ZnO: A Potential Candidate as a Host Material for Diluted Magnetic Semiconductors


ZnO: A Potential Candidate as a Host Material for Diluted Magnetic Semiconductors

Pooja Dhiman, Amit Kumar, Gaurav Sharma, Garima Rana, Pawan Kumar

Researchers have investigated GaN and ZnO-based diluted magnetic semiconductors since the discovery of the first DMS in 2000. The investigation is progressing with both theoretical and empirical discoveries. For a material to function as DMS in actual applications, researchers are intensively engaged in attaining two key conditions. One is ferromagnetism at ambient temperature, whereas the other has a higher Curie temperature. This chapter discusses the advancements in the realm of diluted magnetic semiconductors based on ZnO. The issues, difficulties, and competing causes of magnetism continue to be the focus of this chapter. Diverse doping techniques, such as transition metals, rare earth metals, and co-doped systems, have been investigated. In this chapter, we focused mostly on recent breakthroughs in experimental and theoretical ZnO nanostructures DMS investigations.

ZnO, Spintronics, Diluted Magnetic Semiconductors

Published online , 19 pages

Citation: Pooja Dhiman, Amit Kumar, Gaurav Sharma, Garima Rana, Pawan Kumar, ZnO: A Potential Candidate as a Host Material for Diluted Magnetic Semiconductors, Materials Research Foundations, Vol. 146, pp 67-85, 2023

DOI: https://doi.org/10.21741/9781644902394-3

Part of the book on ZnO and Their Hybrid Nano-Structures

[1] F. Pulizzi, Spintronics, Nature Materials, 11 (2012) 367-367. https://doi.org/10.1038/nmat3327
[2] J.K. Furdyna, Diluted magnetic semiconductors, Journal of Applied Physics, 64 (1988) R29-R64. https://doi.org/10.1063/1.341700
[3] A. Kumar, P. Dhiman, M. Singh, Effect of Fe-doping on the structural, optical and magnetic properties of ZnO thin films prepared by RF magnetron sputtering, Ceramics International, 42 (2016) 7918-7923. https://doi.org/10.1016/j.ceramint.2016.01.136
[4] T. Dietl, Magnetic semiconductors, Diluted Magnetic Semiconductors, (1991) 141. https://doi.org/10.1142/9789814368216_0005
[5] M.K. Jain, Diluted magnetic semiconductors, World Scientific, 1991. https://doi.org/10.1142/1065
[6] Y. Li, S. Ding, Y. Luo, P. Yu, Y. Cui, X. Wang, Z. Cheng, Z. Wu, Room temperature intrinsic diluted magnetic semiconductor Li(Cd,Mn)As, Journal of Materials Chemistry C, 10 (2022) 3217-3223. https://doi.org/10.1039/D1TC05482A
[7] A. Sarikhani, L. Avazpour, W. Liyanage, R. Florez, E. Bohannan, D. Satterfield, M. Nath, J.E. Medvedeva, Y.S. Hor, Transparency and room temperature ferromagnetism in diluted magnetic polycrystalline Zn1−xCrxTe non-oxide II-VI semiconductor compounds, Journal of Alloys and Compounds, 924 (2022) 166478. https://doi.org/10.1016/j.jallcom.2022.166478
[8] V.N. Jafarova, N.T. Mamedov, M.A. Musaev, High Curie Temperature and Half-Metallic Ferromagnetism in ZnSe:Co,Ni with Wurtzite Structure: First-Principles Study, physica status solidi (b), n/a (2022) 2200360. https://doi.org/10.1002/pssb.202200360
[9] Y. Liu, Y. Yang, J. Yang, Q. Guan, H. Liu, L. Yang, Y. Zhang, Y. Wang, M. Wei, X. Liu, L. Fei, X. Cheng, Intrinsic ferromagnetic properties in Cr-doped ZnO diluted magnetic semiconductors, Journal of Solid State Chemistry, 184 (2011) 1273-1278. https://doi.org/10.1016/j.jssc.2011.03.049
[10] K.S.K. Sato, H.K.-Y.H. Katayama-Yoshida, Material design for transparent ferromagnets with ZnO-based magnetic semiconductors, Japanese Journal of Applied Physics, 39 (2000) L555. https://doi.org/10.1143/JJAP.39.L555
[11] K. Sato, H. Katayama-Yoshida, First principles materials design for semiconductor spintronics, Semiconductor Science and Technology, 17 (2002) 367. https://doi.org/10.1088/0268-1242/17/4/309
[12] A. Walsh, J.L.F. Da Silva, S.-H. Wei, Theoretical Description of Carrier Mediated Magnetism in Cobalt Doped ZnO, Physical Review Letters, 100 (2008) 256401. https://doi.org/10.1103/PhysRevLett.100.256401
[13] G. Bouzerar, R. Bouzerar, Unraveling the nature of carrier-mediated ferromagnetism in diluted magnetic semiconductors, Comptes Rendus Physique, 16 (2015) 731-738. https://doi.org/10.1016/j.crhy.2015.09.003
[14] K. Sato, P.H. Dederichs, H. Katayama-Yoshida, J. Kudrnovský, Exchange interactions in diluted magnetic semiconductors, Journal of Physics: Condensed Matter, 16 (2004) S5491. https://doi.org/10.1088/0953-8984/16/48/003
[15] A.C. Durst, R.N. Bhatt, P.A. Wolff, Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors, Physical Review B, 65 (2002) 235205. https://doi.org/10.1103/PhysRevB.65.235205
[16] J.J. Beltrán, C.A. Barrero, A. Punnoose, Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles, Physical Chemistry Chemical Physics, 17 (2015) 15284-15296. https://doi.org/10.1039/C5CP01408E
[17] H. Guo, Y. Zhao, N. Lu, E. Kan, X.C. Zeng, X. Wu, J. Yang, Tunable Magnetism in a Nonmetal-Substituted ZnO Monolayer: A First-Principles Study, The Journal of Physical Chemistry C, 116 (2012) 11336-11342. https://doi.org/10.1021/jp2125069
[18] P. Gopal, N.A. Spaldin, Magnetic interactions in transition-metal-doped ZnO: An ab initio study, Physical Review B, 74 (2006) 094418. https://doi.org/10.1103/PhysRevB.74.094418
[19] J. Ren, H. Zhang, X. Cheng, Electronic and magnetic properties of all 3d transition-metal-doped ZnO monolayers, International Journal of Quantum Chemistry, 113 (2013) 2243-2250. https://doi.org/10.1002/qua.24442
[20] R. Saleh, N.F. Djaja, S.P. Prakoso, The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method, Journal of Alloys and Compounds, 546 (2013) 48-56. https://doi.org/10.1016/j.jallcom.2012.08.056
[21] P. Dhiman, K.M. Batoo, R.K. Kotnala, J. Chand, M. Singh, Room temperature ferromagnetism and structural characterization of Fe,Ni co-doped ZnO nanocrystals, Applied Surface Science, 287 (2013) 287-292. https://doi.org/10.1016/j.apsusc.2013.09.144
[22] G. Vijayaprasath, R. Murugan, G. Ravi, T. Mahalingam, Y. Hayakawa, Characterization of dilute magnetic semiconducting transition metal doped ZnO thin films by sol-gel spin coating method, Applied Surface Science, 313 (2014) 870-876. https://doi.org/10.1016/j.apsusc.2014.06.093
[23] K. Irshad, M.T. Khan, A. Murtaza, Synthesis and characterization of transition-metals-doped ZnO nanoparticles by sol-gel auto-combustion method, Physica B: Condensed Matter, 543 (2018) 1-6. https://doi.org/10.1016/j.physb.2018.05.006
[24] S. Paul, B. Dalal, M. Das, P. Mandal, S.K. De, Enhanced Magnetic Properties of In-Mn-Codoped Plasmonic ZnO Nanoflowers: Evidence of Delocalized Charge Carrier-Mediated Ferromagnetic Coupling, Chemistry of Materials, 31 (2019) 8191-8204. https://doi.org/10.1021/acs.chemmater.9b03059
[25] R.K. Singhal, A. Samariya, Y.T. Xing, S. Kumar, S.N. Dolia, U.P. Deshpande, T. Shripathi, E.B. Saitovitch, Electronic and magnetic properties of Co-doped ZnO diluted magnetic semiconductor, Journal of Alloys and Compounds, 496 (2010) 324-330. https://doi.org/10.1016/j.jallcom.2010.02.005
[26] R. Khan, Zulfiqar, S. Fashu, Z.U. Rehman, A. Khan, M.U. Rahman, Structure and magnetic properties of (Co, Mn) co-doped ZnO diluted magnetic semiconductor nanoparticles, Journal of Materials Science: Materials in Electronics, 29 (2018) 32-37. https://doi.org/10.1007/s10854-017-7884-4
[27] H. Li, Y. Qiao, J. Li, H. Fang, D. Fan, W. Wang, A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles, Biosensors and Bioelectronics, 77 (2016) 378-384. https://doi.org/10.1016/j.bios.2015.09.066
[28] R. Gopalakrishnan, R. Kabilan, M. Ashokkumar, Investigations of Mn introduced structural modifications on Ni-doped ZnO diluted magnetic semiconductors and improved magnetic and antibacterial properties, Journal of Molecular Structure, 1251 (2022) 132060. https://doi.org/10.1016/j.molstruc.2021.132060
[29] M. Zhong, W. Wu, H. Wu, S. Guo, A facile way to regulating room-temperature ferromagnetic interaction in Co-doped ZnO diluted magnetic semiconductor by reduced graphene oxide coating, Journal of Alloys and Compounds, 765 (2018) 69-74. https://doi.org/10.1016/j.jallcom.2018.06.228
[30] Y. Lü, Q. Zhou, L. Chen, W. Zhan, Z. Xie, Q. Kuang, L. Zheng, Templated synthesis of diluted magnetic semiconductors using transition metal ion-doped metal-organic frameworks: the case of Co-doped ZnO, CrystEngComm, 18 (2016) 4121-4126. https://doi.org/10.1039/C5CE02488A
[31] A. Šutka, T. Käämbre, U. Joost, K. Kooser, M. Kook, R.F. Duarte, V. Kisand, M. Maiorov, N. Döbelin, K. Smits, Solvothermal synthesis derived Co-Ga codoped ZnO diluted magnetic degenerated semiconductor nanocrystals, Journal of Alloys and Compounds, 763 (2018) 164-172. https://doi.org/10.1016/j.jallcom.2018.05.036
[32] H. Liu, J. Yang, Z. Hua, Y. Liu, L. Yang, Y. Zhang, J. Cao, Cu-doping effect on structure and magnetic properties of Fe-doped ZnO powders, Materials Chemistry and Physics, 125 (2011) 656-659. https://doi.org/10.1016/j.matchemphys.2010.10.002
[33] B. Babu, G. Thirumala Rao, V. Pushpa Manjari, K. Ravindranadh, R. Joyce Stella, R.V.S.S.N. Ravikumar, Sonochemical assisted synthesis and spectroscopic characterization of Fe3+ doped ZnO diluted magnetic semiconductor, Journal of Materials Science: Materials in Electronics, 25 (2014) 4179-4186. https://doi.org/10.1007/s10854-014-2146-1
[34] L. Dong, C. Liu, Z. Shen, B. Zhou, T. Zheng, Q. Li, Y. Zhong, Influence of Annealing Temperature on the Magnetic Properties of One-dimensional Diluted Magnetic Semiconductor Zn0.95Mn0.05O Tuning with Vacuum Atmospheric Annealing, Journal of Superconductivity and Novel Magnetism, (2022). https://doi.org/10.1007/s10948-022-06451-x
[35] L.K. Sharma, D. Mandal, R.K. Choubey, S. Mukherjee, On the correlation of the effect of defects on the microstructural, optical and magnetic properties of doped ZnO, Physica E: Low-dimensional Systems and Nanostructures, 144 (2022) 115370. https://doi.org/10.1016/j.physe.2022.115370
[36] P. Dhiman, J. Chand, A. Kumar, R.K. Kotnala, K.M. Batoo, M. Singh, Synthesis and characterization of novel Fe@ZnO nanosystem, Journal of Alloys and Compounds, 578 (2013) 235-241. https://doi.org/10.1016/j.jallcom.2013.05.015
[37] M. Achehboune, M. Khenfouch, I. Boukhoubza, I. Derkaoui, B.M. Mothudi, I. Zorkani, A. Jorio, A DFT study on the electronic structure, magnetic and optical properties of Er doped ZnO: Effect of Er concentration and native defects, Computational Condensed Matter, 31 (2022) e00627. https://doi.org/10.1016/j.cocom.2021.e00627
[38] P. Kaur, S. Chalotra, H. Kaur, A. Kandasami, D.P. Singh, Role of Bound Magnetic Polaron Model in Sm Doped ZnO: Evidence from Magnetic and Electronic Structures, Applied Surface Science Advances, 5 (2021) 100100. https://doi.org/10.1016/j.apsadv.2021.100100
[39] Z.N. Kayani, M. Sahar, S. Riaz, S. Naseem, Z. Saddiqe, Enhanced magnetic, antibacterial and optical properties of Sm doped ZnO thin films: role of Sm doping, Optical Materials, 108 (2020) 110457. https://doi.org/10.1016/j.optmat.2020.110457
[40] K. Badreddine, I. Kazah, M. Rekaby, R. Awad, Structural, morphological, optical, and room temperature magnetic characterization on pure and Sm-doped ZnO nanoparticles, Journal of Nanomaterials, 2018 (2018). https://doi.org/10.1155/2018/7096195
[41] G. Vijayaprasath, R. Murugan, T. Mahalingam, Y. Hayakawa, G. Ravi, Enhancement of ferromagnetic property in rare earth neodymium doped ZnO nanoparticles, Ceramics International, 41 (2015) 10607-10615. https://doi.org/10.1016/j.ceramint.2015.04.160
[42] J. Zheng, J. Song, Z. Zhao, Q. Jiang, J. Lian, Optical and magnetic properties of Nd‐doped ZnO nanoparticles, Crystal Research and Technology, 47 (2012) 713-718. https://doi.org/10.1002/crat.201200026
[43] N. Aggarwal, K. Kaur, A. Vasishth, N. Verma, Structural, optical and magnetic properties of Gadolinium-doped ZnO nanoparticles, Journal of Materials Science: Materials in Electronics, 27 (2016) 13006-13011. https://doi.org/10.1007/s10854-016-5440-2
[44] A. Dakhel, M. El-Hilo, Ferromagnetic nanocrystalline Gd-doped ZnO powder synthesized by coprecipitation, Journal of Applied Physics, 107 (2010) 123905. https://doi.org/10.1063/1.3448026
[45] N. Fifere, A. Airinei, D. Timpu, A. Rotaru, L. Sacarescu, L. Ursu, New insights into structural and magnetic properties of Ce doped ZnO nanoparticles, Journal of Alloys and Compounds, 757 (2018) 60-69. https://doi.org/10.1016/j.jallcom.2018.05.031
[46] D. Arora, K. Asokan, A. Mahajan, H. Kaur, D. Singh, Structural, optical and magnetic properties of Sm doped ZnO at dilute concentrations, RSC advances, 6 (2016) 78122-78131. https://doi.org/10.1039/C6RA12905F
[47] P. Kumar, V. Sharma, A. Sarwa, A. Kumar, R. Goyal, K. Sachdev, S. Annapoorni, K. Asokan, D. Kanjilal, Understanding the origin of ferromagnetism in Er-doped ZnO system, RSC advances, 6 (2016) 89242-89249. https://doi.org/10.1039/C6RA17761A
[48] S. Kumar, P. Sahare, Nd-doped ZnO as a multifunctional nanomaterial, Journal of rare earths, 30 (2012) 761-768. https://doi.org/10.1016/S1002-0721(12)60126-4
[49] S. Das, S. Das, A. Roychowdhury, D. Das, S. Sutradhar, Effect of Gd doping concentration and sintering temperature on structural, optical, dielectric and magnetic properties of hydrothermally synthesized ZnO nanostructure, Journal of Alloys and Compounds, 708 (2017) 231-246. https://doi.org/10.1016/j.jallcom.2017.02.216
[50] B. Poornaprakash, S. Ramu, K. Subramanyam, Y.L. Kim, M. Kumar, M.S. Pratap Reddy, Robust ferromagnetism of ZnO:(Ni+Er) diluted magnetic semiconductor nanoparticles for spintronic applications, Ceramics International, 47 (2021) 18557-18564. https://doi.org/10.1016/j.ceramint.2021.03.181
[51] B. Poornaprakash, S. Ramu, K. Subramanyam, Y. Kim, M. Kumar, M.S.P. Reddy, Robust ferromagnetism of ZnO:(Ni+ Er) diluted magnetic semiconductor nanoparticles for spintronic applications, Ceramics International, 47 (2021) 18557-18564. https://doi.org/10.1016/j.ceramint.2021.03.181
[52] K.C. Verma, R.K. Kotnala, Understanding lattice defects to influence ferromagnetic order of ZnO nanoparticles by Ni, Cu, Ce ions, Journal of Solid State Chemistry, 246 (2017) 150-159. https://doi.org/10.1016/j.jssc.2016.11.018
[53] F. Kabir, A. Murtaza, A. Saeed, A. Ghani, A. Ali, S. Khan, K. Li, Q. Zhao, K.K. Yao, Y. Zhang, S. Yang, Structural, optical and magnetic behavior of (Pr, Fe) co-doped ZnO based dilute magnetic semiconducting nanocrystals, Ceramics International, 48 (2022) 19606-19617. https://doi.org/10.1016/j.ceramint.2022.03.096
[54] B. Poornaprakash, U. Chalapathi, S. Babu, S.-H. Park, Structural, morphological, optical, and magnetic properties of Gd-doped and (Gd, Mn) co-doped ZnO nanoparticles, Physica E: Low-dimensional Systems and Nanostructures, 93 (2017) 111-115. https://doi.org/10.1016/j.physe.2017.06.007
[55] V. Parthasaradi, M. Kavitha, A. Sridevi, J.J. Rubia, Novel rare-earth Eu and La co-doped ZnO nanoparticles synthesized via co-precipitation method: optical, electrical, and magnetic properties, Journal of Materials Science: Materials in Electronics, 33 (2022) 25805-25819. https://doi.org/10.1007/s10854-022-09272-9