Exploring Electronic Structure and Optical Properties of 2D Monolayer As2S3 by First-Principle’s Calculation

Exploring Electronic Structure and Optical Properties of 2D Monolayer As2S3 by First-Principle’s Calculation

Abhishek Patel, Deobrat Singh, Yogesh Sonvane, P.B. Thakor and Rajeev Ahuja

download PDF

Abstract. In the present work, the structural, electronic and optical properties of the 2D monolayer As2S3 have been systematically investigated by the first principles calculations. The monolayer As2S3 has stable structure in the 2D oblique lattice which is confirm by phonon dispersion. Here, the elemental projected band-structure and density of states of the monolayer As2S3 have been determined by using HSE functional. The calculated bandgap of the monolayer As2S3 has 3.29 eV (of the indirect nature). In the optical properties, the complex dielectric function and optical absorption spectrum have been studied. The results suggest that the 2D monolayer As2S3 as hopeful candidate for potential applications in nano-electronics and opto-electronics.

First-Principle’s Calculation, 2D Material, Monolayer, Electronic Structure and Optical Properties

Published online 3/25/2022, 8 pages
Copyright © 2022 by the author(s)
Published under license by Materials Research Forum LLC., Millersville PA, USA

Citation: Abhishek Patel, Deobrat Singh, Yogesh Sonvane, P.B. Thakor and Rajeev Ahuja, Exploring Electronic Structure and Optical Properties of 2D Monolayer As2S3 by First-Principle’s Calculation, Materials Research Proceedings, Vol. 22, pp 57-64, 2022

DOI: https://doi.org/10.21741/9781644901878-8

The article was published as article 8 of the book Functional Materials and Applied Physics

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

[1] C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science (80-. ). 321 (2008) 385 LP – 388. https://doi.org/10.1126/science.1157996
[2] D. Tyagi, H. Wang, W. Huang, L. Hu, Y. Tang, Z. Guo, Z. Ouyang, H. Zhang, Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications, Nanoscale. 12 (2020) 3535–3559. https://doi.org/10.1039/C9NR10178K
[3] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191. https://doi.org/10.1038/nmat1849
[4] K.S. Novoselov, A.K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, A.A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science (80-. ). 306 (2004) 666 LP – 669. https://doi.org/10.1126/science.1102896
[5] B. Mortazavi, F. Shojaei, M. Azizi, T. Rabczuk, X. Zhuang, As2S3, As2Se3 and As2Te3 nanosheets: Superstretchable semiconductors with anisotropic carrier mobilities and optical properties, J. Mater. Chem. C. 8 (2020) 2400–2410. https://doi.org/10.1039/C9TC05904K
[6] A. Patel, D. Singh, Y. Sonvane, P.B. Thakor, R. Ahuja, Impact of stacking on the optoelectronic properties of 2D ZrS2/GaS heterostructure, Mater. Today Proc. 47 (2021) 526–528. https://doi.org/10.1016/j.matpr.2020.10.385
[7] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Single-layer MoS2 transistors, Nat. Nanotechnol. 6 (2011) 147–150. https://doi.org/10.1038/nnano.2010.279
[8] E. Bianco, S. Butler, S. Jiang, O.D. Restrepo, W. Windl, J.E. Goldberger, Stability and Exfoliation of Germanane: A Germanium Graphane Analogue, ACS Nano. 7 (2013) 4414–4421. https://doi.org/10.1021/nn4009406
[9] D. Nakamura, H. Nakano, Liquid-Phase Exfoliation of Germanane Based on Hansen Solubility Parameters, Chem. Mater. 30 (2018) 5333–5338. https://doi.org/10.1021/acs.chemmater.8b02153
[10] L. Song, L. Ci, H. Lu, P.B. Sorokin, C. Jin, J. Ni, A.G. Kvashnin, D.G. Kvashnin, J. Lou, B.I. Yakobson, P.M. Ajayan, Large Scale Growth and Characterization of Atomic Hexagonal Boron Nitride Layers, Nano Lett. 10 (2010) 3209–3215. https://doi.org/10.1021/nl1022139
[11] Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure, Science (80-. ). 317 (2007) 932 LP – 934. https://doi.org/10.1126/science.1144216
[12] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Silicene: Compelling Experimental Evidence for Graphenelike Two-Dimensional Silicon, Phys. Rev. Lett. 108 (2012) 155501. https://doi.org/10.1103/PhysRevLett.108.155501
[13] M. Šiškins, M. Lee, F. Alijani, M.R. Van Blankenstein, D. Davidovikj, H.S.J. Van Der Zant, P.G. Steeneken, Highly Anisotropic Mechanical and Optical Properties of 2D Layered As2S3 Membranes, ACS Nano. 13 (2019) 10845–10851. https://doi.org/10.1021/acsnano.9b06161
[14] A. Zavabeti, A. Jannat, L. Zhong, A.A. Haidry, Z. Yao, J.Z. Ou, Two-Dimensional Materials in Large-Areas: Synthesis, Properties and Applications, Nano-Micro Lett. 12 (2020) 66. https://doi.org/10.1007/s40820-020-0402-x
[15] M. Bernardi, C. Ataca, M. Palummo, J.C. Grossman, Optical and Electronic Properties of Two-Dimensional Layered Materials, Nanophotonics. 6 (2017) 479–493. https://doi.org/10.1515/nanoph-2015-0030
[16] M. Moreno-Moreno, G. López-Polín, A. Castellanos-Gomez, C. Navarro, J. Gomez-Herrero, Environmental Effects in Mechanical Properties of Few-layer Black Phosphorus, 2D Mater. 3 (2016) 31007. https://doi.org/10.1088/2053-1583/3/3/031007
[17] J. Tao, W. Shen, S. Wu, L. Liu, Z. Feng, C. Wang, C. Hu, P. Yao, H. Zhang, W. Pang, X. Duan, J. Liu, C. Zhou, D. Zhang, Mechanical and Electrical Anisotropy of Few-Layer Black Phosphorus, ACS Nano. 9 (2015) 11362–11370. https://doi.org/10.1021/acsnano.5b05151
[18] S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu, H. Zeng, Recent progress in 2D group-VA semiconductors: from theory to experiment, Chem. Soc. Rev. 47 (2018) 982–1021. https://doi.org/10.1039/C7CS00125H
[19] A. Patel, D. Singh, Y. Sonvane, P.B. Thakor, R. Ahuja, Bulk and monolayer As2S3 as promising thermoelectric material with high conversion performance, Comput. Mater. Sci. 183 (2020) 109913. https://doi.org/10.1016/j.commatsci.2020.109913
[20] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B – Condens. Matter Mater. Phys. 54 (1996) 11169–11186. https://doi.org/10.1103/PhysRevB.54.11169
[21] G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15–50. https://doi.org/10.1016/0927-0256(96)00008-0
[22] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865
[23] D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B – Condens. Matter Mater. Phys. 59 (1999) 1758–1775. https://doi.org/10.1103/PhysRevB.59.1758
[24] Y. Xu, Y. Li, X. Chen, C. Zhang, R. Zhang, P. Lu, First-principle study of hydrogenation on monolayer MoS2, AIP Adv. 6 (2016) 75001. https://doi.org/10.1063/1.4955430
[25] H. Li, C. Tsai, A.L. Koh, L. Cai, A.W. Contryman, A.H. Fragapane, J. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15 (2016) 48–53. https://doi.org/10.1038/nmat4465
[26] E.N. Voronina, L.S. Novikov, Ab initio study of unzipping processes in carbon and boron nitride nanotubes under atomic oxygen impact, RSC Adv. 3 (2013) 15362–15367. https://doi.org/10.1039/c3ra41742e
[27] H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976) 5188–5192. https://doi.org/10.1103/PhysRevB.13.5188
[28] H. Shang, C. Carbogno, P. Rinke, M. Scheffler, Lattice dynamics calculations based on density-functional perturbation theory in real space, Comput. Phys. Commun. 215 (2017) 26–46. https://doi.org/10.1016/j.cpc.2017.02.001
[29] G. Kresse, J. Furthmüller, J. Hafner, Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite, Europhys. Lett. 32 (1995) 729–734. https://doi.org/10.1209/0295-5075/32/9/005
[30] A. Togo, I. Tanaka, First principles phonon calculations in materials science, Scr. Mater. 108 (2015) 1–5. https://doi.org/10.1016/j.scriptamat.2015.07.021
[31] K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276. https://doi.org/10.1107/S0021889811038970
[32] D. Singh, S.K. Gupta, Y. Sonvane, I. Lukačević, Antimonene: a monolayer material for ultraviolet optical nanodevices, J. Mater. Chem. C. 4 (2016) 6386–6390. https://doi.org/10.1039/C6TC01913G
[33] H.R. Mahida, D. Singh, Y. Sonvane, P. Thakor, R. Ahuja, S. Gupta, The influence of edge structure on the optoelectronic properties of Si2BN quantum dot, J. Appl. Phys. 126 (2019) 0. https://doi.org/10.1063/1.5131149