Fabrication Approaches for Piezoelectric Materials


Fabrication Approaches for Piezoelectric Materials

Bhavya Padha, Sonali Verma, Sandeep Arya

After decades of study and development, piezoelectric materials have been used in various applications. Piezoelectric material is highly acknowledged as one of the primary functional materials in precision and acoustic engineering fields. Researchers are being pushed to explore novel materials and device combinations for new applications due to increasing demand, notably from the electrical, energy, and biomedical sectors. On the other hand, engineers are always working to enhance existing technology. Since the field has such a broad reach, it is vital to present an overview of the many areas of piezoelectric materials. This chapter focuses on the fabrication of different piezoelectric materials, applications, and challenges.

Piezoelectric Materials, Energy, Biomedical, Ceramics, Bio-Piezoelectric Materials

Published online 2022/09/01, 24 pages

Citation: Bhavya Padha, Sonali Verma, Sandeep Arya, Fabrication Approaches for Piezoelectric Materials, Materials Research Foundations, Vol. 131, pp 37-60, 2022

DOI: https://doi.org/10.21741/9781644902073-2

Part of the book on Advanced Functional Piezoelectric Materials and Applications

[1] R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites, Mater. Res. Bull. 13 (1978) 525-536. https://doi.org/10.1016/0025-5408(78)90161-7
[2] A. Venkatanarayanan, E. Spain, Review of recent developments in sensing materials, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.), Comprehensive Materials Processing. Elsevier; Amsterdam, The Netherlands, 2014, pp. 47-101. https://doi.org/10.1016/B978-0-08-096532-1.01303-0
[3] M.Yuan, L. Cheng, Q. Xu, W. Wu, S. Bai, L. Gu, Z. Wang, J. Lu, H. Li, Y. Qin, T. Jing, Z.L. Wang, Biocompatible Nanogenerators through High Piezoelectric Coefficient 0.5 Ba (Zr0.2 Ti0.8) O3-0.5 (Ba0.7 Ca0.3) TiO3 Nanowires for In-Vivo Applications, Adv. Mater. 26 (2014) 7432-7437. https://doi.org/10.1002/adma.201402868
[4] C.K. Jeong, J.H. Han, H. Palneedi, H. Park, G.T. Hwang, B. Joung, S.G. Kim, H. J. Shin, I.S. Kang, J. Ryu, K.J. Lee, Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film, APL Mater. 5 (2017) 074102. https://doi.org/10.1063/1.4976803
[5] L. Li, L. Miao, Z. Zhang, X. Pu, Q. Feng, K. Yanagisawa, Y. Fan, M. Fan, P. Wen, D. Hu, Recent progress in piezoelectric thin film fabrication via the solvothermal process, J. Mater. Chem. A 7 (2019) 16046-16067. https://doi.org/10.1039/C9TA04863D
[6] M.T. Chorsi, E.J. Curry, H.T. Chorsi, R. Das, J. Baroody, P.K. Purohit, H. Ilies, T.D. Nguyen, Piezoelectric biomaterials for sensors and actuators, Adv. Mater. 31 (2019) 1802084. https://doi.org/10.1002/adma.201802084
[7] G.T. Hwang, M. Byun, C.K. Jeong, K.J. Lee, Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications, Adv. Healthcare Mater. 4 (2015) 646-658. https://doi.org/10.1002/adhm.201400642
[8] N.A. Shepelin, A.M. Glushenkov, V.C. Lussini, P.J. Fox, G.W. Dicinoski, J.G. Shapter, A.V. Ellis, New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting, Energy Environ. Sci. 12 (2019) 1143-1176. https://doi.org/10.1039/C8EE03006E
[9] D. Jiang, B. Shi, H. Ouyang, Y. Fan, Z.L. Wang, Z. Li, Emerging implantable energy harvesters and self-powered implantable medical electronics, ACS Nano 14 (2020) 6436-6448. https://doi.org/10.1021/acsnano.9b08268
[10] F. Mokhtari, Z. Cheng, R. Raad, J. Xi, J. Foroughi, Piezofibers to smart textiles: A review on recent advances and future outlook for wearable technology, J. Mater. Chem. A 8 (2020) 9496-9522. https://doi.org/10.1039/D0TA00227E
[11] K. Kapat, Q.T.H. Shubhra, M. Zhou, S. Leeuwenburgh, Piezoelectric Nano-Biomaterials for Biomedicine and Tissue Regeneration, Adv. Funct. Mater. 30 (2020) 1909045. https://doi.org/10.1002/adfm.201909045
[12] H. Yuan, T. Lei, Y. Qin, R. Yang, Flexible electronic skins based on piezoelectric nanogenerators and piezotronics, Nano Energy 59 (2019) 84-90. https://doi.org/10.1016/j.nanoen.2019.01.072
[13] Q. Xu, X. Gao, S. Zhao, Y.N. Liu, D. Zhang, K. Zhou, H. Khanbareh, W. Chen, Y. Zhang, C. Bowen, Construction of Bio-Piezoelectric Platforms: From Structures and Synthesis to Applications, Adv. Mater. 33 (2021) 2008452. https://doi.org/10.1002/adma.202008452
[14] T. Kato, Fine ceramics technology, Fabrication technology of ceramic powder and its future, Industry Research Center, Japan, v3, 1983.
[15] M. Lejeune, J.P. Boilot, Ceramics of perovskite lead magnesium niobate, Ferroelectrics 54 (1984) 191-194. https://doi.org/10.1080/00150198408215848
[16] S.L. Swartz, T.R. Shrout, W.A. Schulze, L.E. Cross, Dielectric Properties of Lead-Magnesium Niobate Ceramics, J. Am. Ceram. Soc. 67 (1984) 311. https://doi.org/10.1111/j.1151-2916.1984.tb19528.x
[17] M. Tanada, H. Yamamura, S. Shirasaki, Abstract 22nd, Jpn. Ceram. Soc. Fundamental Div. 81 (1984).
[18] Y. Ozaki, Electron Ceram.,13 (1982) 26. https://doi.org/10.1002/chin.198241158
[19] A. Yamaji, Y. Enomoto, E. Kinoshita, T. Tanaka, Proc. 1st Mtg. Ferroelectric Mater. & Appl., Kyoto, 1977, p. 269.
[20] C.W. Ahn, H.C. Song, S. Nahm, S. Priya, S.H. Park, K. Uchino, H.G. Lee, H.J. Lee, Effect of ZnO and CuO on the sintering temperature and piezoelectric properties of a hard piezoelectric cermic, J. Am. Ceram. Soc. 89 (2006) 921-925. https://doi.org/10.1111/j.1551-2916.2005.00823.x
[21] G.L. Messing, S. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P.W. Rehrig, K.B. Eitel, E. Suvaci, Templated Grain Growth of Textured Piezoelectric Ceramics, Crit. Rev. in Solid State Mater. Sci. 29 (2004) 45. https://doi.org/10.1080/10408430490490905
[22] T. Tani, T. Kimura, Reactive-templated grain growth processing for lead free piezoelectric ceramics, Adv. Appl. Ceram. 105 (2006) 55. https://doi.org/10.1179/174367606X81650
[23] Y. Saito, H. Takao, T. Tani, T.Nonoyama, K.Takatori, T. Homma, T. Nagaya. M. Nakamura, Lead-free piezoceramics, Nature 432 (2004) 84-87. https://doi.org/10.1038/nature03028
[24] K. Uchino, Manufacturing methods for piezoelectric ceramic materials, Advanced piezoelectric materials: Science and technology, Woodhead Publishing, United Kingdom, 2017, pp.385-393. https://doi.org/10.1016/B978-0-08-102135-4.00010-2
[25] Q. Meng, C. Du, Z. Xu, J. Nie, M. Hong, X. Zhang, J. Chen, Siloxene-Reduced graphene oxide composite hydrogel for supercapacitors, Chem. Engg. J. 393 (2020) 124684. https://doi.org/10.1016/j.cej.2020.124684
[26] R. Song, H. Jin, X. Li, L. Fei, Y. Zhao, H.Huang, H.L.W. Chan, Y. Wang, Y. Chai, A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes, J. Mater. Chem. A 3 (2015) 14963-14970. https://doi.org/10.1039/C5TA03349G
[27] S. Sahoo, K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S. Manoharan, S.J. Kim, High-performance self-charging supercapacitors using a porous PVDF-ionic liquid electrolyte sandwiched between two-dimensional graphene electrodes, J. Mater. Chem. A 7 (2019) 21693-21703. https://doi.org/10.1039/C9TA06245A
[28] A. Maitra, S. Paria, S.K. Karan, R. Bera, A. Bera, A.K. Das, S.K. Si, L. Halder, A. De, B.B. Khatua, Triboelectric nanogenerator driven self-charging and self-healing flexible asymmetric supercapacitor power cell for direct power generation, ACS Appl. Mater.& Inter. 11 (2019) 5022-5036. https://doi.org/10.1021/acsami.8b19044
[29] K. Parida, V. Bhavanasi, V. Kumar, J. Wang, P.S. Lee, Fast charging self-powered electric double layer capacitor, J. Power Sources 342 (2017) 70-78. https://doi.org/10.1016/j.jpowsour.2016.11.083
[30] Y. Lu, Y. Jiang, Z. Lou, R. Shi, D. Chen, G. Shen, Wearable supercapacitor self-charged by P(VDF-TrFE) piezoelectric separator, Prog. Nat. Sci. 30 (2020) 174-179. https://doi.org/10.1016/j.pnsc.2020.01.023
[31] A. Ramadoss, B. Saravanakumar, S.W. Lee, Y.S. Kim, S.J. Kim, Z.L. Wang, Piezoelectric-driven self-charging supercapacitor power cell, ACS Nano 9 (2015) 4337- 4345. https://doi.org/10.1021/acsnano.5b00759
[32] D. Zhou, N. Wang, T. Yang, L. Wang, X. Cao, Z.L. Wang, A piezoelectric nanogenerator promotes highly stretchable and self-chargeable supercapacitors, Mater. Horiz. 7 (2020) 2158-2167. https://doi.org/10.1039/D0MH00610F
[33] P. Pazhamalai, K. Krishnamoorthy, V.K. Mariappan, S. Sahoo, S. Manoharan, S.J. Kim, A High Efficacy Self‐Charging MoSe2 Solid-State Supercapacitor Using Electrospun Nanofibrous Piezoelectric Separator with Ionogel Electrolyte, Adv. Mater. Inter. 5 (2018) 1800055. https://doi.org/10.1002/admi.201800055
[34] C. Cui, F. Xue, W.J. Hu, L.J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities, NPJ 2D Mater. Appl. 2 (2018) 1-14. https://doi.org/10.1038/s41699-017-0046-y
[35] F. Ali, W. Raza, X. Li, H. Gul, K.H. Kim, Piezoelectric energy harvesters for biomedical applications, Nano Energy 57 (2019) 879-902. https://doi.org/10.1016/j.nanoen.2019.01.012
[36] L.W. Martin, A.M. Rappe, Thin-film ferroelectric materials and their applications, Nat. Rev. Mater. 2 (2016) 1-14. https://doi.org/10.1038/natrevmats.2016.87
[37] G. Tan, K. Maruyama, Y. Kanamitsu, S. Nishioka, T. Ozaki, T. Umegaki, H. Hida, I. Kanno, Crystallographic contributions to piezoelectric properties in PZT thin films, Sci. Rep. 9 (2019) 1-6. https://doi.org/10.1038/s41598-018-37186-2
[38] J. Costa, T. Peixoto, A. Ferreira, F. Vaz, M.A. Lopes, Development and characterization of ZnO piezoelectric thin films on polymeric substrates for tissue repair, J. Biomed. Mater. Res., Part A 107 (2019) 2150-2159. https://doi.org/10.1002/jbm.a.36725
[39] N. Zhang, T. Zheng, J. Wu, Lead-free (K, Na) NbO3-based materials: Preparation techniques and piezoelectricity, ACS Omega 5 (2020) 3099-3107. https://doi.org/10.1021/acsomega.9b03658
[40] S.W. Zhang, Z. Zhou, J. Luo, J.F. Li, Potassium-Sodium-Niobate-Based Thin Films: Lead Free for Micro-Piezoelectrics, Ann. Phys. 531 (2019) 1800525. https://doi.org/10.1002/andp.201800525
[41] T.C. Kaspar, S. Hong, M.E. Bowden, T. Varga, P. Yan, C. Wang, S. R. Spurgeon, R.B. Comes, P. Ramuhalli, C.H. Henager, Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films, Sci. Rep. 8 (2018) 1-11. https://doi.org/10.1038/s41598-018-21009-5
[42] N.D. Scarisoreanu, F. Craciun, V. Ion, R. Birjega, A. Bercea, V. Dinca, M. Dinescu, L.E. Sima, M. Icriverzi, A. Roseanu, L.Gruionu, G. Gruionu, Lead-free piezoelectric (Ba, Ca)(Zr, Ti) O3 thin films for biocompatible and flexible devices, ACS Appl. Mater. Interfaces 9 (2017) 266-278. https://doi.org/10.1021/acsami.6b14774
[43] G. Ahn, S.R. Kim, Y.Y. Choi, H.W. Song, T.H. Sung, J. Hong, K. No, Facile preparation of ferroelectric poly (vinylidene fluoride-co-trifluoroethylene) thick films by solution casting, Polym. Eng. Sci. 54 (2014) 466-471. https://doi.org/10.1002/pen.23570
[44] E.S. Hosseini, L. Manjakkal, D. Shakthivel, R. Dahiya, Glycine-chitosan-based flexible biodegradable piezoelectric pressure sensor, ACS Appl. Mater. Interfaces 12 (2020) 9008-9016. https://doi.org/10.1021/acsami.9b21052
[45] B. Jiang, J. Iocozzia, L. Zhao, H. Zhang, Y.W. Harn, Y. Chen, Z. Lin, Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties, Chem. Soc. Rev. 48 (2019) 1194-1228. https://doi.org/10.1039/C8CS00583D
[46] Y. Wang, X. Wen, Y. Jia, M. Huang, F. Wang, X. Zhang, Y. Bai, G. Yuan, Y. Wang, Piezo-catalysis for nondestructive tooth whitening, Nat. Commun. 11 (2020) pp.1-11. https://doi.org/10.1038/s41467-020-15015-3
[47] M. Ha, S. Lim, J. Park, D.S. Um, Y. Lee, H. Ko, Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure‐sensitive electronic skins, Adv. Funct. Mater. 25 (2015) 2841-2849. https://doi.org/10.1002/adfm.201500453
[48] B. Azimi, M. Milazzo, A. Lazzeri, S. Berrettini, M.J. Uddin, Z. Qin, M.J. Buehler, S. Danti, Electrospinning piezoelectric fibers for biocompatible devices, Adv. Healthcare Mater. 9 (2020) 1901287. https://doi.org/10.1002/adhm.201901287
[49] V. Aravindan, J. Sundaramurthy, P. Suresh Kumar, Y.S. Lee, S. Ramakrishna, S. Madhavi, Electrospun nanofibers: A prospective electro-active material for constructing high performance Li-ion batteries, Chem. Commun. 51 (2015) 2225-2234. https://doi.org/10.1039/C4CC07824A
[50] S. Bairagi, S.W. Ali, A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs, Int. J. Energy Res. 44 (2020) 5545-5563. https://doi.org/10.1002/er.5306
[51] J. Jacob, N. More, C. Mounika, P. Gondaliya, K. Kalia, G. Kapusetti, Smart piezoelectric nanohybrid of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) and barium titanate for stimulated cartilage regeneration, ACS Appl. Bio Mater. 2 (2019) 4922-4931. https://doi.org/10.1021/acsabm.9b00667
[52] C. Cui, F. Xue, W.J. Hu, L.J. Li, Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Materials and Applications, NPJ 2D Mater. Appl. 2 (2018) 1-1. https://doi.org/10.1038/s41699-017-0046-y
[53] J.H. Bang, K.S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater. 22 (2010) 1039-1059. https://doi.org/10.1002/adma.200904093
[54] L. Cheng, X. Wang, F. Gong, T. Liu, Z. Liu, 2D nanomaterials for cancer theranostic Applications, Adv. Mater. 32 (2019) 1902333. https://doi.org/10.1002/adma.201902333
[55] C. Wu, T.W. Kim, J.H. Park, H. An, J. Shao, X. Chen, Z.L. Wang, Enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electron-acceptor layers, ACS Nano 11 (2017) 8356-8363. https://doi.org/10.1021/acsnano.7b03657
[56] J.N. Gordon, A. Taylor, P.N. Bennette, Lead poisoning: case studies, Br. J. Clin. Pharmacol. 53 (2002) p.451. https://doi.org/10.1046/j.1365-2125.2002.01580.x
[57] D. Barltrop, A.M. Smith, Kinetics of lead interaction with human erythrocytes, Postgrad. Med. J. 51 (1985) 770-773. https://doi.org/10.1136/pgmj.51.601.770
[58] M.B. Rabinowitz, G.W. Wetherill, J.D. Kopple, Kinetic analysis of lead metabolism in healthy humans, J. Clin. Invest. 58 (1976) 260-270. https://doi.org/10.1172/JCI108467
[59] D. Courtney, S.R. Meekin, Changes in blood lead levels of solderers following the introduction of The Control of Lead at Work Regulations, Occup. Med. 35 (1985) 128-130. https://doi.org/10.1093/occmed/35.4.128
[60] P.L. Goering, Lead-protein interactions as a basis for lead toxicity, Neurotoxicology 14 (1993) 45-60.
[61] D.R. Baldwin, W.J. Marshall, Heavy metal poisoning and its laboratory investigation, Ann. Clin. Biochem. 36 (1999) 267-300. https://doi.org/10.1177/000456329903600301
[62] S.S. Kety, The lead citrate complex ion and its role in the physiology and therapy of lead poisoning, J. Biol. Chem. 142 (1942) 181-190. https://doi.org/10.1016/S0021-9258(18)72713-0
[63] W.J.H. Leckie, S.L. Tompsett, The diagnostic and therapeutic use of edathamil calcium disodium (EDTA, versene) in excessive inorganic lead absorption, Q. J. Med. 27 (1958) 65-82.
[64] H.V. Aposhian, DMSA and DMPS-water soluble antidotes for heavy metal poisoning, Ann. Rev. Pharmacol. Toxicol. 23 (1983) 193-215. https://doi.org/10.1146/annurev.pa.23.040183.001205
[65] J.H. Graziano, E.S. Siris, N.Lolacono, S.J.Silverberg, L.Turgeon, 2, 3‐Dimercaptosuccinic acid as an antidote for lead intoxication, Clin. Pharmacol. Ther. 37 (1985) 431-438. https://doi.org/10.1038/clpt.1985.67
[66] M. de Jong, W. Chen, H. Geerlings, M. Asta, K.A. Persson, A database to enable discovery and design of piezoelectric materials, Sci. Data 2 (2015) 1-13. https://doi.org/10.1038/sdata.2015.53
[67] S. Chibani, F.X. Coudert, Machine learning approaches for the prediction of materials properties, APL Mater. 8 (2020) 80701. https://doi.org/10.1063/5.0018384
[68] A.C. Walker, Hydrothermal synthesis of quartz crystals, J. Am. Ceram. Soc. 36 (1953) 250. https://doi.org/10.1111/j.1151-2916.1953.tb12877.x
[69] Y. Saigusa, Quartz-based piezoelectric materials, in: Advanced Piezoelectric Materials, Woodhead Publishing, Nirasaki-city, Japan, 2017, pp. 197-233. https://doi.org/10.1016/B978-0-08-102135-4.00005-9
[70] M.A. Fakhri, E.T. Salim, M.H.A. Wahid, U. Hashim, Z.T. Salim, R.A. Ismail,. Synthesis and characterization of nanostructured LiNbO3 films with variation of stirring duration, J. Mater. Sci. Mater. Electron. 28(2017) 11813-11822. https://doi.org/10.1007/s10854-017-6989-0
[71] S. Takasugi, K. Tomita, M. Iwaoka, H. Kato,M. Kakihana, The hydrothermal and solvothermal synthesis of LiTaO3 photocatalyst: Suppressing the deterioration of the water-splitting activity without using a cocatalyst, Int. J. Hyd. Energy 40(2015)5638-5643. https://doi.org/10.1016/j.ijhydene.2015.02.121
[72] Z.C. Qiu, J.P. Zhou, G. Zhu, P. Liu and X.B. Bian, Hydrothermal synthesis of Pb (Zr0· 52Ti0· 48) O3 powders at low temperature and low alkaline concentration, Bull. Mater. Sci. 32 (2009) 193. https://doi.org/10.1007/s12034-009-0030-z
[73] P. Luginbuhl, G.A. Racine, P. Lerch, B. Romanowicz, K.G. Brooks, N.F. de Rooij, P. Renaud, N. Setter, Piezoelectric cantilever beams actuated by PZT sol-gel thin film, Sens. Actuat. A-Phys. 54 (1996) 530. https://doi.org/10.1016/S0924-4247(95)01196-X
[74] J. Zhao, L. Lu, C.V. Thompson, Y.F. Lu, W.D. Song, Preparation of (0 0 1)-oriented PZT thin films on silicon wafers using pulsed laser deposition, J. Cryst. Growth 225 (2001) 173. https://doi.org/10.1016/S0022-0248(01)00865-X
[75] M.I.S. Veríssimo, P.Q. Mantas, A.M.R. Senos, J.A.B.P. Oliveira, M.T.S.R. Gomes, Preparation of PZT discs for use in an acoustic wave sensor, Ceram. Int. 35 (2009) 617. https://doi.org/10.1016/j.ceramint.2008.01.016