Functionalized Carbon Nanomaterials: Fabrication, Properties, and Applications


Functionalized Carbon Nanomaterials: Fabrication, Properties, and Applications

P.R. Bhilkar, R.S. Madankar, T.S. Shrirame, R.D. Utane, A.K. Potbhare, S. Yerpude, S.R. Thakare, Sarita Rai, A.A. Abdala, Ratiram G. Chaudhary

In recent times, carbon based nanomaterials (CNMs) like graphene, graphene oxide (GO), graphene nanoplatelet (GNP), carbon nanotubes (CNTs), carbon dots (CDs), and fullerenes are among the most promising nanomaterial due to their extraordinary physiochemical, electrical, optical, mechanical, and thermal behavior. CNMs have many potential applications, including energy storage and conversion, biomedical, catalysts, composites, and biomaterials. Nonetheless, many advanced applications require the proper functionalization of CNMs. This chapter analyses the routes for CNMs functionalization and their impact on their structure and properties. Furthermore, the current and potential application of functionalized CNMs are discussed, and the challenges and future research directions are highlighted.

Functionalized CNMs, Carbon Nanotubes, Carbon Dots, Graphene Oxide, Potential Applications of CNMs

Published online 11/15/2022, 28 pages

Citation: P.R. Bhilkar, R.S. Madankar, T.S. Shrirame, R.D. Utane, A.K. Potbhare, S. Yerpude, S.R. Thakare, Sarita Rai, A.A. Abdala, Ratiram G. Chaudhary, Functionalized Carbon Nanomaterials: Fabrication, Properties, and Applications, Materials Research Foundations, Vol. 135, pp 72-99, 2023


Part of the book on Emerging Nanomaterials and Their Impact on Society in the 21st Century

[1] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks and M. C. Hersam, Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chemical Society Reviews, 42, (2013) 2824-2860.
[2] C. Buzea, I. Pacheco and K. Robbie, Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases, 2, (2007) 17-71.
[3] C. Pereira, C. Alves, A. Monteiro, C. Magén, A. M. Pereira, A. Ibarra, M. R. Ibarra, P. B. Tavares, J. P. Araújo, G. Blanco, J. M. Pintado, A. P. Carvalho, J. Pires, M. F. R. Pereira and C. Freire, Designing novel hybrid materials by one-pot condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Applied Materials & Interfaces, 3, (2011) 2289-2299.
[4] L. S. Ribeiro, T. Pinto, A. Monteiro, O. P. Soares, C. Pereira, C. Freire, Pereira and M. F. R. Silica nanoparticles functionalized with a thermochromic dye for textile applications. Journal of Materials Science, 48, (2013) 5085-5092.
[5] S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach and R. S. Ruoff, Graphene-based composite materials. Nature, 442, (2006) 282-286.
[6] M. Z. Krolow, C. A. Hartwig, G. C. Link, C. W. Raubach, J. S. F. Pereira and R. S. Picoloto, Synthesis and characterization of carbon nanocomposites. NanoCarbon 2011 Springer Berlin Heidelber, 3, (2013) 33-47.
[7] L. Q. Dong, Y. Y. Feng, L. Wang and W. Feng, Azobenzene based solar thermal fuels design, properties, and applications. Chemical Society Reviews, 47, (2018) 7339-7368.
[8] F. Zhang, Y. Y. Feng, M. M. Qin, T. X. Ji, F. Lv, Z. Y. Li, L. Gao, P. Long, F. L. Zhao and W. Feng, Stress-sensitive thermally conductive elastic nanocomposite based on interconnected graphite-welded carbon nanotube sponges. Carbon, 145, (2019) 378-388.
[9] L. Y. Wang, Y. Y. Feng, J. Han, F. Zhang, P. Long and W. Feng, Asymmetric selfsupporting hybrid fluorinated carbon nanotubes/carbon nanotubes sponge electrode for high-performance lithium-polysulfide battery. Chemical Engineering Journal, 349, (2018) 756-765.
[10] P. Lv, P. Zhang, Y. Y. Feng, Y. Li, W. Feng and J. Electacta, High-performance electrochemical capacitors using electrodeposited MnO2 on carbon nanotube array grown on carbon fabric. Electrochimica Acta, 78, (2012) 515-523.
[11] X. Wang, Y. Li, Y. Zhao, J. Liu, S. Tang and W. Feng, Synthesis of PANI nanostructures with various morphologies from fibers to micromats to disks doped with salicylic acid. Synthetic Metals, 160, (2010) 2008-2014.
[12] Q-L. Yan, M. Gozin, F-Q. Zhao, A. Cohen and S-P. Pang, Highly energetic compositions based on functionalized carbon nanomaterials, Nanoscale, 8, (2016) 4799-4851.
[13] A. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B, 61, (2000) 14095-14107.
[14] L. Wei, P. K. Kuo and R. L. Thomas, Thermal conductivity of isotopically modified single crystal diamond. Physical Review Letters, 70, (1993), 3764-3767.
[15] J. Pang, A. Bachmatiuk, I. Ibrahim, L. Fu and D. Placha, CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materieal Science. 51, (2016) 640-667.
[16] S. Iijima, Helical microtubules of graphitic carbon. Nature 354, (1991) 56-58.
[17] B. Bowers, History of Electric Light and Power; Peter Peregrinus Ltd. London, UK, 55, (1982) 71-72. ISBN: 0906048680.
[18] N.B. Brandt, S.M. Chudinov and Y.G. Ponomarev, (Eds.) Semimetals Graphite and Its Compounds; Modern Problem in Condensed Matter Sciences Series 20, Elsevier, Amsterdam, The Netherlands, 48, (1988). ISBN: 978-0444870490.
[19] K. Sugihara and H. Sato, Electrical conductivity of graphite. Journal of the Physical Society of Japan, 18, 1963 332-341.
[20] Y. Wu, Y. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu and P. Avouris, High-frequency, scaled graphene transistors on diamond-like carbon. Nature, 472, (2011) 74-78.
[21] K. S. Novoselov, A. K. Geim, S. V. Morozov and D. Jiang, Electric field effect in atomically thin carbon films. Science, 306, (2004) 666-669.
[22] A. K. Geim and K. S. Novoselov, The rise of graphene. Nature Materials, 6, (2007) 183-191.
[23] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene. Nature, 318, (1985) 162-163.
[24] S. Iijima, Helical microtubules of graphitic carbon. Nature, 354, (1991) 56-58.
[25] D. Janas, Perfectly imperfect: a review of chemical tools for exciton engineering in single-walled carbon nanotubes, Materials Horizons, 7, (2020) 2860-2881.
[26] N. Mubarak, E. Abdullah, N. Jayakumar, and J. Sahu, An overview on methods for the production of carbon nanotubes, Journal of Industrial and Engineering Chemistry, 20, (2014) 1186-1197.
[27] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, and R. Kizek. Methods for carbon nanotubes synthesis. Journal of Materials Chemistry 21, (2011) 15872-15884.
[28] S. Esconjauregui, C. M. Whelan, and K. Maex, The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies, Carbon 47, (2009) 659-669
[29] M. I. Ionescu, Y. Zhang, R. Li, X. Sun, H. Abou-Rachid, and L. S. Lussier, Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies, Applied Surface Science, 257, (2011) 6843-6849.
[30] R. Bhatia and V. Prasad, Synthesis of multiwall carbon nanotubes by chemical vapor deposition of ferrocene alone, Solid State Communications, 150, (2010) 311-315.
[31] M. Golshadi, J. Maita, D. Lanza, M. Zeiger, V. Presser, and M. G. Schrlau, Effects of synthesis parameters on carbon nanotubes manufactured by template- based chemical vapor deposition, Carbon, 80, (2014) 28-39.
[32] N. Saifuddin, A. Raziah, and A. Junizah, Carbon nanotubes: a review on structure and their interaction with proteins, Journal of Chemistry, 2013, (2013) 18.
[33] J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam and R. Kizek, Methods for carbon nanotubes synthesis-review, Journal of Materials Chemistry, 21, (2011) 15872-15884.
[34] G. Rathore, A. Gupta, and L. Singh, An eco-friendly approach for fabrication of silver nanoparticles by using ascorbic acid from various native sources, International Journal of Pharmaceutical Research, 12, (2020) 41-48.
[35] A. C. Jafer, V. T. Veetil, G. Prabhavathi, and R. Yamuna, Covalent functionalization and characterization of multiwalled carbon nanotubes using 5,10,15,20-tetra(4-aminophenyl)porphyrinatonickel(II), Fullerenes, Nanotubes, and Carbon Nanostructures, 26, (2018) 739-745.
[36] A. L. Alpatova, W. Shan, P. Babica, B. L. Upham, A. R. Rogensues, S. J. Masten, E. Drown, A. K. Mohanty, E. C. Alocilja and V. V. Tarabara, Single-walled carbon nanotubes dispersed in aqueous media via noncovalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions, Water Research, 44, (2010) 505-520.
[37] J. H. Li, L. L. Feng and Z. X. Jia, Preparation of expanded graphite with 160 μm mesh of fine flake graphite, Materials Letters, 60, (2006) 746-749.
[38] S. Lee, H. min Kim, D. G. Seong and D. Lee, Synergistic improvement of flame retardant properties of expandable graphite and multiwalled carbon nanotube reinforced intumescent polyketone nanocomposites, Carbon, 143, (2019) 650-659.
[39] S. Lin, L. Dong, J. Zhang and H. Lu, Room-temperature intercalation and ∼1000-fold chemical expansion for scalable preparation of high-quality graphene, Chemistry of Materials, 28, (2016) 2138-2146.
[40] H. W. Xing, L. Lang, X. Z. Jin, L. S. Jing and G. G. Quan, HClO4-graphite intercalation compound and its thermally exfoliated graphite, Materials Letters, 63, (2009) 1618-1620.
[41] T. Mondal, A. K. Bhowmick, and R. Krishnamoorti. Synthesis and characterization of bi-functionalized graphene and expanded graphite using n-butyl lithium and their use for efficient water soluble dye adsorption. Journal of Materials Chemistry A, 28, (2013) 8144-8153.
[42] I. Berktas, N. Ghafar, A. Fontana, P. Caputcu, A. Menceloglu, Y. and B. S. Okan, Synergistic effect of expanded graphite-silane functionalized silica as a hybrid additive in improving the thermal conductivity of cementitious grouts with controllable water uptake. Energies, 13, (2020) 3561.
[43] Y. Wang and A. Hu, Carbon quantum dots: synthesis, properties and applications, Journal of Materials Chemistry C. 2, (2014) 6921-39.
[44] J. Zhou, Tailoring multi-wall carbon nanotubes for smaller nanostructures, Carbon, 47, (2009) 829-838.
[45] J. Zhou, An electrochemical approach to fabricating honeycomb assemblies from multiwall carbon nanotubes, Carbon. 59, (2013) 130-139.
[46] H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang and X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties, Chemical Communications, 34, (2009) 5118-20.
[47] C. Phadke, A. Mewada, R. Dharmatti, M. Thakur, S. Pandey and M. Sharon, Biogenic Synthesis of Fluorescent Carbon Dots at Ambient Temperature Using Azadirachta indica (Neem) gum. Journal of Fluorescence, 25, (2015) 1103-1107.
[48] V. C. Tung, M. J. Allen, Y. Yang and R. B. Kaner, High through put solution processing of large-scale graphene, Natural Nanotechnology, 4, (2008) 25-29.
[49] H. Chen, M. B. Muller, K. J. Gilmore, G. G. Wallace and D. Li, Mechanically strong, electrically conductive, and biocompatible graphene paper, Advance Materials, 20, (2008), 3557-3561.
[50] Z. G. Cambaz, G. Yushin, S. Osswald, V. Mochalin and Y. Gogotsi, Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC, Carbon, 46, (2008) 841- 849.
[51] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. Banerjee, L. Colombo and R. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, (2009) 1312-1314.
[52] C. Li, X. Wang, Y. Liu, W. Wang, J. Wynn and J. Gao, Using glucosamine as a reductant to prepare reduced graphene oxide and its nanocomposites with metal nanoparticles, Journal of Nanoparticle Research, 14, (2012) 1-11.
[53] S. Pei, J. Zhao, J. Du, W. Ren and H.-M. Cheng, Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids, Carbon, 48, (2010), 4466-4474.
[54] V. Avdeev, L. Monyakina, I. Nikol’Skaya, N. Sorokina and K. Semenenko, The choice of oxidizers for graphite hydrogenosulfate chemical synthesis, Carbon, 30, (1992) 819-823.
[55] N. Sorokina, M. Khaskov, V. Avdeev and I. Nikol’Skaya, Reaction of graphite with sulfuric acid in the presence of KMnO4, Russian Journal of General Chemistry, 75, (2005) 162-168.
[56] J. Chen, B. Yao, C. Li and G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 64, (2013) 225-229.
[57] M. Umekar, R. Chaudhary, G. Bhusari, and A. Potbhare, Fabrication of zinc oxidedecorated phytoreduced graphene oxide nanohybrid via Clerodendrum infortunatum. Emerging Materials Research, 10, (2021) 75-84.
[58] M. S. Umekar, R. G. Chaudhary, G. S. Bhusari, A. Mondal, A .K. Potbhare, and M. Sami, Phytoreduced graphene oxide-titanium dioxide nanocomposites using Moringa oleifera stick extract, Materials Today: Proceedings, 29, (2020) 709-714.
[59] S. P. Lonkar, Y. S. Deshmukh, and Ahmed A. Abdala, Recent advances in chemical modifications of graphene, Nano Research, 8, (2014) 1039-1074.
[60] A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour and S. W. Joo, Carbon nanotubes: properties, synthesis, purification, and medical applications, Nanoscale Research Letters, 9, (2014) 1-13.
[61] J. Kaur, G. S. Gill, and K. Jeet, Applications of carbon nanotubes in drug delivery: a comprehensive review, in Characterization and biology of nanomaterials for drug delivery: Nanoscience and Nanotechnology in Drug Delivery, Elsevier, (2019) 113- 135.
[62] L. Sidi Salah, N. Ouslimani, M. Chouai, Y. Danlée, I. Huynen, and H. Aksas, Predictive optimization of electrical conductivity of polycarbonate composites at different concentrations of carbon nanotubes: a valorization of conductive nanocomposite theoretical models, Materials, 14, (2021) 1687.
[63] G. Prusty and S. K. Swain, Dispersion of expanded graphite as nanoplatelets in a copolymer matrix and its effect on thermal stability, electrical conductivity and permeability, New Carbon Materials, 27, (2017) 271-277.
[64] P. Bhartiya, A. Singh, H. Kumar, T. Jaina, B. K. Singh and P. K. Dutta, Carbon dots : Chemistry, properties and applications, Journal of Indian Chemical Society, 93, (2016) 1-8.
[65] S. Y. Lim, W. Shen and Z. Gao, Carbon quantum dots and their applications, Chemical Society Reviews. 44, (2015) 362-81.
[66] V. Rimal, S. Shishodia and P. K. Srivastava. Novel synthesis of high-thermal stability carbon dots and nanocomposites from oleic acid as an organic substrate. Applied Nanoscience, 10, (2020) 455-464.
[67] M. Liang, B. Luo; Zhi, Application of graphene and graphene-based materials in clean energy-related devices, International Journal of Energy Research. 33, (2009) 1161-1170.
[68] H. Chang and H. Wu, Graphene-based nanohybrids: preparation, functionalization, and energy and environmental application, Energy and Environmental Science, 6, (2013) 3483-3507.
[69] M. Pumera, Graphene-based nanohybrids for energy storage, Energy and Environmental Science, 4, (2011) 668-674.
[70] A. Rashid, Graphene-based Energy Devices, Wiley-VCH Verlag GmbH & Co. 2015, ISBN: 978-3-527-69030-5
[71] I. Lundstroem, S. Shivaraman, C. Svensson and L. Lundkvist, A hydrogen−sensitive MOS field−effect transistor, Applied Physics Letter, 26, (1975) 55.
[72] M. Zaiser, S. J. Zinkle, G. E. Lucas, R. C. Ewing and J. S. Williams, Microstructural processes in irradiated materials, Materials Research Society: Warrendale, PA, USA, (1999). ISBN: 978-1558994461.
[73] K. Balasubramanian and M. Burghard, Chemically functionalized carbon nanotubes, Carbon Nanotubes, 1, (2005) 180 -192,.
[74] F. Borondics, M. Bokor, P. Matus, K. Tompa, S. Pekker and E. Jakab, Reductive functionalization of carbon nanotubes. Fullerenes, Nanotubes and Carbon Nanostructures, 13, (2005) 375-382,.
[75] K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhr; E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber and T. Seyller, Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials, 8, (2009) 203-207.
[76] G. Ciofani, V. Raffa, V. Pensabene, A. Menciassi and P. Dario, Dispersion of multi-walled carbon nanotubes in aqueous pluronic F127 solutions for biological applications. Fullerenes, Nanotubes and Carbon Nanostructures, 17, (2009) 11-25.
[77] M. Ramrakhiani, Nanostructures and their applications, Recent Research in Science and Technology, 4, (2012) 14-19.
[78] E.-L. Ursu, F. Doroftei, D. Peptanariu, M. Pinteala and A. Rotaru, DNA-assisted decoration of single-walled carbon nanotubes with gold nanoparticles for applications in surface-enhanced Raman scattering imaging of cells, Journal of Nanoparticle Research, 19, (2017) 181.
[79] W. Liu and G. Speranza, Functionalization of carbon nanomaterials for biomedical applications, Journal of Carbon Research, 5, (2019) 72.
[80] G. Speranza, Carbon nanomaterials: Synthesis, functionalization and sensing applications, Nanomaterials, 11, (2021) 967.
[81] T. S. Shrirame, J. S. Khan, M. S. Umekar, A. K. Potbhare, P. R. Bhilkar, G. S. Bhusari, D. T. Masram, A. A. Abdala, and R. G. Chaudhary, Graphene-polymer nanocomposites for environmental remediation of organic pollutants, Metal Nanocomposites for Energy and Environmental Applications, Springer, (2022) 321-349.
[82] Y. Kong, J. Yuan, Z. Wang, S. Yao and Z. Chen, Application of expanded graphite/attapulgite composite materials as electrode for treatment of textile Wastewater, Applied Clay Science, 46 (2009) 358-362.
[83] N. B. Houng, T. T. Nguyen, T. S. Nguyen, T. P. Bui, and L. G. Bach, The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution, Civil & Environmental Engineering, 6, (2019) 1584939.
[84] L. Vasquez, L. Campagnolo, A. Athanassious, and D. Fragouli, Expanded graphite-polyurethane foam for water- oil filtration, ACS Applied Materials & Interfaces, 11, (2019) 30207-30217.
[85] H. D. Nguyen, H. T. Nguyen, T. T. Nguyen, A. K. Thi, T. D. Nguyen, Q. T. Bui, and L. G. Bach, The preparation and characterization of MnFe2O4 -decorated expanded graphite for removal of heavy oils from water, Materials, 12, (2019) 1993.
[86] Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings, and C. Wang, Expanded graphite as superior anode for sodium-ion batteries, Nature Communications, 5, (2014) 1-10.
[87] W. Wang, X. Yang, Y. Fang, J. Ding, and J. Yan, Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage, Applied Energy, 86, (2009) 1479-1483.
[88] B. Zalba, J. M. Marin, L. F. Cabeza, and H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering, 23, (2003) 251-83.
[89] P. Murugan, R. D. Nagarajan, B. H. Shetty, M. Govindasamy, and A. Sundramoorthy, Recent trends in the applications of thermally expanded graphite for energy storage and sensors- a review, Nanoscale Advances, 3, (2021) 6294-6309.
[90] Y. Taoa, Q. Liub, W. Li, H. Xue, Y. Qin, J. Ge, and Y. Kong, A novel electrochemical immunosensor based on poly(m-aminophenol) modified expanded graphite electrode, Synthetic Metals, 183, (2013) 50-56.
[91] W. C. Hung, K. H. Wu, D. Y. Lyu, K. F. Cheng, W. C. Huang, Preparation and characterization of expanded graphite/metal oxides for antimicrobial application, Material Science & Engineering C, 75, (2017) 1019-1025.
[92] J. Zuo, T. Jiang, X. Zhao, X. Xiong, S. Xiao and Z. Zhu, Preparation and Application of Fluorescent Carbon Dots, Journal of Nanomaterials, 2015, (2015) 13.
[93] H. Ehtesabi, M. Amirfazli, F. Massah and Z. Bagheri, Application of functionalized carbon dots in detection, diagnostic, disease treatment, and desalination: a review, Advances in Natural Sciences: Nanoscience and Nanotechnology, 11, (2020) 025017.
[94] M. Silva, N. M. Alves and M. C. Paiva; Graphene‐polymer nanohybrids for biomedical applications, Polymer Advance Technology, (2017) 1-14.
[95] L. Cseri, J. Baugh, A. Alabi, A. AlHajaj, L. Zou, R. A. W. Dryfe, P. M. Budd and G. Szekely, Graphene oxide-polybenzimidazolium nanocomposite anion exchange membranes for electrodialysis, Journal of Materials Chemistry A, 6, (2018) 24728-24739.
[96] A. K. Potbhare, M. S. Umekar and P. B. Chouke, M. B. Bagade, S. K. Tarik Aziz, A. A. Abdala, R. G. Chaudhary, Bioinspired graphene-based silver nanoparticles: Fabrication, characterization and antibacterial activity, Materials Today: Proceedings, 29, (2020) 720-725.
[97] R. G. Chaudhary, A. K. Potbhare, S. K. Tarik Aziz, M. S. Umekar, S. S. Bhuyar, A. Mondal, and A. Abdala, Phytochemically fabricated reduced graphene Oxide-ZnO NCs by Sesbania bispinosa for photocatalytic performances Materials Today: Proceedings, 36, (2021) 756-762.
[98] M. S. Umekar, G. S. Bhusari, A.K. Potbhare, A. Mondal, B. P. Kapgate, M. F. Desimone, and R. G. Chaudhary, Bioinspired reduced graphene oxide based nanohybrids for photocatalysis and antibacterial applications, Current Pharmaceutical Biotechnology, 22, (2021) 1759-1781.