiff platelets, enhanced wave absorption capabilities can be obtained providing new opportunities to design periodic lightweight bioinspired composite metamaterials with elastic wave attenuation properties.

Keywords
Bioinspired Composites, Wave Propagation, Instability

Published online 3/17/2022, 6 pages
Copyright © 2023 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Andrea PRANNO, Fabrizio GRECO, Raimondo LUCIANO, Umberto DE MAIO, Microgeometrical design of lightweight bioinspired nacre-like composite materials for wave attenuation tuning, Materials Research Proceedings, Vol. 26, pp 511-516, 2023

DOI: https://doi.org/10.21741/9781644902431-83

The article was published as article 83 of the book Theoretical and Applied Mechanics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

References
[1] D. Ammendolea, F. Greco, P. Lonetti, R. Luciano, A. Pascuzzo, Crack propagation modeling in functionally graded materials using Moving Mesh technique and interaction integral approach, Compos. Struct. 269 (2021) 114005. https://doi.org/10.1016/j.compstruct.2021.114005
[2] A. Pascuzzo, A. Yudhanto, M. Alfano, G. Lubineau, On the effect of interfacial patterns on energy dissipation in plastically deforming adhesive bonded ductile sheets, Int. J. Solids Struct. 198 (2020) 31–40. https://doi.org/10.1016/j.ijsolstr.2020.04.001
[3] A. Pranno, F. Greco, P. Lonetti, R. Luciano, U. De Maio, An improved fracture approach to investigate the degradation of vibration characteristics for reinforced concrete beams under progressive damage, Int. J. Fatigue. 163 (2022) 107032. https://doi.org/10.1016/j.ijfatigue.2022.107032
[4] F. Greco, D. Gaetano, L. Leonetti, P. Lonetti, A. Pascuzzo, A. Skrame, Structural and seismic vulnerability assessment of the Santa Maria Assunta Cathedral in Catanzaro (Italy): classical and advanced approaches for the analysis of local and global failure mechanisms, Frat. Ed Integrità Strutt. 16 (2022) 464–487. https://doi.org/10.3221/IGF-ESIS.60.32
[5] M.A. Meyers, A.Y.-M. Lin, P.-Y. Chen, J. Muyco, Mechanical strength of abalone nacre: Role of the soft organic layer, J. Mech. Behav. Biomed. Mater. 1 (2008) 76–85. https://doi.org/10.1016/j.jmbbm.2007.03.001
[6] V. Slesarenko, N. Kazarinov, S. Rudykh, Distinct failure modes in bio-inspired 3D-printed staggered composites under non-aligned loadings, Smart Mater. Struct. 26 (2017) 035053. https://doi.org/10.1088/1361-665X/aa59eb
[7] F. Greco, L. Leonetti, A. Pranno, S. Rudykh, Mechanical behavior of bio-inspired nacre-like composites: A hybrid multiscale modeling approach, Compos. Struct. (2019) 111625. https://doi.org/10.1016/j.compstruct.2019.111625
[8] D. Wang, D. Chen, Z. Chen, Recent Progress in 3D Printing of Bioinspired Structures, Front. Mater. 7 (2020) 286. https://doi.org/10.3389/fmats.2020.00286
[9] F. Greco, L. Leonetti, U. De Maio, S. Rudykh, A. Pranno, Macro- and micro-instabilities in incompressible bioinspired composite materials with nacre-like microstructure, Compos. Struct. 269 (2021) 114004. https://doi.org/10.1016/j.compstruct.2021.114004
[10] U. De Maio, F. Greco, L. Leonetti, P. Nevone Blasi, A. Pranno, An investigation about debonding mechanisms in FRP-strengthened RC structural elements by using a cohesive/volumetric modeling technique, Theor. Appl. Fract. Mech. 117 (2022) 103199. https://doi.org/10.1016/j.tafmec.2021.103199
[11] A. Pascuzzo, F. Greco, L. Leonetti, P. Lonetti, A. Pranno, C. Ronchei, Investigation of mesh dependency issues in the simulation of crack propagation in quasi‐brittle materials by using a diffuse interface modeling approach, Fatigue Fract. Eng. Mater. Struct. 45 (2022) 801–820. https://doi.org/10.1111/ffe.13635
[12] U. De Maio, D. Cendón, F. Greco, L. Leonetti, P. Nevone Blasi, J. Planas, Investigation of concrete cracking phenomena by using cohesive fracture-based techniques: A comparison between an embedded crack model and a refined diffuse interface model, Theor. Appl. Fract. Mech. 115 (2021) 103062. https://doi.org/10.1016/j.tafmec.2021.103062
[13] A. Pascuzzo, F. Greco, P. Lonetti, D. Ammendolea, Dynamic fracture analysis in quasi-brittle materials via a finite element approach based on the combination of the ALE formulation and M-integral method, Eng. Fail. Anal. (2022) 106627. https://doi.org/10.1016/j.engfailanal.2022.106627
[14] U. De Maio, F. Fabbrocino, F. Greco, L. Leonetti, P. Lonetti, A study of concrete cover separation failure in FRP-plated RC beams via an inter-element fracture approach, Compos. Struct. 212 (2019) 625–636. https://doi.org/10.1016/j.compstruct.2019.01.025
[15] U. De Maio, F. Greco, L. Leonetti, R. Luciano, P. Nevone Blasi, S. Vantadori, A refined diffuse cohesive approach for the failure analysis in quasibrittle materials—part I: Theoretical formulation and numerical calibration, Fatigue Fract. Eng. Mater. Struct. 43 (2020) 221–241. https://doi.org/10.1111/ffe.13107
[16] U. De Maio, F. Greco, L. Leonetti, R. Luciano, P. Nevone Blasi, S. Vantadori, A refined diffuse cohesive approach for the failure analysis in quasibrittle materials—part II: Application to plain and reinforced concrete structures, Fatigue Fract. Eng. Mater. Struct. 42 (2019) 2764–2781. https://doi.org/10.1111/ffe.13115
[17] U. De Maio, F. Greco, L. Leonetti, P. Nevone Blasi, A. Pranno, A cohesive fracture model for predicting crack spacing and crack width in reinforced concrete structures, Eng. Fail. Anal. 139 (2022) 106452. https://doi.org/10.1016/j.engfailanal.2022.106452
[18] F. Greco, P. Lonetti, R. Luciano, P. Nevone Blasi, A. Pranno, Nonlinear effects in fracture induced failure of compressively loaded fiber reinforced composites, Compos. Struct. 189 (2018) 688–699. https://doi.org/10.1016/j.compstruct.2018.01.014
[19] F. Greco, Homogenized mechanical behavior of composite micro-structures including micro-cracking and contact evolution, Eng. Fract. Mech. 76 (2009) 182–208. https://doi.org/10.1016/j.engfracmech.2008.09.006
[20] F. Greco, L. Leonetti, P. Lonetti, R. Luciano, A. Pranno, A multiscale analysis of instability-induced failure mechanisms in fiber-reinforced composite structures via alternative modeling approaches, Compos. Struct. 251 (2020) 112529. https://doi.org/10.1016/j.compstruct.2020.112529
[21] F. Greco, L. Leonetti, R. Luciano, A multiscale model for the numerical simulation of the anchor bolt pull-out test in lightweight aggregate concrete, Constr. Build. Mater. 95 (2015) 860–874. https://doi.org/10.1016/j.conbuildmat.2015.07.170
[22] Y. Chen, L. Wang, Multiband wave filtering and waveguiding in bio-inspired hierarchical composites, Extreme Mech. Lett. 5 (2015) 18–24. https://doi.org/10.1016/j.eml.2015.09.002
[23] A. Pranno, F. Greco, L. Leonetti, P. Lonetti, R. Luciano, U. De Maio, Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials, Compos. Struct. 282 (2022) 115032. https://doi.org/10.1016/j.compstruct.2021.115032
[24] J. Li, V. Slesarenko, S. Rudykh, Auxetic multiphase soft composite material design through instabilities with application for acoustic metamaterials, Soft Matter. 14 (2018) 6171–6180. https://doi.org/10.1039/C8SM00874D
[25] M. Bruggi, A. Corigliano, Optimal 2D auxetic micro-structures with band gap, Meccanica. 54 (2019) 2001–2027. https://doi.org/10.1007/s11012-019-00981-w
[26] N. Arora, J. Li, S. Rudykh, Tunable buckling configurations via in-plane periodicity in soft 3D-fiber composites: Simulations and experiments, Int. J. Solids Struct. 250 (2022) 111711. https://doi.org/10.1016/j.ijsolstr.2022.111711
[27] J. Li, S. Rudykh, Tunable microstructure transformations and auxetic behavior in 3D-printed multiphase composites: The role of inclusion distribution, Compos. Part B Eng. 172 (2019) 352–362. https://doi.org/10.1016/j.compositesb.2019.05.012