Nano Clay-Polymer Composite for Water Treatment


Nano Clay-Polymer Composite for Water Treatment

Aliya Naz, Abhiroop Chowdhury

The usage of clay polymer composites has increased in the past few decades. Due to extensive availability, wide surface areas, and good adsorption efficiency clay polymers are gaining popularity amongst researchers to remove wide range of organic as well as inorganic pollutants from effluents. This book chapter sheds light on the characteristics, occurrence, types and synthesis of clay minerals used for preparing nano-clay polymer composites. It also highlights the types, applicability and efficiencies of particular nano clay polymers for the removal of dyes, paints, nutrients, potentially toxic elements and pharmaceutical contaminants from wastewater.

Clay Polymer Composites, Wastewater, Advance Treatment, Potentially Toxic Elements, Adsorption

Published online , 25 pages

Citation: Aliya Naz, Abhiroop Chowdhury, Nano Clay-Polymer Composite for Water Treatment, Materials Research Foundations, Vol. 129, pp 129-152, 2022


Part of the book on Advanced Applications of Micro and Nano Clay II

[1] R.A. Mandour, Human health impacts of drinking water (surface and ground) pollution Dakahlyia Governorate, Egypt, Appl. Water Sci. 2 (2012) 157-163.
[2] A. Gupta, E. Ruebush, Aquasight: Automatic water impurity detection utilizing convolutional neural networks. arXiv preprint arXiv:1907 (2019) 07573.
[3] S. Wasi, S.Tabrez, M. Ahmad, Toxicological effects of major environmental pollutants: an overview, Environ. Monit. Assess.185 (2013) 2585-2593.
[4] A.B.W.S. Casariego, B.W.S. Souza, M.A. Cerqueira, J.A. Teixeira, L.Cruz, R. Díaz, A.A. Vicente, Chitosan/clay films’ properties as affected by biopolymer and clay micro/nanoparticles’ concentrations, Food Hydrocoll. 23 (2009) 1895-1902.
[5] M.S. Nazir, M.H.M. Kassim, L. Mohapatra, M.A. Gilani, M.R. Raza, K. Majeed, Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In Nanoclay reinforced polymer composites, Springer, Singapore, 2016, pp. 35-55.
[6] F. Guo, S.Aryana, Y.Han, Y. Jiao, A review of the synthesis and applications of polymer-nanoclay composites, Appl. Sci.8 (2018) 1696.
[7] G. Rytwo, Clay minerals as an ancient nanotechnology: historical uses of clay organic interactions, and future possible perspectives, Macla 9, (2008). 15-17.
[8] S.M. Lee, D. Tiwari, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions:An overview, Appl. Clay Sci., 59 (2012) 84-102.
[9] M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J. 308 (2017) 438-462.
[10] I. Savic, S.I.S.I. Stojiljkovic, I. Savic, D. Gajic, Industrial application of clays and clay minerals, Clays and Clay Minerals: Geological Origin, Mechanical Properties and Industrial Applications; Wesley, LR, Ed, (2014) 379-402.
[11] Y. Shi, Z. Xue, X. Wang, L.Wang, A.Wang, Removal of methylene blue from aqueous solution by sorption on lignocellulose-g-poly (acrylic acid)/montmorillonite three-dimensional cross-linked polymeric network hydrogels. Polym. Bull.70 (2013)1163-1179.
[12] L. Wang, J.P. Zhang, A. Q. Wang Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite super adsorbent nanocomposite. Colloids Surf. A. 322 (2008) 47-53.
[13] T. Zhang, W. Wang, Y. Zhao, H. Bai, T. Wen, S. Kang, , … S. Komarneni, Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites, Chem. Eng. J. (2020) 127574.
[14] J.T. Kloprogge, S. Komarneni, J.E. Amonette,. Synthesis of smectite clay minerals: a critical review, Clays Clay Miner. 47 (1999) 529-554.
[15] R.A. Schoonheydt, Smectite-type clay minerals as nanomaterials. Clays Clay Miner. 50 (2002) 411-420.
[16] M. Valášková, Clays, clay minerals and cordierite ceramics-A review, (2015).
[17] DD. Eisenhour, R.K. Brown, Bentonite and its impact on modern life. Elements, 5 (2009) 83-88.
[18] F. A. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, Environ. Pollut. 107 (2000) 391-398.
[19] L.M. Pandey, Enhanced adsorption capacity of designed bentonite and alginate beads for the effective removal of methylene blue, Appl. Clay Sci. 169 (2019) 102-111.
[20] H. Zhang, Z. Tong, T. Wei, Y. Tang,. Removal characteristics of Zn (II) from aqueous solution by alkaline Ca-bentonite, Desalination. 276 (2011)103-108.
[21] R. Ruiz, C. Blanco, C. Pesquera, F. Gonzalez, I. Benito, J. L. Lopez, Zeolitization of a bentonite and its application to the removal of ammonium ion from waste water. Appl. Clay Sci. 12 (1997) 73-83.
[22] W.S. Tan, A.S.Y. Ting, Alginate-immobilized bentonite clay: adsorption efficacy and reusability for Cu (II) removal from aqueous solution, Bioresour.Technol. 160 (2014) 115-118.
[23] D.A. Glatstein, F.M. Francisca, Influence of pH and ionic strength on Cd, Cu and Pb removal from water by adsorption in Na-bentonite, Appl. Clay Sci. 118 (2015) 61-67.
[24] V.H. Smith, D.W. Schindler, Eutrophication science: where do we go from here? Trends Ecol. Evol. 24 (2009) 201-207.
[25] M. Zamparas, M. Drosos, Y. Georgiou, Y. Deligiannakis, I. Zacharias, A novel bentonite-humic acid composite material Bephos™ for removal of phosphate and ammonium from eutrophic waters, Chem. Eng. J. 225 (2013). 43-51.
[26] K.G. Bhattacharyya, S. S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review, Adv.Colloid Interface Sci. 140 (2008) 114-131.
[27] Ö. Yavuz, Y. Altunkaynak, F. Güzel, Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Res. 37 (2003) 948-952.
[28] U.F. Alkaram, A. A. Mukhlis, A. H. Al-Dujaili, The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite, J. Hazard. Mater. 169 (2009) 324-332.
[29] Q. Zhang, Z. Yan, J. Ouyang, Y. Zhang, H. Yang, D. Chen, Chemically modified kaolinite nanolayers for the removal of organic pollutants. Appl. Clay Sci. 157 (2018) 283-290.
[30] N. Kumari, C. Mohan, Basics of clay minerals and their characteristic properties. (2021)
[31] L. Chen, Y. Zhao, H.Bai, Z. Ai, P. Chen, Y. Hu,……. S. Komarneni, Role of Montmorillonite, Kaolinite, or Illite in Pyrite Flotation: Differences in Clay Behavior Based on Their Structures, Langmuir. 36 (2020) 10860-10867.
[32] R. Zhen, Y.S. Jiang, F.F. Li, B. Xue, A study on the intercalation and exfoliation of illite, Res.Chem.Intermed. 43 (2017) 679-692.
[33] A.U. Gehring, P. Keller, B. Frey, J. Luster, The occurrence of spherical morphology as evidence for changing conditions during the genesis of a sepiolite deposit, Clay Miner. 30 (1995) 83-86.
[34] J. Abdo, H. AL‐Sharji, E. Hassan, Effects of nano‐sepiolite on rheological properties and filtration loss of water‐based drilling fluids, Surf Interface Anal., 48 (2016) 522-526.
[35] A. Esteban-Cubillo, R. Pina-Zapardiel, J. S., Moya, M. F., Barba, C. Pecharromán, The role of magnesium on the stability of crystalline sepiolite structure, J. Eur. Ceram. Soc.28 (2008)1763-1768.
[36] A. Kara, N. Tekin, A. Alan, A. Şafaklı, Physicochemical parameters of Hg (II) ions adsorption from aqueous solution by sepiolite/poly (vinylimidazole), J. Environ. Chem. Eng. 4 (2016) 1642-1652.
[37] F.N. Oskui, H. Aghdasinia, M.G. Sorkhabi, Adsorption of Cr (III) using an Iranian natural nanoclay: applicable to tannery wastewater: equilibrium, kinetic, and thermodynamic, Environ. Earth Sci.78 (2019) 106.
[38] R. Mukhopadhyay, N. De, Nano clay polymer composite: synthesis, characterization, properties and application in rainfed agriculture. Glob. J. Biosci. Biotechnol. 3 (2014) 133-138.
[39] S. Ghodke, S. Sonawane, R. Gaikawad, K.C. Mohite, TIO2/Nanoclay nanocomposite for phenol degradation in sonophotocatalytic reactor. Can J Chem Eng. 90 (2012) 1153-1159.
[40] J. Weiss, P. Takhistov, D.J. McClements, Functional materials in food nanotechnology, J. Food Sci. 71 (2006). R107.
[41] A.Wong, S.F., Wijnands, T. Kuboki, C.B. Park, Mechanisms of nanoclay-enhanced plastic foaming processes: Effects of nanoclay intercalation and exfoliation, J. Nanoparticle Res. 15 (2013) 1-15.
[42] R. Mukhopadhyay, D. Bhaduri, B. Sarkar, R. Rusmin, D. Hou, R. Khanam, , … & Y. S. Ok, Clay-polymer nanocomposites: Progress and challenges for use in sustainable water treatment. J. Hazard, Mater. 383 (2020) 121125.
[43] T. Robinson, G. McMullan, R. Marchant, P. Nigam, Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative, Bioresour. Technol.77 (2001) 247-255.
[44] S. Khan, A. Malik, Environmental and health effects of textile industry wastewater. In Environmental deterioration and human health, Springer, Dordrecht (2014). pp. 55-71.
[45] M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, K. N. Beeregowda, Toxicity, mechanism and health effects of some heavy metals, Interdiscip. Toxicol. 7 (2014) 60.
[46] L.C. Castillo-Carvajal, J.L. Sanz-Martín, B.E. Barragán-Huerta, Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review, Environ. Sci. Pollut. 21 (2014) 9578-9588.
[47] A. Amari, F.M. Alzahrani, K. Mohammedsaleh Katubi, N. S. Alsaiari, M.A. Tahoon, F.B. Rebah, Clay-polymer nanocomposites: Preparations and utilization for pollutants removal, Materials. 14 (2021) 1365.
[48] M. Mohapi, J. S. Sefadi, M. J. Mochane, S. I. Magagula, K. Lebelo, Effect of LDHs and Other Clays on Polymer Composite in Adsorptive Removal of Contaminants: A Review, 10 (2020) 957.
[49] R. Gahlot, K. Taki, M. Kumar, Efficacy of nanoclays as the potential adsorbent for dyes and metal removal from the wastewater: a review, Environ. Nanotechnol. Monit. Manag. 14 (2020) 100339.
[50] K. Ravikumar, J. Udayakumar, Preparation and characterisation of green clay-polymer nanocomposite for heavy metals removal, Chem Ecol. 36 (2020) 270-291.
[51] K.D. Nguyen, T.T.C. Trang, T. Kobayashi, Chitin‐halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions, J. Appl. Polym. Sci. 136 (2019) 47207.
[52] H. Sharififard, M. Ghorbanpour, S. Hosseinirad, Cadmium removal from wastewater using nano-clay/TiO2 composite: kinetics, equilibrium and thermodynamic study, Adv. Environ. Techn. 4 (2018) 203-209.
[53] U. Malayoglu, Removal of heavy metals by biopolymer (chitosan)/nanoclay composites, Sep. Sci. Techno. l53 (2018) 2741-2749.
[54] J. Podgorski, M. Berg, Global threat of arsenic in groundwater, Science 368 (2020) 45-850.
[55] E. Shaji, M. Santosh, K.V. Sarath, P. Prakash, V. Deepchand, B.V. Divya, Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula, Geosci. Front.12 (2020) 101079.
[56] L. Weerasundara, Y.S. Ok, J. Bundschuh, Selective removal of arsenic in water: A critical review, Environ. Pollut. 268 (2021) 115668.
[57] D.A. Almasri, T. Rhadfi, M.A. Atieh, G. McKay, S. Ahzi, High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal, Chem. Eng. Sci. 335 (2018) 1-12.
[58] R. Mukhopadhyay, K.M. Manjaiah, S.C. Datta, B. Sarkar, Comparison of properties and aquatic arsenic removal potentials of organically modified smectite adsorbents, J. Hazard. Mater. 377 (2019) 124-131.
[59] E.M.B. Dela Peña, K. Araño, M.L. Dela Cruz, P.A. de Yro, L.J.L. Diaz, The design of a bench‐scale adsorbent column based on nanoclay‐loaded electrospun fiber membrane for the removal of arsenic in wastewater, Water. Environ. J . (2021)
[60] J.J. Coetzee, N. Bansal, E.M. Chirwa, Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation, Expos. Health. 12 (2020) 51-62.
[61] A. Naz, B. K. Mishra, S. K. Gupta, Human health risk assessment of chromium in drinking water: a case study of Sukinda chromite mine, Odisha, India, Expos. Health. 8 (2016) 253-264.
[62] A. Naz, A. Chowdhury, B. K. Mishra, S. K. Gupta, Metal pollution in water environment and the associated human health risk from drinking water: A case study of Sukinda chromite mine, India, Hum. Ecol. Risk. Assess. 22 (2016) 1433-1455.
[63] A. Chowdhury, A. Naz, S.K. Maiti, Bioaccumulation of potentially toxic elements in three mangrove species and human health risk due to their ethnobotanical uses, Environ. Sci. Pollut. Res. 28 (2021) 33042-33059.
[64] L. Jacob, S. Joseph, L.A. Varghese, Polysulfone/MMT mixed matrix membranes for hexavalent chromium removal from wastewater, Arab. J. Sci. Engg. 45 (2020) 7611-7620.
[65] N. Abdullah, N. Yusof, W.J., Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 76 (2019) 17-38.
[66] J. Cloern, T. Krantz, J.E. Duffy Eutrophication. Encyclopedia of Earth. Washington DC, USA: Environmental Information Coalition, National Council for Science and the Environment. Retrieved from http://www. eoearth. org/article/Eutrophication. (2007)
[67] J. Luo, R. Pu, H. Duan, R. Ma, Z. Mao, Y. Zeng,….. Q. Xiao, Evaluating the influences of harvesting activity and eutrophication on loss of aquatic vegetations in Taihu Lake, China, Int. J. Appl. Earth Obs. Geoinf. 87 (2020) 102038.
[68] G. Yuan, L. Wu, , Allophane nanoclay for the removal of phosphorus in water and wastewater. Science and Technology of Advanced Materials, 8 (2007), 60.
[69] P.V. Haseena, K. S,.Padmavathy, P.R. Krishnan, G. Madhu, Adsorption of ammonium nitrogen from aqueous systems using chitosan-bentonite film composite, Procedia Technol. 24 (2016) 733-740.
[70] F. Mazloomi, M. Jalali, Adsorption of ammonium from simulated wastewater by montmorillonite nanoclay and natural vermiculite: experimental study and simulation, Environ. Monit. Assess.189 (2017) 1-19.
[71] Z. Carmen, S. Daniela, Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview Rijeka: IntechOpen (2012) pp. 55-86..
[72] M. Ismail, K. Akhtar, M. I. Khan, T. Kamal, M. A Khan,……. S.B. Khan, Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des. 25 (2019) 3645-3663.
[73] A. Rana, K. Qanungo,. Orange G dye removal from aqueous-solution using various adsorbents: A mini review (2021) Materials Today: Proceedings.
[74] P. Daraei, S.S. Madaeni, E. Salehi, N. Ghaemi, H.S. Ghari, M.A. Khadivi, E. Rostami, Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: Preparation, characterization and performance in dye removal, J. Membr. Sci. 436 (2013) 97-108.
[75] G.R. Mahdavinia, A. Baghban, S. Zorofi, A. Massoudi, Kappa-carrageenan biopolymer-based nanocomposite hydrogel and adsorption of methylene blue cationic dye from water, J. Mater. Environ. Sci. 5 (2014) 330-337.
[76] S. Radoor, J. Karayil, J. Parameswaranpillai, S. Siengchin, Adsorption of methylene blue dye from aqueous solution by a novel PVA/CMC/halloysite nanoclay bio composite: Characterization, kinetics, isotherm and antibacterial properties, J. Environ. Health sci. 18 (2020) 1311-1327.
[77] M.M. Tarekegn, R.M., Balakrishnan, A.M. Hiruy, A.H. Dekebo, Removal of methylene blue dye using nano zerovalent iron, nanoclay and iron impregnated nanoclay-a comparative study, RSC Advances. 11 (2021) 30109-30131.
[78] M. Andrade-Guel, C. Cabello-Alvarado, R.L. Romero-Huitzil, O.S. Rodríguez-Fernández, C. A. Ávila-Orta, G. Cadenas-Pliego….. J. Cepeda-Garza, Nanocomposite PLA/C20A Nanoclay by Ultrasound-Assisted Melt Extrusion for Adsorption of Uremic Toxins and Methylene Blue Dye, Nanomaterials, 11 (2021) 2477.
[79] M.A. Salam, S.A. Kosa, A.A. Al-Beladi, Application of nanoclay for the adsorptive removal of Orange G dye from aqueous solution, J. Mol. Liq. 241 (2017) 469-477.
[80] A. A. Al-Beladia, S.A. Kosaa, R.A. Wahabb, M.A. Salama, Removal of Orange G dye from water using halloysite nanoclay-supported ZnO nanoparticles, Desalination Water Treat. 196 (2020) 287-298.
[81] C.W. Pai, D. Leong, C.Y. Chen, G.S. Wang, Occurrences of pharmaceuticals and personal care products in the drinking water of Taiwan and their removal in conventional water treatment processes, Chemosphere. 256 (2020) 127002.
[82] S.A. Kraemer, A. Ramachandran, G.G. Perron, Antibiotic pollution in the environment: from microbial ecology to public policy, Microorganisms, 7 (2019) 180.
[83] S. Rodriguez-Mozaz, I. Vaz-Moreira, S.V., Della Giustina, M. Llorca, D.Barceló, , S. Schubert, … C.M. Manaia, Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment, Environ. Int. 140 (2020) 105733.
[84] M. Cerro-Lopez, M.A. Méndez-Rojas, Application of nanomaterials for treatment of wastewater containing pharmaceuticals. In Ecopharmacovigilance. Springer, Cham. 2017 pp. 201-219.
[85] D. A. Almasri, T. Rhadfi, M. A. Atieh, G. McKay, S. Ahzi, High performance hydroxyiron modified montmorillonite nanoclay adsorbent for arsenite removal. Chem Eng J. 335 (2018) 1-12.
[86] W. Liu, C. Zhao, S.Wang, L. Niu, Y. Wang, S. Liang, Z. Cui, Adsorption of cadmium ions from aqueous solutions using nano-montmorillonite: kinetics, isotherm and mechanism evaluations. Research on Chemical Intermediates, 44 (2018) 1441-1458.
[87] E. I. Unuabonah, B. I. Olu-Owolabi, E. I. Fasuyi, K. O. Adebowale, Modeling of fixed-bed column studies for the adsorption of cadmium onto novel polymer-clay composite adsorbent. J. Hazard. Mater. 179 (2010) 415-423.
[88] K. Moreno-Sader, A. García-Padilla, A. Realpe, M. Acevedo-Morantes, J. B.Soares, Removal of heavy metal water pollutants (Co2+ and Ni2+) using polyacrylamide/sodium montmorillonite (PAM/Na-MMT) nanocomposites, ACS Omega. 4 (2019) 10834-10844.
[89] M. Soleimani, Z. H. Siahpoosh, Determination of Cu (II) in water and food samples by Na+-cloisite nanoclay as a new adsorbent: Equilibrium, kinetic and thermodynamic studies. J. Taiwan Inst. Chem. Eng. 59 (2016) 413-423.
[90] A.S.K. Kumar, S. Kalidhasan, V. Rajesh, N. Rajesh, Application of cellulose-clay composite biosorbent toward the effective adsorption and removal of chromium from industrial wastewater, Ind. Eng. Chem. Res. 51 (2012) 58-69.
[91] E. I. Unuabonah, B. I. Olu-Owolabi, K. O. Adebowale, L. Z. Yang, Removal of lead and cadmium ions from aqueous solution by polyvinyl alcohol-modified kaolinite clay: a novel nano-clay adsorbent. Adsorpt. Sci. Technol. 26 (2008) 383-405.
[92] S. Elhami, S. Shafizadeh, Removal of Mercury (II) using modified Nanoclay. Mater. Today: Proc., 3 (2016) 2623-2627.
[93] P.V. Haseena, K.S., Padmavathy, P.R., Krishnan, G. Madhu, Adsorption of ammonium nitrogen from aqueous systems using chitosan-bentonite film composite. Procedia Technol. 24 (2016) 733-740.
[94] W. Chen, H.C. Liu, Adsorption of sulfate in aqueous solutions by organo-nano-clay: Adsorption equilibrium and kinetic studies. Journal of Central South University, 21 (2014) 1974-1981.
[95] A.A. El-Zahhar, N.S. Awwad, E.E. El-Katori, Removal of bromophenol blue dye from industrial waste water by synthesizing polymer-clay composite, J. Mol. Liq. 199 (2014) 454-461.
[96] S.R., Shirsath, A.P. Patil, R. Patil, J.B. Naik, P.R. Gogate, S.H. Sonawane, Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly (acrylic acid) hydrogel loaded with kaolin clay: a comparative study, Ultrason Sonochem 20 (2013) 914-923.
[97] H. Hosseinzadeh, S. Zoroufi, G.R. Mahdavinia, Study on adsorption of cationic dye on novel kappa-carrageenan/poly (vinyl alcohol)/montmorillonite nanocomposite hydrogels, Polym. Bull. 72 (2015)1339-1363.
[98] R. Xu, J. Mao, N. Peng, X. Luo, C. Chang, Chitin/clay microspheres with hierarchical architecture for highly efficient removal of organic dyes, Carbohydrate polymers, 188 (2018)143-150.
[99] Q. Zhou, Q.Gao, W. Luo, C. Yan, Z. Ji, P. Duan, One-step synthesis of amino-functionalized attapulgite clay nanoparticles adsorbent by hydrothermal carbonization of chitosan for removal of methylene blue from wastewater, Colloids Surf, A Physicochem Eng Asp. 470 (2015) 248-257.
[100] J. Zhu, Y. Wang, J. Liu, Y. Zhang, Facile one-pot synthesis of novel spherical Zeoliter GO composites for cationic dyes adsorption. Ind. Eng. Chem. Res. 53 (2014) 13711-13717.
[101] K. Zhou, Q. Zhang, B.Wang, J. Liu, P. Wen, Z. Gui, Y. Hu, The integrated utilization of typical clays in removal of organic dyes and polymer nanocomposites, J. Clean. Prod. 81 (2014) 281-289.
[102] G. Çöle, M.K. Gök, G. Güçlü, Removal of basic dye from aqueous solutions using a novel nanocomposite hydrogel: N-vinyl 2-pyrrolidone/itaconic acid/organo clay, Water Air Soil Pollut. 224 (2013) 1-16.
[103] M. Cea, P. Cartes, G. Palma, M.L. Mora, Atrazine efficiency in an andisol as affected by clays and nanoclays in ethylcellulose controlled release formulations, Revista de la ciencia del suelo y nutrición vegetal, 10 (2010) 62-77.
[104] R. Bhattacharyya, S. K. Ray Removal of congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol, Chem Eng J. 260 (2015) 269-283.
[105] A. Naz, A. Chowdhury Pollutant extraction from water and soil using Montmorillonite clay-polymer composite: A rapid review, Mater. Today: Proc. (2021)