Hard Ferrites for High Frequency Antenna Applications

$30.00

Hard Ferrites for High Frequency Antenna Applications

Asha Kumari, Rahul Sharma

Advances in wireless communication place an increasing number of demands on antenna performance, necessitating the presence of various capabilities in a single device. Reconfigurable antennas are frequently utilized to meet these various application demands within a restricted area. The purpose of this book chapter is to summarize general introduction about hard ferrites, different synthesis methods of ferrite for antenna application and altering functioning of antenna by reconfiguring them by ferrites. Along with this we have also focused on miniaturization and reconfiguration of antennas which is becoming a very important aspect of wireless communication devices. Miniaturization and reconfiguration of antennas involves a deliberate alteration in the form and/or electrical behaviour of the antenna, leading in a change in the antenna’s functioning.

Keywords
Miniaturization, Hard Ferrites, Reconfiguration, Electrical Behaviour, Hard Ferrites

Published online 2/1/2023, 33 pages

Citation: Asha Kumari, Rahul Sharma, Hard Ferrites for High Frequency Antenna Applications, Materials Research Foundations, Vol. 142, pp 152-184, 2023

DOI: https://doi.org/10.21741/9781644902318-6

Part of the book on An Introduction to Hard Ferrites

References
[1] A.A.Mills, The lodestone: History, physics, and formation, Ann. Sci. 61 (2004), 273-319. https://doi.org/10.1080/00033790310001642812
[2] W. Gilbert, De magnete, Courier Corporation,1958, pp. 1-368
[3] C.B.Carter, M.G.Norton, Ceramic materials: science and engineering, Springer Science & Business Media, 2007, pp. 712
[4] A. Houbi, Z.A. Aldashevich, Y. Atassi, Z.B. Telmanovna, M. Saule, K. Kubanych, Microwave absorbing properties of ferrites and their composites: a review, J. Magn. Magn. Mater. 529 (2021) 167839. https://doi.org/10.1016/j.jmmm.2021.167839
[5] S. Zhang, W.E. Lee, Spinel-containing refractories, Mechanical engineering-New York and basel-marcel dekker then crc press/taylor and francis, 2004 pp. 215. https://doi.org/10.1201/9780203026328.ch9
[6] W. Bragg, X-rays and Crystal Structure, The Sci. Mon. 20 (1925) 115-121. https://doi.org/10.1038/115266a0
[7] S. Nishikawa, Structure of some crystals of spinel group, Proceedings of the Tokyo Mathematico-Physical Society. 2nd Series, 8 (1915) 199-209.
[8] M.K. Warshi, V. Mishra, A. Sagdeo, V. Mishra, R. Kumar, P.R. Sagdeo, Structural, optical and electronic properties of RFeO3, Ceram. Int. 44 (2018) 8344-8349. https://doi.org/10.1016/j.ceramint.2018.02.023
[9] B. Kim, H. Rhyu, I.Y. Lee, J. Byun, B. Lee, Compact internal antenna using a ferrite material for DVB-H reception in mobile phones, IEEE Antennas Propag. Soc. (2008) 1-4.
[10] R.C. Hansen, M. Burke, Antennas with magneto dielectrics, Microw. Opt. Technol. Lett. 26 (2000) 75-78. https://doi.org/10.1002/1098-2760(20000720)26:2<75::AID-MOP3>3.0.CO;2-W
[11] H. Mosallaei, K. Sarabandi, Magneto-dielectrics in electromagnetics: Concept and applications, IEEE Trans. Antennas Propag. 52 (2004) 1558-1567. https://doi.org/10.1109/TAP.2004.829413
[12] J. Costantine, Y. Tawk, S.E. Barbin, C.G. Christodoulou, Reconfigurable antennas: Design and applications, Proceedings of the IEEE, 103 (2015) 424-437. https://doi.org/10.1109/JPROC.2015.2396000
[13] D.H. Schaubert, F.G. Farrar, S.T. Hayes, A.R. Sindoris, US Department of Army, Frequency-agile, polarization diverse microstrip antennas and frequency scanned arrays. U.S. Patent 4, 367, 474. (1983).
[14] C.G.Christodoulou, Y. Tawk, S.A. Lane, S.R. Erwin, Reconfigurable antennas for wireless and space applications, Proceedings of the IEEE, 100 (2012), 2250-2261. https://doi.org/10.1109/JPROC.2012.2188249
[15] K. Entesari, A.P. Saghati, Fluidics in microwave components, IEEE Microw. Mag. 17 (2016) 50-75. https://doi.org/10.1109/MMM.2016.2538513
[16] Kojima, H., Handbook of Ferromagnetic Materials, Fundamental properties of hexagonal ferrites with magnetoplumbite structure, 1982, pp.305-391. https://doi.org/10.1016/S1574-9304(05)80091-4
[17] J. Jeong, K.W. Cho, D.W. Hahn, B.C. Moon, Y.H. Han, Synthesis of Co2Z Ba-ferrites, Mater. Lett. 59 (2005) 3959-3962. https://doi.org/10.1016/j.matlet.2005.07.044
[18] J.S. Kim, Y.H. Lee, B. Lee, J.C. Lee, J.J. Choi, J.Y. Kim, Effects of magneto-dielectric ceramics for small antenna application, J. Electr. Eng. Technol. 9 (2014) 273-279. https://doi.org/10.5370/JEET.2014.9.1.273
[19] S.M. Wiederhorn, Fracture surface energy of glass, J. Am. Ceram. Soc. 52 (1969) 99-105. https://doi.org/10.1111/j.1151-2916.1969.tb13350.x
[20] E. Neckenburger, H. Severin, J.K. Vogel, G. Winkler, Ferrite hexagonaler Kristallstrustur mit hoher Grenzfrequenz, Z Angew. Phys. 18 (1964) 65.
[21] M.A.Vinnik, Phase relationships in the bao-coo-fe_2o_3 system, Russ. J. Inorg. Chem. 10 (1965) 1164-1167.
[22] S.I. Kuznetsova, E.P. Naiden, T.N. Stepanova, Topotactic reaction kinetics in the formation of the hexagonal ferrite Ba3Co2Fe24O41, Inorg. Mater. 24 (1988) 856-859.
[23] J. Drobek, W.C. Bigelow, R.G. Wells, Electron microscopic studies of growth structures in hexagonal ferrites, J. Am. Ceram. Soc. 44 (1961) 262-264. https://doi.org/10.1111/j.1151-2916.1961.tb15375.x
[24] M.A. Ahmed, N. Okasha, S.I. El-Dek, Preparation and characterization of nanometricMn ferrite via different methods, Nanotechnology, 19 (2008) 065603. https://doi.org/10.1088/0957-4484/19/6/065603
[25] J. Dufour, E. López-Vidriero, C. Negro, R. Latorre, E.M. Alcala, F. López-Mateos, A. Formoso, Improvement of ceramic method for synthesizing M-type hexaferrites, Chem. Eng. Commun. 167 (1998) 227-244 https://doi.org/10.1080/00986449808912702
[26] R.K. Tenzer, Influence of particle size on the coercive force of barium ferrite powders, J. Appl. Phys. 34 (1963) 1267-1268. https://doi.org/10.1063/1.1729465
[27] H.F. Yu, K.C. Huang, Preparation and characterization of ester-derived BaFe12O19 powder. J. Mater. Res. 17 (2002) 199-203. https://doi.org/10.1557/JMR.2002.0029
[28] C.D. Mee, J.C. Jeschke, Single-domain properties in hexagonal ferrites, J. Appl. Phys. 34 (1963) 1271-1272. https://doi.org/10.1063/1.1729467
[29] W. Roos, Formation of chemically coprecipitated barium ferrite, J. Am. Ceram. Soc. 63 (1980) 601-603. https://doi.org/10.1111/j.1151-2916.1980.tb09843.x
[30] G. Xiong, M. Xu, Z. Mai, Magnetic properties of Ba4Co2Fe36O60 nanocrystals prepared through a sol-gel method, Solid State Commun. 118 (2001) 53-58. https://doi.org/10.1016/S0038-1098(01)00031-X
[31] S. Kour, R.K. Sharma, R. Jasrotia, V.P.Singh, A brief review on the synthesis of maghemite (γ-Fe2O3) for medical diagnostic and solar energy applications, AIP Conference Proceedings (2019), 090007. https://doi.org/10.1063/1.5122451
[32] S.K. Mishra, L.C. Pathak, V. Rao, Synthesis of submicron Ba-hexaferrite powder by a self-propagating chemical decomposition process, Mater. Lett. 32 (1997) 137-141. https://doi.org/10.1016/S0167-577X(97)00027-X
[33] Y.S. Hong, C.M. Ho, H.Y. Hsu, C.T. Liu, Synthesis of nanocrystalline Ba (MnTi) xFe12− 2xO19 powders by the sol-gel combustion method in citrate acid-metal nitrates system (x= 0, 0.5, 1.0, 1.5, 2.0), J. Magn. Magn. Mater. 279 (2004) 401-410. https://doi.org/10.1016/j.jmmm.2004.02.008
[34] L. Junliang, Z. Yanwei, G. Cuijing, Z. Wei, Y. Xiaowei, One-step synthesis of barium hexaferritenano-powders via microwave-assisted sol-gel auto-combustion, J. Eur. Ceram. Soc. 30 (2010) 993-997. https://doi.org/10.1016/j.jeurceramsoc.2009.10.019
[35] Z. Lalegani, A. Nemati, Influence of synthesis variables on the properties of barium hexaferrite nanoparticles, J. Mater. Sci.: Mater. Electron. 28 (2017) 4606-4612. https://doi.org/10.1007/s10854-016-6098-5
[36] V. Pillai, P. Kumar, M.J. Hou, P. Ayyub, D.O. Shah, Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors, Adv. Colloid Interface Sci. 55 (1995) 241-269. https://doi.org/10.1016/0001-8686(94)00227-4
[37] R.R. Schaller, Moore’s law: past, present and future, IEEE spectrum, 34 (1997) 52-59. https://doi.org/10.1109/6.591665
[38] R.C. Hansen, Fundamental limitations in antennas, Proceedings of the IEEE, 69 (1981) 170-182. https://doi.org/10.1109/PROC.1981.11950
[39] K. Carver, J. Mink, Microstrip antenna technology, IEEE Trans. Antennas Propag. 29 (1981) 2-24. https://doi.org/10.1109/TAP.1981.1142523
[40] F. Kuroki, Y.S. Takigawa, S. Kashihara, Radiation Characteristics of Integrated Traveling-Wave Antenna Etched on Heavily-High Permittivity Substrate for Size Reduction, IEEE Radio and Wireless Symposium (2007) 169-172. https://doi.org/10.1109/RWS.2007.351794
[41] A. Saini, A. Thakur, P. Thakur, Matching permeability and permittivity of Ni0.5Zn0.3Co0.2In0.1Fe1.9O4 ferrite for substrate of large bandwidth miniaturized antenna, J. Mater. Sci.: Mater. Electron. 27 (2016) 2816-2823. https://doi.org/10.1007/s10854-015-4095-8
[42] A. Saini, A. Thakur, P. Thakur, Effective permeability and miniaturization estimation of ferrite-loaded microstrip patch antenna, J. Electron. Mater. 45 (2016) 4162-4170. https://doi.org/10.1007/s11664-016-4634-y
[43] P. Ikonen, S. Tretyakov, On the advantages of magnetic materials in microstrip antenna miniaturization, Microw. Opt. Technol. Lett. 50 (2008) 3131-3134. https://doi.org/10.1002/mop.23931
[44] K. Borah, N.S. Bhattacharyya, Magnetodielectric composite with ferrite inclusions as substrates for microstrip patch antennas at microwave frequencies, Compos. B. Eng. 43 (2012) 1309-1314. https://doi.org/10.1016/j.compositesb.2011.11.067
[45] Z. Zheng, H. Zhang, J.Q. Xiao, Q. Yang, L. Jia, Low loss NiZn spinel ferrite-W-type hexaferrite composites from BaM addition for antenna applications, J. Phys. D: Appl. Phys. 47 (2014) 115001. https://doi.org/10.1088/0022-3727/47/11/115001
[46] J.L. Mattei, E. Le Guen, A. Chevalier, A.C. Tarot, Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization, Journal of Magnetism and Magnetic Materials, 374 (2015) 762-768. https://doi.org/10.1016/j.jmmm.2014.09.026
[47] A. Saini, A. Thakur, P. Thakur, Effective permeability and miniaturization estimation of ferrite-loaded microstrip patch antenna, J. Electron. Mater. 45 (2016) 4162-4170 https://doi.org/10.1007/s11664-016-4634-y
[48] A. Saini, A. Thakur, P. Thakur, Miniaturization and bandwidth enhancement of a microstrip patch antenna using magneto-dielectric materials for proximity fuze application, Journal of Electronic Materials, 46 (2017) 1902-1907. https://doi.org/10.1007/s11664-016-5256-0
[49] K. Polley, T. Alam, J. Bera, Synthesis and characterization of BaFe12O19-CoFe2O4 ferrite composite for high-frequency antenna application, J. Aust. Ceram. Soc. 56 (2020) 1179-1186. https://doi.org/10.1007/s41779-020-00477-x
[50] O. Alcalá, S. Briceño, W. Brämer-Escamilla, P. Silva, Toroidal cores of MnxCo1− xFe2O4/PAA nanocomposites with potential applications in antennas, Materials Chemistry and Physics, 192 (2017) 17-21. https://doi.org/10.1016/j.matchemphys.2017.01.035
[51] G. Gan, D. Zhang, J. Li, G. Wang, Y. Yang, X. Wang, H. Zhang, Effect of temperature on magnetic and dielectric properties of Mg-Cd-Ga ferrites for high-frequency-range antennas. In Journal of Physics: Conference Series 1802 (2021) 022078. https://doi.org/10.1088/1742-6596/1802/2/022078
[52] A. Rajan, S.K. Solaman, S. Ganesanpotti, Cold Sintering: An Energy-Efficient Process for the Development of SrFe12O19-Li2MoO4 Composite-Based Wide-Bandwidth Ferrite Resonator Antenna for Ku-Band Applications, ACS Appl. Electron. Mater. 3.5 (2021) 2297-2308. https://doi.org/10.1021/acsaelm.1c00196
[53] M.A. Rahman, M.T. Islam, M.J. Singh, I. Hossain, H. Rmili, M. Samsuzzaman, Magnetic, dielectric and structural properties of CoxZn (0.90-x) Al0. 10Fe2O4 synthesized by sol-gel method with application as flexible microwave substrates for microstrip patch antenna, J. Mater. Res. Technol. 16 (2022) 934-943. https://doi.org/10.1016/j.jmrt.2021.12.058
[54] D.R. Lekshmi, S.P. Adarsh, M. Bayal, S.S. Nair, K.P. Surendran, Functionally graded magnetodielectric composite substrates for massive miniaturization of microstrip antennas, Mater. Adv. 3 (2022) 2380-2392. https://doi.org/10.1039/D1MA00844G
[55] T.Y. Shih, N. Behdad, Bandwidth enhancement of platform-mounted HF antennas using the characteristic mode theory, IEEE Trans. Antennas Propag. 64 (2016) 2648-2659. https://doi.org/10.1109/TAP.2016.2543778
[56] X. Chen, L. Yang, J.Y. Zhao, G. Fu, High-efficiency compact circularly polarized microstrip antenna with wide beamwidth for airborne communication, IEEE Antennas Wirel. Propag. Lett. 15 (2016) 1518-1521. https://doi.org/10.1109/LAWP.2016.2517068
[57] W. Yang, D. Chen, W. Che, High-efficiency high-isolation dual-orthogonally polarized patch antennas using nonperiodic RAMC structure. IEEE Trans. Antennas Propag. 65 (2016) 887-892. https://doi.org/10.1109/TAP.2016.2632700
[58] Y. M. Pan, P.F. Hu, X.Y. Zhang, S.Y Zheng, A low-profile high-gain and wideband filtering antenna with metasurface, IEEE Trans. Antennas Propag. 64 (2016) 2010-2016. https://doi.org/10.1109/TAP.2016.2535498
[59] G. Yang, J. Li, R. Xu, Y. Ma, Y. Qi, Improving the performance of wide-angle scanning array antenna with a high-impedance periodic structure, IEEE Antennas Wirel. Propag. Lett. 15 (2016)1819-1822. https://doi.org/10.1109/LAWP.2016.2537850
[60] R.C. Daniels, R.W. Heath, 60 GHz wireless communications: Emerging requirements and design recommendations, IEEE Veh. Technol. Mag., 2 (2007) 41-50. https://doi.org/10.1109/MVT.2008.915320
[61] D. Zarifi, A. Farahbakhsh, A.U. Zaman, P.S. Kildal, Design and fabrication of a high-gain 60-GHz corrugated slot antenna array with ridge gap waveguide distribution layer, IEEE Trans. Antennas Propag. 64 (2016) 2905-2913. https://doi.org/10.1109/TAP.2016.2565682
[62] J. Wu, Y.J. Cheng, Y. Fan, Millimeter-wave wideband high-efficiency circularly polarized planar array antenna, IEEE Trans. Antennas Propag. 64 (2015) 535-542. https://doi.org/10.1109/TAP.2015.2506726
[63] S.J. Park, S.O. Park, LHCP and RHCP substrate integrated waveguide antenna arrays for millimeter-wave applications, IEEE Antennas Wirel. Propag. Lett. 16 (2016) 601-604. https://doi.org/10.1109/LAWP.2016.2594081
[64] A.A.Lestari, A.G. Yarovoy, L.P.Ligthart, Ground influence on the input impedance of transient dipole and bow-tie antennas, IEEE Trans. Antennas Propag. 52 (2004) 1970-1975. https://doi.org/10.1109/TAP.2004.832371
[65] J.D. Kraus, R.J. Marhefka, A.S. Khan, Antennas and wave propagation, Tata McGraw-Hill Education, 2006.
[66] W. Lin, Z. Shen, Broadband horizontally polarized HF antenna with extremely low profile above conducting ground. In 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI) 2013 (pp. 688-689). IEEE. https://doi.org/10.1109/APS.2013.6711004
[67] J. Zhao, C.C. Chen, J.L.Volakis, Frequency-scaled UWB inverted-hat antenna, IEEE Trans. Antennas Propag, 58 (2010) 2447-2451. https://doi.org/10.1109/TAP.2010.2048866
[68] J. Zhao, T. Peng, C.C. Chen, J.L Volakis, Low-profile ultra-wideband inverted-hat monopole antenna for 50 MHz-2 GHz operation, Electron. Lett. 45 (2009) 142-144. https://doi.org/10.1049/el:20092571
[69] H. Moon, G.Y. Lee, C.C. Chen, J.L.Volakis, An extremely low-profile ferrite-loaded wideband VHF antenna design, IEEE Antennas Wirel. Propag. Lett. 11(2012) 322-325. https://doi.org/10.1109/LAWP.2012.2191131
[70] L.J. Chu, Physical limitations of omni-directional antennas, J. Appl. Phys., 19(1948) 1163-1175. https://doi.org/10.1063/1.1715038
[71] N. Engheta, R.W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Hoboken/Piscataway, 2006. https://doi.org/10.1002/0471784192