Nanomaterials in Pharmaceuticals


Nanomaterials in Pharmaceuticals

Tahmina Foyez and Abu Bin Imran

Nanotechnology is a relatively new but fast-expanding field that uses nanoparticles as analytical tools or as a controlled delivery system for pharmaceuticals. The unique properties of nanomaterials, including thermodynamic, electrical, structural capabilities, and optical make them intriguing options for pharmaceuticals, which substantially impact drug quality. Pharmaceutical nanotechnology, with its nano-engineered tools, is now well-established for drug delivery, diagnostics, prognosis, and disorder therapy. It has the potential to improve materials and medical devices as well as help to introduce new technologies in areas where traditional technologies have reached their limits. The present review focuses on nanomaterials and their applications in pharmaceuticals.

Pharmaceutical, Nanomaterials, Polymer, Nanotechnology, Drug Delivery, Diagnosis, Nanomedicine

Published online 2/1/2023, 28 pages

Citation: Tahmina Foyez and Abu Bin Imran, Nanomaterials in Pharmaceuticals, Materials Research Foundations, Vol. 141, pp 218-245, 2023


Part of the book on Emerging Applications of Nanomaterials

[1] M.S. Arayne, N. Sultana, F. Qureshi, Review: nanoparticles in delivery of cardiovascular drugs, Pakistan Journal of Pharmaceutical Sciences, 20 (2007) 340-348.
[2] A.B. Imran, A.-N. Chowdhury, S. Joe, Innovations in Nanomaterials, 1st ed., Nova Science Publishers, Inc., NY, USA, 2015.
[3] Guidance for Industry, FDA, 2014
[4] E.A.J. Bleeker, W.H. de Jong, R.E. Geertsma, M. Groenewold, E.H.W. Heugens, M. Koers-Jacquemijns, D. van de Meent, J.R. Popma, A.G. Rietveld, S.W.P. Wijnhoven, F.R. Cassee, A.G. Oomen, Considerations on the EU definition of a nanomaterial: Science to support policy making, Regulatory Toxicology and Pharmacology, 65 (2013) 119-125.
[5] D.R. Boverhof, C.M. Bramante, J.H. Butala, S.F. Clancy, M. Lafranconi, J. West, S.C. Gordon, Comparative assessment of nanomaterial definitions and safety evaluation considerations, Regulatory Toxicology and Pharmacology, 73 (2015) 137-150.
[6] W. Luther, R. Nass, F. Schuster, M. Kallio, P. Lintunen, Industrial application of nanomaterials-changes and risks: Technology analysis, Future Technologies, 54 (2004) 19.
[7] G. Oberdörster, Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology, Journal of Internal Medicine, 267 (2010) 89-105.
[8] S. Soares, J. Sousa, A. Pais, C. Vitorino, Nanomedicine: Principles, Properties, and Regulatory Issues, Frontiers in Chemistry, 6 (2018) 360.
[9] D.S. Kohane, Microparticles and nanoparticles for drug delivery, Biotechnology and Bioengineering, 96 (2007) 203-209.
[10] R. Saini, S. Saini, S. Sharma, Nanotechnology: The future medicine, Journal of Cutaneous and Aesthetic surgery, 3 (2010) 32-33.
[11] S.T. Yerpude, A.K. Potbhare, P.R. Bhilkar, P. Thakur, P. Khiratkar, M. F Desimone, P.R. Dhongle, S.S. Sonawane, C. Goncalves, R. G. Chaudhary, Computational analysis of nanofluids-based drug delivery system: Preparation, current development and applications of nanofluids, Elsevier (2022) 335-364.
[12] P.B. Chouke, A.K. Potbhare, N.P. Meshram, M.M. Rai, K.M. Dadure, K Chaudhary, A.R. Rai, M. Desimone, R. G. Chaudhary D. T. Masram, Bioinspired NiO nanospheres: Exploring in-vitro toxicity using Bm-17 and L. rohita liver cells, DNA degradation, docking and proposed vacuolization mechanism, ACS Omega, 7 (2022) 6869−6884.
[13] J.E.N. Dolatabadi, M.J.A.M. de la Guardia, Nanomaterial-based electrochemical immunosensors as advanced diagnostic tools, Analytical Methods, 6 (2014) 3891-3900.
[14] M.-H. Qu, R.-F. Zeng, S. Fang, Q.-S. Dai, H.-P. Li, J.-T. Long, Liposome-based co-delivery of siRNA and docetaxel for the synergistic treatment of lung cancer, International Journal of Pharmaceutics, 474 (2014) 112-122.
[15] P. B. Chouke, K. M. Dadure, A. K. Potbhare, G. S. Bhusari, A. Mondal, K. Chaudhary, V. Singh, M. F. Desimone, R. G. Chaudhary, D. T. Masram, Biosynthesized δ-Bi2O3 nanoparticles from Crinum viviparum flower extract for photocatalytic dye degradation and molecular docking, ACS Omega, 7 (2022) 20983-20993.
[16] H.B.M.Z. Islam, M. Susan, A.B. Hasan, A.B.J.I.P.J. Imran, High-strength potato starch/hectorite clay-based nanocomposite film: synthesis and characterization, Iranian Polymer Journal, 30 (2021) 513-521.
[17] N. Chowdhury, Solaiman, C.K. Roy, S.H. Firoz, T. Foyez, A.B. Imran, Role of Ionic Moieties in Hydrogel Networks to Remove Heavy Metal Ions from Water, ACS Omega, 6 (2020) 836-844.
[18] M.R. Karim, M. Harun‐Ur‐Rashid, A.B. Imran, Highly Stretchable Hydrogel Using Vinyl Modified Narrow Dispersed Silica Particles as Cross‐Linker, ChemistrySelect, 5 (2020) 10556-10561.
[19] H.B.M.Z. Islam, M.A.B.H. Susan, A.B. Imran, Effects of plasticizers and clays on the physical, chemical, mechanical, thermal, and morphological properties of potato starch-based nanocomposite films, ACS omega, 5 (2020) 17543-17552.
[20] K.K. Jain, The role of nanobiotechnology in drug discovery, Drug Discovery Today, 10 (2005) 1435-1442.
[21] Y.O. J.E.N Dolatabadi, Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems, TrAC Trends in Analytical Chemistry, 77 (2016) 100-108.
[22] S.S. Mahmud, M. Moni, A.B. Imran, T. Foyez, Analysis of the suspected cancer-causing potassium bromate additive in bread samples available on the market in and around Dhaka City in Bangladesh, Food Science & Nutrition, 9 (2021) 3752-3757.
[23] S. Tran, P.J. DeGiovanni, B. Piel, P. Rai, Cancer nanomedicine: a review of recent success in drug delivery, Clinical and Translational Medicine, 6 (2017) 44.
[24] L. Bregoli, D. Movia, J.D. Gavigan-Imedio, J. Lysaght, J. Reynolds, A. Prina-Mello, Nanomedicine applied to translational oncology: A future perspective on cancer treatment, Nanomedicine: Nanotechnology, Biology and Medicine, 12 (2016) 81-103.
[25] B. Kumar, K. Jalodia, P. Kumar, H.K. Gautam, Recent advances in nanoparticle-mediated drug delivery, Journal of Drug Delivery Science and Technology, 41 (2017) 260-268.
[26] N.P. Truong, M.R. Whittaker, C.W. Mak, T.P. Davis, The importance of nanoparticle shape in cancer drug delivery, Expert Opinion on Drug Delivery, 12 (2015) 129-142.
[27] J.D. Kingsley, H. Dou, J. Morehead, B. Rabinow, H.E. Gendelman, C.J. Destache, Nanotechnology: a focus on nanoparticles as a drug delivery system, Journal of Neuroimmune Pharmacology, 1 (2006) 340-350.
[28] J. Buse, A. El-Aneed, Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances, Nanomedicine, 5 (2010) 1237-1260.
[29] A. Alonso, F.M. Goñi, J.T. Buckley, Lipids favoring inverted phase enhance the ability of aerolysin to permeabilize liposome bilayers, Biochemistry, 39 (2000) 14019-14024.
[30] R. Banerjee, Liposomes: applications in medicine, Journal of Biomaterials Applications, 16 (2001) 3-21.
[31] N. Moussaoui, M. Cansell, A. Denizot, Marinosomes, marine lipid-based liposomes: physical characterization and potential application in cosmetics, International Journal of Pharmaceutics, 242 (2002) 361-365.
[32] A. Puri, K. Loomis, B. Smith, J.H. Lee, A. Yavlovich, E. Heldman, R. Blumenthal, Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic, Critical Reviews in Therapeutic Drug Carrier Systems, 26 (2009) 523-580.
[33] B.S. Pattni, V.V. Chupin, V.P. Torchilin, New Developments in Liposomal Drug Delivery, Chemical Reviews, 115 (2015) 10938-10966.
[34] S. Weber, A. Zimmer, J. Pardeike, Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art, European Journal of Pharmaceutics and Biopharmaceutics, 86 (2014) 7-22.
[35] T.T.H. Thi, E.J.A. Suys, J.S. Lee, D.H. Nguyen, K.D. Park, N.P. Truong, Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines, Vaccines, 9 (2021) 359.
[36] J.E.N. Dolatabadi, H. Hamishehkar, M. Eskandani, H. Valizadeh, Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles, Colloids and Surfaces B: Biointerfaces, 117 (2014) 21-28.
[37] M.C. Teixeira, C. Carbone, E.B. Souto, Beyond liposomes: Recent advances on lipid based nanostructures for poorly soluble/poorly permeable drug delivery, Progress in Lipid Research, 68 (2017) 1-11.
[38] A. Beloqui, M.Á. Solinís, A. Rodríguez-Gascón, A.J. Almeida, V. Préat, Nanostructured lipid carriers: Promising drug delivery systems for future clinics, Nanomedicine: Nanotechnology, Biology and Medicine, 12 (2016) 143-161.
[39] E. Rostami, S. Kashanian, A.H. Azandaryani, H. Faramarzi, J.E.N. Dolatabadi, K. Omidfar, Drug targeting using solid lipid nanoparticles, Chemistry and Physics of Lipids, 181 (2014) 56-61.
[40] H.R. Oh, H.Y. Jo, J.S. Park, D.E. Kim, J.Y. Cho, P.H. Kim, K.S. Kim, Galactosylated Liposomes for Targeted Co-Delivery of Doxorubicin/Vimentin siRNA to Hepatocellular Carcinoma, Nanomaterials, 6 (2016) 141.
[41] J. Ezzati Nazhad Dolatabadi, A. Azami, A. Mohammadi, H. Hamishehkar, V. Panahi-Azar, Y. Rahbar Saadat, A.A. Saei, Formulation, characterization and cytotoxicity evaluation of ketotifen-loaded nanostructured lipid carriers, Journal of Drug Delivery Science and Technology, 46 (2018) 268-273.
[42] A.S. Almurshedi, M. Radwan, S. Omar, A.A. Alaiya, M.M. Badran, H. Elsaghire, I.Y. Saleem, G.A. Hutcheon, A novel pH-sensitive liposome to trigger delivery of afatinib to cancer cells: Impact on lung cancer therapy, Journal of Molecular Liquids, 259 (2018) 154-166.
[43] N. Karimi, B. Ghanbarzadeh, H. Hamishehkar, B. Mehramuz, H.S. Kafil, Antioxidant, Antimicrobial and Physicochemical Properties of Turmeric Extract-Loaded Nanostructured Lipid Carrier (NLC), Colloid and Interface Science Communications, 22 (2018) 18-24.
[44] S. Anuchapreeda, Y. Fukumori, S. Okonogi, H. Ichikawa, Preparation of Lipid Nanoemulsions Incorporating Curcumin for Cancer Therapy, Journal of Nanotechnology, 2012 (2012) 270383.
[45] P.B. Ganesan, D.J.S.C. Narayanasamy, Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery, Sustainable Chemistry and Pharmacy, 6 (2017) 37-56.
[46] C. Cha, S.R. Shin, N. Annabi, M.R. Dokmeci, A. Khademhosseini, Carbon-Based Nanomaterials: Multifunctional Materials for Biomedical Engineering, ACS Nano, 7 (2013) 2891-2897.
[47] J. Ezzati Nazhad Dolatabadi, Y. Omidi, D. Losic, Carbon Nanotubes as an Advanced Drug and Gene Delivery Nanosystem, Current Nanoscience, 7 (2011) 297-314.
[48] C. Shao-Yu, K. Ji-Lie, Advance in research on carbon nanotubes as diagnostic and therapeutic agents for tumor, Chinese Journal of Analytical Chemistry, 37 (2009) 1240-1246.
[49] H. Ali-Boucetta, K. Kostarelos, Pharmacology of carbon nanotubes: Toxicokinetics, excretion and tissue accumulation, Advanced Drug Delivery Reviews, 65 (2013) 2111-2119.
[50] P.N. Gurjar, S. Chouksey, G. Patil, N. Naik, S. Agrawal, Carbon Nanotubes: Pharmaceutical Applications, Asian Journal of Biomedical and Pharmaceutical Sciences, 3 (2013) 8-13.
[51] Z. Liu, K. Chen, C. Davis, S. Sherlock, Q. Cao, X. Chen, H. Dai, Drug delivery with carbon nanotubes for in vivo cancer treatment, Cancer Research, 68 (2008) 6652-6660.
[52] P.M. Costa, J.T.-W. Wang, J.-F. Morfin, T. Khanum, W. To, J. Sosabowski, E. Tóth, K.T. Al-Jamal, Functionalised Carbon Nanotubes Enhance Brain Delivery of Amyloid-Targeting Pittsburgh Compound B (PiB)-Derived Ligands, Nanotheranostics, 2 (2018) 168-183.
[53] X. Yuan, X. Zhang, L. Sun, Y. Wei, X. Wei, Cellular Toxicity and Immunological Effects of Carbon-based Nanomaterials, Particle and Fibre Toxicology, 16 (2019) 18.
[54] Z. Tang, C. He, H. Tian, J. Ding, B.S. Hsiao, B. Chu, X. Chen, Polymeric nanostructured materials for biomedical applications, Progress in Polymer Science, 60 (2016) 86-128.
[55] S.K. Samal, M. Dash, S.V. Vlierberghe, D.L. Kaplan, E. Chiellini, C.V. Blitterswijk, L. Moroni, P. Dubruel, Cationic polymers and their therapeutic potential, Chemical Society Reviews, 41 (2012) 7147-7194.
[56] W. Sun, X. Chen, C. Xie, Y. Wang, L. Lin, K. Zhu, X. Shuai, Co-Delivery of Doxorubicin and Anti-BCL-2 siRNA by pH-Responsive Polymeric Vector to Overcome Drug Resistance in In Vitro and In Vivo HepG2 Hepatoma Model, Biomacromolecules, 19 (2018) 2248-2256.
[57] A. Mokhtarzadeh, A. Alibakhshi, M. Hejazi, Y. Omidi, J. Ezzati Nazhad Dolatabadi, Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering, TrAC Trends in Analytical Chemistry, 82 (2016) 367-384.
[58] D. Ren, Protein Nanoparticle as a Versatile Drug Delivery System in Nanotechnology, Journal of Nanomedicine Research, 4 (2016) 00077.
[59] P. Yadav, A. Bandyopadhyay, A. Chakraborty, K. Sarkar, Enhancement of anticancer activity and drug delivery of chitosan-curcumin nanoparticle via molecular docking and simulation analysis, Carbohydrate Polymers, 182 (2018) 188-198.
[60] M.A. Razi, R. Wakabayashi, Y. Tahara, M. Goto, N. Kamiya, Genipin-stabilized caseinate-chitosan nanoparticles for enhanced stability and anticancer activity of curcumin, Colloids and Surfaces B: Biointerfaces, 164 (2018) 308-315.
[61] C.O. Mellet, J.M.G. Fernández, J.M. Benito, Cyclodextrin-based gene delivery systems, Chemical Society Reviews, 40 (2011) 1586-1608.
[62] V.G. Kadajji, G.V. Betageri, Water Soluble Polymers for Pharmaceutical Applications, Polymers, 3 (2011) 1972-2009.
[63] S. Jaiswal, P. Mishra, Co-delivery of curcumin and serratiopeptidase in HeLa and MCF-7 cells through nanoparticles show improved anticancer activity, Materials Science and Engineering: C, 92 (2018) 673-684.
[64] M. Dalmau, S. Lim, S.-W. Wang, Design of a pH-Dependent Molecular Switch in a Caged Protein Platform, Nano Letters, 9 (2009) 160-166.
[65] A. Bergstrand, G. Rahmani-Monfared, A. Ostlund, M. Nydén, K. Holmberg, Comparison of PEI-PEG and PLL-PEG copolymer coatings on the prevention of protein fouling, Journal of Biomedical Materials Research. Part A, 88 (2009) 608-615.
[66] P. Kumari, S.V.K. Rompicharla, O.S. Muddineti, B. Ghosh, S. Biswas, Transferrin-anchored poly(lactide) based micelles to improve anticancer activity of curcumin in hepatic and cervical cancer cell monolayers and 3D spheroids, International Journal of Biological Macromolecules, 116 (2018) 1196-1213.
[67] A.B. Imran, Design, development, characterization and application of smart polymeric hydrogel, in: M.M. Arezki (Ed.) Manufacturing Systems: Recent Progress and Future Directions, Nova Science Publishers, Inc., NY, USA, 2020.
[68] M. Harun-Ur-Rashid, A.B. Imran, Superabsorbent Hydrogels from carboxymethyl cellulose, in: M.I.H. Mondal (Ed.) Carboxymethyl Cellulose. Volume I: Synthesis and Characterization, Nova Science Publishers, Inc., NY, USA, 2019, pp. 159-182.
[69] M.M. Yallapu, M.K. Reddy, V. Labhasetwar, Nanogels: Chemistry to Drug Delivery, Biomedical Applications of Nanotechnology, (2007) 131-171.
[70] M.K. Riaz, M.A. Riaz, X. Zhang, C. Lin, K.H. Wong, X. Chen, G. Zhang, A. Lu, Z. Yang, Surface Functionalization and Targeting Strategies of Liposomes in Solid Tumor Therapy: A Review, International Journal of Molecular Sciences, 19 (2018) 195.
[71] N. Rahmanian, H. Hamishehkar, J.E.N. Dolatabadi, N. Arsalani, Nano graphene oxide: A novel carrier for oral delivery of flavonoids, Colloids and Surfaces B: Biointerfaces, 123 (2014) 331-338.
[72] J.A. Luckanagul, C. Pitakchatwong, P.R.N. Bhuket, C. Muangnoi, P. Rojsitthisak, S. Chirachanchai, Q. Wang, P. Rojsitthisak, Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin, Journal of Carbohydrate Polymers, 181 (2018) 1119-1127.
[73] R.T. Chacko, J. Ventura, J. Zhuang, S. Thayumanavan, Polymer nanogels: A versatile nanoscopic drug delivery platform, Advanced Drug Delivery Reviews, 64 (2012) 836-851.
[74] A.E. Ekkelenkamp, M.R. Elzes, J.F.J. Engbersen, J.M.J. Paulusse, Responsive cross-linked polymer nanogels for imaging and therapeutics delivery, Journal of Materials Chemistry B, 6 (2018) 210-235.
[75] H. Zhang, Y. Zhai, J. Wang, G. Zhai, New progress and prospects: The application of nanogel in drug delivery, Materials Science and Engineering: C, 60 (2016) 560-568.
[76] L.E. Nita, A.P. Chiriac, A. Diaconu, N. Tudorachi, L. Mititelu-Tartau, Multifunctional nanogels with dual temperature and pH responsiveness, International Journal of Pharmaceutics, 515 (2016) 165-175.
[77] A. Pich, A. Tessier, V. Boyko, Y. Lu, H.-J.P. Adler, Synthesis and Characterization of Poly(vinylcaprolactam)-Based Microgels Exhibiting Temperature and pH-Sensitive Properties, Macromolecules, 39 (2006) 7701-7707.
[78] D. Li, C.F. van Nostrum, E. Mastrobattista, T. Vermonden, W.E. Hennink, Nanogels for intracellular delivery of biotherapeutics, Journal of Controlled Release, 259 (2017) 16-28.
[79] A. Goyal, G. Rath, Recent Advances in Metal Nanoparticles in Cancer Therapy, Journal of Drug Targeting, 26 (2017) 1-45.
[80] M.R. Díaz, P.E. Vivas-Mejia, Nanoparticles as Drug Delivery Systems in Cancer Medicine: Emphasis on RNAi-Containing Nanoliposomes, Pharmaceuticals, 6 (2013) 1361-1380.
[81] S. Nambiar, E. Osei, A. Fleck, J. Darko, A.J. Mutsaers, S. Wettig, Synthesis of curcumin-functionalized gold nanoparticles and cytotoxicity studies in human prostate cancer cell line, Applied Nanoscience, 8 (2018) 347-357.
[82] Y. Zhou, G. Quan, Q. Wu, X. Zhang, B. Niu, B. Wu, Y. Huang, X. Pan, C. Wu, Mesoporous silica nanoparticles for drug and gene delivery, Acta Pharmaceutica Sinica B, 8 (2018) 165-177.
[83] W. Jiang, B.Y.S. Kim, J.T. Rutka, W.C.W. Chan, Advances and challenges of nanotechnology-based drug delivery systems, Expert Opinion on Drug Delivery, 4 (2007) 621-633.
[84] A. Carvalho, A.R. Fernandes, P.V. Baptista, Chapter 10 – Nanoparticles as Delivery Systems in Cancer Therapy: Focus on Gold Nanoparticles and Drugs, in: S.S. Mohapatra, S. Ranjan, N. Dasgupta, R.K. Mishra, S. Thomas (Eds.) Applications of Targeted Nano Drugs and Delivery Systems, Elsevier, 2019, pp. 257-295.
[85] D.M. Connor, A.-M. Broome, Gold nanoparticles for the delivery of cancer therapeutics, Advances in Cancer Research, 139 (2018) 163-184.
[86] J. Zhou, M.A. Frank, Y. Yang, A.R. Boccaccini, S. Virtanen, A novel local drug delivery system: Superhydrophobic titanium oxide nanotube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger, Materials Science and Engineering: C, 82 (2018) 277-283.
[87] G.D. Venkatasubbu, S. Ramasamy, V. Ramakrishnan, B. Kumar, Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery, Journal of Advanced Powder Technology, 24 (2013) 947-954.
[88] P. Kesharwani, A.K. Iyer, Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery, Drug Discovery Today, 20 (2015) 536-547.
[89] M. Ghaffari, G. Dehghan, F. Abedi-Gaballu, S. Kashanian, B. Baradaran, J. Ezzati Nazhad Dolatabadi, D. Losic, Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting, European Journal of Pharmaceutical Sciences, 122 (2018) 311-330.
[90] F. Abedi-Gaballu, G. Dehghan, M. Ghaffari, R. Yekta, S. Abbaspour-Ravasjani, B. Baradaran, J. Ezzati Nazhad Dolatabadi, M.R. Hamblin, PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy, Applied Materials Today, 12 (2018) 177-190.
[91] J. Li, H. Liang, J. Liu, Z. Wang, Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy, International Journal of Pharmaceutics, 546 (2018) 215-225.
[92] A. Zarebkohan, F. Najafi, H.R. Moghimi, M. Hemmati, M.R. Deevband, B. Kazemi, Synthesis and characterization of a PAMAM dendrimer nanocarrier functionalized by SRL peptide for targeted gene delivery to the brain, European Journal of Pharmaceutical Sciences, 78 (2015) 19-30.
[93] H. Gotoh, C. Liu, A.B. Imran, M. Hara, T. Seki, K. Mayumi, K. Ito, Y. Takeoka, Optically transparent, high-toughness elastomer using a polyrotaxane cross-linker as a molecular pulley, Science Advances, 4 (2018) eaat7629.
[94] A. Yasumoto, H. Gotoh, Y. Gotoh, A.B. Imran, M. Hara, T. Seki, Y. Sakai, K. Ito, Y. Takeoka, Highly Responsive Hydrogel Prepared Using Poly(N-isopropylacrylamide)-Grafted Polyrotaxane as a Building Block Designed by Reversible Deactivation Radical Polymerization and Click Chemistry, Macromolecules, 50 (2017) 364-374.
[95] K. Ohmori, A.B. Imran, T. Seki, C. Liu, K. Mayumi, K. Ito, Y. Takeoka, Molecular weight dependency of polyrotaxane-cross-linked polymer gel extensibility, Chemical Communications, 52 (2016) 13757-13759.
[96] A.B. Imran, K. Esaki, H. Gotoh, T. Seki, K. Ito, Y. Sakai, Y. Takeoka, Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network, Nature Communications, 5 (2014) 5124.
[97] A.B. Imran, T. Seki, Y. Takeoka, Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance, Polymer Journal, 42 (2010) 839-851.
[98] A.B. Imran, T. Seki, K. Ito, Y. Takeoka, Facile synthesis of sliding poly (NIPA) gels using a vinyl modified polyrotaxane as a cross-linker, Transactions of the MRS of Japan, 35 (2010) 841-844.
[99] A.B. Imran, T. Seki, K. Ito, Y. Takeoka, Hydrophobic and hydrophilic polyrotaxane based movable cross-linkers for thermo-sensitive poly (N-isopropylacrylamide) gels, J Transactions of the Materials Research Society of Japan, 35 (2010) 291-297.
[100] M. Harun‐Ur‐Rashid, A.B. Imran, T. Seki, M. Ishii, H. Nakamura, Y. Takeoka, Angle‐independent structural color in colloidal amorphous arrays, ChemPhysChem, 11 (2010) 579-583.
[101] A.B. Imran, T. Seki, K. Ito, Y. Takeoka, Poly (N-isopropylacrylamide) gel prepared using a hydrophilic polyrotaxane-based movable cross-linker, Macromolecules, 43 (2010) 1975-1980.
[102] M. Harun-Ur-Rashid, A.B. Imran, T. Seki, Y. Takeoka, M. Ishii, H. Nakamura, Template synthesis for stimuli-responsive angle independent structural colored smart materials, Transactions of the Materials Research Society of Japan, 34 (2009) 333-337.
[103] H. Murayama, A.B. Imran, S. Nagano, T. Seki, M. Kidowaki, K. Ito, Y. Takeoka, Chromic slide-ring gel based on reflection from photonic bandgap, Macromolecules, 41 (2008) 1808-1814.
[104] A.B. Imran, T. Seki, T. Kataoka, M. Kidowaki, K. Ito, Y. Takeoka, Fabrication of mechanically improved hydrogels using a movable cross-linker based on vinyl modified polyrotaxane, Chemical Communications, (2008) 5227-5229.
[105] B. Xiao, L. Ma, D. Merlin, Nanoparticle-mediated co-delivery of chemotherapeutic agent and siRNA for combination cancer therapy, Expert Opinion on Drug Delivery, 14 (2017) 65-73.
[106] S.S. Qi, J.H. Sun, H.H. Yu, S.Q. Yu, Co-delivery nanoparticles of anticancer drugs for improving chemotherapy efficacy, Drug Delivery, 24 (2017) 1909-1926.
[107] R. Cortesi, E. Esposito, M. Drechsler, G. Pavoni, I. Cacciatore, M. Sguizzato, A. Di Stefano, L-dopa co-drugs in nanostructured lipid carriers: A comparative study, Materials Science and Engineering: C, 72 (2017) 168-176.
[108] N.S. Gandhi, R.K. Tekade, M.B. Chougule, Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances, Journal of Controlled Release, 194 (2014) 238-256.
[109] W. Yang, Y. Cheng, T. Xu, X. Wang, L.-p. Wen, Targeting cancer cells with biotin-dendrimer conjugates, European Journal of Medicinal Chemistry, 44 (2009) 862-868.
[110] Y. Li, T. Thambi, D.S. Lee, Co-Delivery of Drugs and Genes Using Polymeric Nanoparticles for Synergistic Cancer Therapeutic Effects, Advanced Healthcare Materials, 7 (2018) 1700886.
[111] A. Afkham, L. Aghebati-Maleki, H. Siahmansouri, S. Sadreddini, M. Ahmadi, S. Dolati, N.M. Afkham, P. Akbarzadeh, F. Jadidi-Niaragh, V. Younesi, M. Yousefi, Chitosan (CMD)-mediated co-delivery of SN38 and Snail-specific siRNA as a useful anticancer approach against prostate cancer, Pharmacological Reports, 70 (2018) 418-425.
[112] D.R. Khan, M.N. Webb, T.H. Cadotte, M.N. Gavette, Use of Targeted Liposome-based Chemotherapeutics to Treat Breast Cancer, Breast Cancer: Basic and Clinical Research, 9 (2015) 29421.
[113] S. Bamrungsap, Z. Zhao, T. Chen, L. Wang, C. Li, T. Fu, W. Tan, Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system, Nanomedicine, 7 (2012) 1253-1271.
[114] M. Han, Q. Lv, X.-J. Tang, Y.-L. Hu, D.-H. Xu, F.-Z. Li, W.-Q. Liang, J.-Q. Gao, Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex, Journal of Controlled Release, 163 (2012) 136-144.
[115] A. Deb, N.G. Andrews, V. Raghavan, Natural polymer functionalized graphene oxide for co-delivery of anticancer drugs: In-vitro and in-vivo, International Journal of Biological Macromolecules, 113 (2018) 515-525.
[116] A. Rahman, T. Foyez, M.A.B.H. Susan, A.B. Imran, Self‐Healable and Conductive Double‐Network Hydrogels with Bioactive Properties, Macromolecular Chemistry Physics, 221 (2020) 2000207.
[117] H. Ragelle, F. Danhier, V. Préat, R. Langer, D.G. Anderson, Nanoparticle-based drug delivery systems: a commercial and regulatory outlook as the field matures, Expert Opinion on Drug Delivery, 14 (2017) 851-864.
[118] R. Bawa, Regulating Nanomedicine – Can the FDA Handle It?, Current Drug Delivery, 8 (2011) 227-234.
[119] J. Arrowsmith, P. Miller, Phase II and Phase III attrition rates 2011-2012, Nature Reviews Drug Discovery, 12 (2013) 569-569.
[120] Food and drug adminstration, Guidance for industry: ANDA submissions-content and format of Abbreviated New Drug Applications, 2014.
[121] G. Pillai, Nanomedicines for cancer therapy: An update of FDA approved and those under various stages of development, SOJ Pharmacy and Pharmaceutical Sciences, 1 (2014) 13.
[122] U. Bulbake, S. Doppalapudi, N. Kommineni, W. Khan, Liposomal Formulations in Clinical Use: An Updated Review, Pharmaceutics, 9 (2017) 12.
[123] J.M. Caster, A.N. Patel, T. Zhang, A. Wang, Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 9 (2017) e1416.
[124] D. Bobo, K.J. Robinson, J. Islam, K.J. Thurecht, S.R. Corrie, Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date, Pharmaceutical Research, 33 (2016) 2373-2387.
[125] A.C. Anselmo, S. Mitragotri, Nanoparticles in the clinic: An update, Bioengineering & Translational Medicine, 4 (2019) e10143.
[126] O.S. Fenton, K.N. Olafson, P.S. Pillai, M.J. Mitchell, R. Langer, Advances in Biomaterials for Drug Delivery, Advanced Materials, 30 (2018) 1705328.
[127] A. A. H. Abdellatif, A. F. Alsowinea, Approved and marketed nanoparticles for disease targeting and applications in COVID-19, Nanotechnology Reviews, 10 (2021) 1941-1977.
[128] P. Malik, G.K. Inwati, T.K. Mukherjee, S. Singh, M.J.J.o.M.L. Singh, Green silver nanoparticle and Tween-20 modulated pro-oxidant to antioxidant curcumin transformation in aqueous CTAB stabilized peanut oil emulsions, Journal of Molecular Liquids, 291 (2019) 111252.
[129] T. Foyez, A.B. Imran, Nanotechnology in vaccine development and constraints, in: K. Pal (Ed.) Nanovaccinology outbreak as targeted therapeutics, Wiley-Scrivener 2022.
[130] G. Gnanamoorthy, K. Ramar, A. Padmanaban, V.K. Yadav, K.S. Babu, V. Karthikeyan, V. Narayanan, Implementation of ZnSnO3 nanosheets and their RE (Er, Eu, and Pr) materials: Enhanced photocatalytic activity, Advanced Powder Technology, 31 (2020) 1209-1219.
[131] V.K. Yadav, R. Suriyaprabha, S.H. Khan, B. Singh, G. Gnanamoorthy, N. Choudhary, A.K. Yadav, H. Kalasariya, A novel and efficient method for the synthesis of amorphous nanosilica from fly ash tiles, Materials Today: Proceedings, 26 (2020) 701-705.
[132] M. Harun-Ur-Rashid, T. Foyez, I. Jahan, K. Pal, A.B. Imran, Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: a systematic review, RSC advances, 12 (2022) 9445-9465.
[133] M. Khan, A.U. Khan, M.A. Hasan, K.K. Yadav, M.M.C. Pinto, N. Malik, V.K. Yadav, A.H. Khan, S. Islam, G.K. Sharma, Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress, Applied Sciences, 11 (2021) 2282.
[134] G. Gnanamoorthy, D. Ali, V.K. Yadav, G. Dhinagaran, K. Venkatachalam, V. Narayanan, New construction of Fe3O4/rGO/ZnSnO3 nanocomposites enhanced photoelectro chemical properties, Optical Materials, 109 (2020) 110353.
[135] G. Gnanamoorthy, P. Priya, D. Ali, M. Lakshmi, V.K. Yadav, R. Varghese, A new CuZr2S4/rGO and their reduced graphene oxide nanocomposities enhanced photocatalytic and antimicrobial activities, Chemical Physics Letters, 781 (2021) 139011.
[136] S. Soenen, J. Cocquyt, L. Defour, P. Saveyn, P.V.D. Meeren, M.D.J.M. Cuyper, M. Processes, Design and development of magnetoliposome-based theranostics, Materials and Manufacturing Processes, 23 (2008) 611-614.
[137] N. Oku, Y. Tokudome, H. Tsukada, S. Okada, Real-time analysis of liposomal trafficking in tumor-bearing mice by use of positron emission tomography, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1238 (1995) 86-90.
[138] Y. Gandon, J.-F. Heautot, F. Brunet, D. Guyader, Y. Deugnier, M. Carsin, Superparamagnetic iron oxide: clinical time-response study, European Journal of Radiology, 12 (1991) 195-200.
[139] A.K. Gupta, C. Berry, M. Gupta, A. Curtis, Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis, IEEE Transactions on Nanobioscience, 2 (2003) 255-261.